
Efficient Computation of Deterministic Extensions for
Dynamic Abstract Argumentation Frameworks

SERGIO GRECO, FRANCESCO PARISI
Department of Informatics, Modeling, Electronics and System Engineering

University of Calabria, ITALY

ABSTRACT ARGUMENTATION
An (abstract) argumentation framework [1] (AF)
is a pair 〈A,Σ〉, where A is a set of arguments
and Σ ⊆ A×A is a set of attacks.
– It allows representing dialogues, making de-

cisions, and handling inconsistency;

– An AF can be viewed as a direct graph,
whose nodes are arguments and whose
edges are attacks.

SEMANTICS FOR AFS
An argumentation semantics specifies the cri-
teria for identifying a set of arguments consid-
ered to be “reasonable” together, called exten-
sion. A complete extension (co) is an admissible
set that contains all the arguments that it de-
fends. A complete extension S is said to be:
– preferred iff it is maximal (w.r.t. ⊆);

– grounded iff it is minimal;

– ideal iff it is contained in every preferred ex-
tension and it is maximal.

Grounded and ideal semantics are called de-
terministic or unique status as their sets of ex-
tensions are singletons.

UPDATES
An update u for an AF A0 consists in modify-
ing A0 into an AF A by adding or removing
arguments or attacks.
– +(a, b) (resp. −(a, b)) denotes the addition

(resp. deletion) of an attack (a, b);

– u(A0) means applying u = ±(a, b) to A0;

– multiple (attacks) updates can be simulated
by a single attack update.

DYNAMIC ARGUMENTATION FRAMEWORKS
– An argumentation framework models a temporary situation as new arguments and attacks

can be added/removed to take into account new available knowledge.

b

c

da fe

gh li
+(g, h)

nm

o

AF A0 is updated to AF A by adding attack (g, h), that is A = +(g, h)(A0).

– According to the most popular argumentation semantics, i.e. grounded, complete, ideal, preferred,
stable, and semi-stable, the initial AF A0 admits the extension E0 = {a, h, g, e, l,m, o};

– The extension for the updated framework A = u(A0) becomes E = {a, c, g, e, l,m, o}.
– Should we recompute the semantics of updated AFs from scratch?
– For the grounded and ideal semantics, the extension E can be efficiently computed incre-

mentally by looking only at a small part of the AF, which is “influenced by” the update operation.

– In the example AF, the influenced part is just {h, c}. Only the status of h and c can change after
performing update +(g, h); we do not need to compute the status of the other arguments.

CONTRIBUTIONS

1) We introduce the concept of influenced set which consists of the arguments whose status could
change after an update. The influenced set refines the previously proposed set of affected
arguments [3] and makes the computation more efficient.

2) We present an incremental algorithm for recomputing the grounded semantics. It first iden-
tifies the restricted subgraph of the given AF containing the arguments influenced by the
update, and then computes the status of influenced arguments only.

3) We show that an argument a belongs to the ideal extension if and only if there is a coherent
winning strategy for it and there is no coherent winning strategy for all arguments which
attack (even indirectly) a.

4) We present an incremental algorithm for the efficient recomputation of the ideal semantics
which is based on the previously mentioned result and takes advantage of both the set of
influenced arguments and the efficient algorithm for computing grounded extensions.

5) Experiments showing the effectiveness of our approach on both real and synthetic AFs.

EXPERIMENTS
Datasets REAL and SYN1 provided as benchmarks by ICCMA (http://argumentationcompetition.org) for experiments on grounded se-
mantics and dataset SYN2 built for ideal semantics:
– REAL consists of 19 AFs 〈A0,Σ0〉with |A0| ∈ [5K, 100K] and |Σ0| ∈ [7K, 143K]

– SYN1 consists of 24 AFs 〈A0,Σ0〉with |A0| ∈ [1K, 4K] and |Σ0| ∈ [14K, 172K]

– SYN2 consists of 20 AFs for each of the number of arguments in {50, 75, 100, 125, 150, 175}
Algorithms:

(i) BaseG and BaseI compute the grounded and ideal semantics E of the updated AF u(A0) from scratch: BaseG finds the fixpoint of the charac-
teristic function of an AF as implemented in the libraries of Tweety [4]; BaseI uses the algorithm implemented by Dung-O-Matic engine.

(ii) IncrG and IncrI incrementally compute the grounded and ideal extension E of u(A0) by implementing our algorithms.

BaseG vs IncrG over REAL BaseG vs IncrG over SYN1 BaseI vs IncrI over SYN2

SELECTED REFERENCES

[1] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.
[2] Sergio Greco, Francesco Parisi. Efficient computation of deterministic extensions for dynamic abstract argumentation frameworks: Technical report. Available at

http://wwwinfo.dimes.unical.it/∼parisi/tr/grecoparisi.htm, 2016.
[3] Bei Shui Liao, Li Jin, Robert C. Koons. Dynamics of argumentation systems: A division-based method. Artif. Intell., 175(11), 1790–1814, (2011).
[4] Thimm, M.: Tweety. A comprehensive collection of java libraries for logical aspects of artificial intelligence and knowledge representation. In: Proc. of Int. Conf. on Principles of

Knowledge Represent. and Reasoning (KR) (2014).

