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ABSTRACT ARGUMENTATION

An (abstract) argumentation framework (AF) is a
pair (A,%), where A is a set of arquments and
>, C A x Ais a set of attacks.

— It allows representing dialogues, making de-
cisions, and handling inconsistency;

— An AF can be viewed as a direct graph,
whose nodes are arguments and whose
edges are attacks.

SEMANTICS FOR AFS

An argumentation semantics specifies the cri-
teria for identifying “reasonable” sets of argu-
ments, called extensions.

A complete extension (co) is an admissible set
that contains all the arguments that it defends.
A complete extension S is said to be:

— preferred (pr) itf it is maximal (w.r.t. C);

— stable (st) iff it attacks all the arguments
in A\ S,

— grounded (gr) iff it is minimal (w.r.t. C).

UPDATES

An update u for an AF Ay consists in modify-

ing Ay into an AF A by adding or removing

arguments or attacks.

— +(a,b) (resp. —(a, b)) denotes the addition
(resp. deletion) of an attack (a, b);

— u(Ap) means applying u = +(a, b) to Ay;

— multiple (attacks) updates can be simulated
by a single attack update.
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DYNAMIC ARGUMENTATION FRAMEWORKS

— An argumentation framework models a temporary situation as new arguments and attacks
can be added/removed to take into account new available knowledge.

— For each semantics S, the sets of extensions change if we update an initial AF Ay by
adding/removing arguments/attacks. For instance, £,.(A4o) = {{f,g}} becomes &,.(A)) =
{{g}} for the updated AF A = +(c, f)(Ag) obtained from Ay by adding attack (c, f).

A= +(e. /)

Es(Ao) Es(A))

{{f.9},{a, f,9},{b, f,9}} | {{g},{a,9},{b, f,9}}
{{a, f,9},1b, f,9}} {{a,g},1b, f,9}}
{{b, f,9}} {{b, f, 9} }
{if,g}} {ig}}

— Should we recompute the semantics of updated AFs from scratch?

CONTRIBUTIONS

— We show that an extension of the updated AF can be efficiently computed by looking only at
a small part of the AF, called the Reduced AF, which is “influenced by” the update operation.

For the example above, the reduced AF is: G @

— We present an incremental technique for recomputing an
extension of an updated AF for the grounded, complete, pre-
ferred, and stable semantics. )
It consists of the following three main steps: _Coquinas J

1) Identify a sub-AF A; = (A4, X4), called reduced AF (R- Ehas

AF) on the basis of the updates in U and additional in-
formation provided by the initial extension Ej.

2) Give R-AF A, as input to an external (non-incremental)
solver to compute an S-extension E; of the reduced AF.  Architecture of ERASE, our Sys-

3) Merge E; with the portion (Ej \ Ay) of the initial exten- tem for Efficiently Recomputing
sion that does not change. Argumentation SEmantics.

— A thorough experimental analysis showing the effectiveness of our approach.
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— Our algorithm remains faster than the competitors even when recomputing an 10°
extension after performing a quite large number of updates simultaneously.
In particular, in the graphs we show the threshold percentages of updated at-
tacks (green lines) up to which the incremental approach for multiple updates ;-
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with about 1% of the attacks updated.
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