
Efficient Computation of Extensions for Dynamic Abstract
Argumentation Frameworks: An Incremental Approach

GIANVINCENZO ALFANO, SERGIO GRECO, FRANCESCO PARISI

Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria, ITALY
{g.alfano, greco, fparisi}@dimes.unical.it

ABSTRACT ARGUMENTATION
An (abstract) argumentation framework (AF) is a
pair 〈A,Σ〉, where A is a set of arguments and
Σ ⊆ A×A is a set of attacks.
– It allows representing dialogues, making de-

cisions, and handling inconsistency;

– An AF can be viewed as a direct graph,
whose nodes are arguments and whose
edges are attacks.

SEMANTICS FOR AFS
An argumentation semantics specifies the cri-
teria for identifying “reasonable” sets of argu-
ments, called extensions.
A complete extension (co) is an admissible set
that contains all the arguments that it defends.
A complete extension S is said to be:
– preferred (pr) iff it is maximal (w.r.t. ⊆);

– stable (st) iff it attacks all the arguments
in A \ S;

– grounded (gr) iff it is minimal (w.r.t. ⊆).

UPDATES
An update u for an AF A0 consists in modify-
ing A0 into an AF A by adding or removing
arguments or attacks.
– +(a, b) (resp. −(a, b)) denotes the addition

(resp. deletion) of an attack (a, b);

– u(A0) means applying u = ±(a, b) to A0;

– multiple (attacks) updates can be simulated
by a single attack update.

DYNAMIC ARGUMENTATION FRAMEWORKS
– An argumentation framework models a temporary situation as new arguments and attacks

can be added/removed to take into account new available knowledge.

– For each semantics S, the sets of extensions change if we update an initial AF A0 by
adding/removing arguments/attacks. For instance, Egr(A0) = {{f, g}} becomes Egr(A)) =
{{g}} for the updated AF A = +(c, f)(A0) obtained from A0 by adding attack (c, f).

AF A0

b c

d e f

g h

a S ES(A0) ES(A))

co {{f, g}, {a, f, g}, {b, f, g}} {{g}, {a, g}, {b, f, g}}
pr {{a, f, g}, {b, f, g}} {{a, g}, {b, f, g}}
st {{b, f, g}} {{b, f, g} }
gr {{f,g}} {{g}}

A = +(c, f)(A0)

b c

d e f

g h

a

– Should we recompute the semantics of updated AFs from scratch?

CONTRIBUTIONS

– We show that an extension of the updated AF can be efficiently computed by looking only at
a small part of the AF, called the Reduced AF, which is “influenced by” the update operation.

For the example above, the reduced AF is: e f

– We present an incremental technique for recomputing an
extension of an updated AF for the grounded, complete, pre-
ferred, and stable semantics.
It consists of the following three main steps:

1) Identify a sub-AF Ad = 〈Ad,Σd〉, called reduced AF (R-
AF) on the basis of the updates in U and additional in-
formation provided by the initial extension E0.

2) Give R-AF Ad as input to an external (non-incremental)
solver to compute an S-extension Ed of the reduced AF.

3) Merge Ed with the portion (E0 \Ad) of the initial exten-
sion that does not change.

	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
							
	
	
	
	
	
	
	
	
	

Merger	R-AF	Builder	CoQuiAAS	

SOLVERS	 ERASE	

INPUT	

Meta	
Solver	

OUTPUT	R-AF	!" 		 #" 	

#$	

#	

!$	 %	
Cegartix	

b c

d e f

g h

a b c

d e f

g h

a

b c

d e f

g h

a

c

f

+(c, f)

e f

e f

Architecture of ERASE, our sys-
tem for Efficiently Recomputing
Argumentation SEmantics.

– A thorough experimental analysis showing the effectiveness of our approach.

EXPERIMENTS

For each semantics S ∈ {co,pr,st,gr}, we compared the performance of our
technique with that of the solver that won the last ICCMA competition for the
computational task S-SE: Given an AF, determine some S-extension.
Datasets: ICCMA’15 benchmarks.
Results: The figure reports the average run times (ms) of ICCMA solvers and our
algorithm (Incr-Alg) for different semantics S over different datasets versus the
number of attacks.
– Our algorithm significantly outperforms the competitors that compute the ex-

tensions from scratch for single updates. In fact, on average, our technique
is two orders of magnitude faster than them. Moreover, the harder the com-
putation from scratch is, the larger the improvements are: the improvements
obtained for S ∈ {st, pr} go beyond those for S ∈ {gr, co}.

– Our algorithm remains faster than the competitors even when recomputing an
extension after performing a quite large number of updates simultaneously.
In particular, in the graphs we show the threshold percentages of updated at-
tacks (green lines) up to which the incremental approach for multiple updates
is faster than the computation from scratch.

– For sets of updates regarding a relevant portion of the input AF (on average at
least 1% of the attacks for S ∈ {st, pr} and 0, 1% of the attacks for S ∈ {gr,
co}) recomputing extensions after applying them simultaneously is faster
than recomputing extensions after applying them sequentially. Indeed, the
green lines in the graphs are mostly below the (dashed) orange lines repre-
senting the run times of recomputing extensions after applying the updates
sequentially.

The experiments also showed that, on average, the size of the reduced AF w.r.t.
that of the input AF is about 9% for single updates and 52% for multiple updates
with about 1% of the attacks updated.

14843 86636 172890
10−1

100

101

102

103

N. of Attacks

S = gr, TestSetGrSmall

CoQuiAAS 1 update

Incr-Alg 1 update

Incr-Alg 0.2% updates

236573 600780 897131

100

101

102

103

104

N. of Attacks

S = gr, TestSetGrLarge

CoQuiAAS 1 update

Incr-Alg 1 update

Incr-Alg 0.1% updates

2184 3337 4164

10−1

100

101

102

103

104

105

106

107

N. of Attacks

S = pr, TestSetStSmall

Cegartix 1 update

Incr-Alg 1 update

Incr-Alg 2% updates

2184 3337 4164

10−2

10−1

100

101

102

103

N. of Attacks

S = st, TestSetStSmall

ASPARTIX-D 1 update

Incr-Alg 1 update

Incr-Alg 2% updates

3747 3799 3840

100

101

102

103

104

105

106

N. of Attacks

S = pr, TestSetStMedium

Cegartix 1 update

Incr-Alg 1 update

Incr-Alg 1% updates

5395 5592 5756
101

102

103

104

N. of Attacks

S = st, TestSetStMedium

ASPARTIX-D 1 update

Incr-Alg 1 update

Incr-Alg 1% updates

