Efficient Computation of Extensions for Dynamic Abstract

Argumentation Frameworks: An Incremental Approach
GIANVINCENZO ALFANO, SERGIO GRECO, FRANCESCO PARISI

Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria, ITALY

ABSTRACT ARGUMENTATION

An (abstract) argumentation framework (AF) is a
pair (A,%), where A is a set of arquments and
>, C A x Ais a set of attacks.

— It allows representing dialogues, making de-
cisions, and handling inconsistency;

— An AF can be viewed as a direct graph,
whose nodes are arguments and whose
edges are attacks.

SEMANTICS FOR AFS

An argumentation semantics specifies the cri-
teria for identifying “reasonable” sets of argu-
ments, called extensions.

A complete extension (co) is an admissible set
that contains all the arguments that it defends.
A complete extension S is said to be:

— preferred (pr) itf it is maximal (w.r.t. C);

— stable (st) iff it attacks all the arguments
in A\ S,

— grounded (gr) iff it is minimal (w.r.t. C).

UPDATES

An update u for an AF Ay consists in modify-

ing Ay into an AF A by adding or removing

arguments or attacks.

— +(a,b) (resp. —(a, b)) denotes the addition
(resp. deletion) of an attack (a, b);

— u(Ap) means applying u = +(a, b) to Ay;

— multiple (attacks) updates can be simulated
by a single attack update.

{g.alfano, greco, fparisi}@dimes.unical.it

DYNAMIC ARGUMENTATION FRAMEWORKS

— An argumentation framework models a temporary situation as new arguments and attacks
can be added/removed to take into account new available knowledge.

— For each semantics S, the sets of extensions change if we update an initial AF Ay by
adding/removing arguments/attacks. For instance, £,.(A4o) = {{f,g}} becomes &,.(A)) =
{{g}} for the updated AF A = +(c, f)(Ag) obtained from Ay by adding attack (c, f).

A= +(e. /)

Es(Ao) Es(A))

{{f.9},{a, f,9},{b, f,9}} | {{g},{a,9},{b, f,9}}
{{a, f,9},1b, f,9}} {{a,g},1b, f,9}}
{{b, f,9}} {{b, f, 9} }
{if,g}} {ig}}

— Should we recompute the semantics of updated AFs from scratch?

CONTRIBUTIONS

— We show that an extension of the updated AF can be efficiently computed by looking only at
a small part of the AF, called the Reduced AF, which is “influenced by” the update operation.

For the example above, the reduced AF is: G @

— We present an incremental technique for recomputing an
extension of an updated AF for the grounded, complete, pre-
ferred, and stable semantics.)
It consists of the following three main steps: _Coquinas J

1) Identify a sub-AF A; = (A4, X4), called reduced AF (R- Ehas

AF) on the basis of the updates in U and additional in-
formation provided by the initial extension Ej.

2) Give R-AF A, as input to an external (non-incremental)
solver to compute an S-extension E; of the reduced AF. Architecture of ERASE, our Sys-

3) Merge E; with the portion (Ej \ Ay) of the initial exten- tem for Efficiently Recomputing
sion that does not change. Argumentation SEmantics.

— A thorough experimental analysis showing the effectiveness of our approach.

EXPERIMENTS
. S = gr, TestSetGrSmall S — TestSetGrL
For each semantics S € {co,pr, st,gr}, we compared the performance of our N ‘ — —— b, e
. . 7 7 7 .. 10° f@ CoQuiAAS 1 update | @ CoQuiAAS 1 update
technique with that of the solver that won the last ICCMA competition for the w Incr-Alg 1 update O 10* | m Incr-Alg 1 update ;
computational task S-SE: Given an AF, determine some S-extension. 102 |2 frer-Alg 027 wpdates J-— | g [ImerAly 017 wpdeges |- -7 f
Datasets: ICCMA’15 benchmarks. . ! f -]
Es ol ‘M
Results: The figure reports the average run times (ms) of ICCMA solvers and our 5 E : aan |
L . A
algorithm (Incr-Alg) for different semantics S over different datasets versus the 100 rrr_"__./l‘/. 1ot .
number of attacks. f f 0| -—-.—""'-"7—"/-‘
. . . . 1071 B | L - | N
— Our algorithm significantly outperforms the competitors that compute the ex- 14843 86636 172890 236573 600780 897131
. . . N. of Attacks N. of Attacks
tensions from scratch for single updates. In fact, on average, our technique
is two orders of magnitude faster than them. Moreover, the harder the com- Lo7 O = pT, TestSetStSmall O = st, TestBetStlmall
. . . . ' ® Cegartix 1 update & -
putation from scratch is, the larger the improvements are: the improvements 109 | g Iner-Alg 1 update 10% |

obtained for S € {st, pr} go beyond those for S € {gr, co}. 107 14 Incr-Alg 2% updates

— Our algorithm remains faster than the competitors even when recomputing an 10°
extension after performing a quite large number of updates simultaneously.
In particular, in the graphs we show the threshold percentages of updated at-
tacks (green lines) up to which the incremental approach for multiple updates ;-
is faster than the computation from scratch. 7

109 ¢ ® ASPARTIX-D 1 update
7 m Incr-Alg 1 update

A Incr-Alg 2% updates
[|

2184 3337 4164 2184 3337 4164

N. of Attacks N. of Attacks
— For sets of updates regarding a relevant portion of the input AF (on average at S o TestSetStMediun St TestSetStMediun
least 1% of the attacks for S € {st, pr} and 0, 1% of the attacks for S € {gr, 1] Ceg;ti Tt — L SPARTIND 1 i —
co}) recomputing extensions after applying them simultaneously is faster | |mncr-alg 1 update m Incr-Alg 1 update
than recomputing extensions after applying them sequentially. Indeed, the = |*/ner-ly 1% updates | ? 0% | dner-Aly 1% updates | __
green lines in the graphs are mostly below the (dashed) orange lines repre- | & o —& A |
senting the run times of recomputing extensions after applying the updates I I L2
sequentially. . . . | % .
The experiments also showed that, on average, the size of the reduced AF w.r.t. 1o M 0
that of the input AF is about 9% for single updates and 52% for multiple updates | = - | I e |]
3747 3799 3840 5395 5592 5756

with about 1% of the attacks updated.

N. of Attacks N. of Attacks

