
Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Consistent Answers to Boolean Aggregate Queries
under Aggregate Constraints

Sergio Flesca, Filippo Furfaro, Francesco Parisi

DEIS
University of Calabria

87036 Rende (CS), Italy

21st DEXA Conference

Bilbao, Spain

30 August - 3 September 2010

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 1 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Inconsistent Numerical Data

Data inconsistency can arise in several scenarios
Data integration, reconciliation, errors in acquiring data (mistakes in
transcription, OCR tools, sensors, etc.)

Acquiring balance sheets data

original (consistent) Receipts cash sales 100
balance-sheet receivables 120

paper document total receipts 220

The original data were consistent: 100 + 120 = 220, but a symbol
recognition error occurred during the digitizing phase

digitized document Receipts cash sales 100
(e.g. obtained by an OCR tool) receivables 120

total receipts 250

The acquired document is not consistent: 100 + 120 6= 250

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 2 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Inconsistent Numerical Data

Data inconsistency can arise in several scenarios
Data integration, reconciliation, errors in acquiring data (mistakes in
transcription, OCR tools, sensors, etc.)

Acquiring balance sheets data

original (consistent) Receipts cash sales 100
balance-sheet receivables 120

paper document total receipts 220

The original data were consistent: 100 + 120 = 220, but a symbol
recognition error occurred during the digitizing phase

digitized document Receipts cash sales 100
(e.g. obtained by an OCR tool) receivables 120

total receipts 250

The acquired document is not consistent: 100 + 120 6= 250

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 2 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Inconsistent Numerical Data

Data inconsistency can arise in several scenarios
Data integration, reconciliation, errors in acquiring data (mistakes in
transcription, OCR tools, sensors, etc.)

Acquiring balance sheets data

original (consistent) Receipts cash sales 100
balance-sheet receivables 120

paper document total receipts 220

The original data were consistent: 100 + 120 = 220, but a symbol
recognition error occurred during the digitizing phase

digitized document Receipts cash sales 100
(e.g. obtained by an OCR tool) receivables 120

total receipts 250

The acquired document is not consistent: 100 + 120 6= 250

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 2 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Querying Inconsistent Data

Digitized balance sheets can be analyzed for determining financial
reliability of companies
Examples of queries which can support this kind of analysis are:
q1 : for each year, is the value of net cash inflow greater than a given

threshold?
q2 : for years 2008 and 2009, is the sum of receivables greater than

payment of accounts?

The mere evaluation of these queries on inconsistent data may
yield a wrong picture of the real world
To support any analysis task, it is mandatory to retrieve “reliable”
information even if the data are inconsistent

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 3 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Querying Inconsistent Data

Digitized balance sheets can be analyzed for determining financial
reliability of companies
Examples of queries which can support this kind of analysis are:
q1 : for each year, is the value of net cash inflow greater than a given

threshold?
q2 : for years 2008 and 2009, is the sum of receivables greater than

payment of accounts?

The mere evaluation of these queries on inconsistent data may
yield a wrong picture of the real world
To support any analysis task, it is mandatory to retrieve “reliable”
information even if the data are inconsistent

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 3 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Querying Inconsistent Data

Digitized balance sheets can be analyzed for determining financial
reliability of companies
Examples of queries which can support this kind of analysis are:
q1 : for each year, is the value of net cash inflow greater than a given

threshold?
q2 : for years 2008 and 2009, is the sum of receivables greater than

payment of accounts?

The mere evaluation of these queries on inconsistent data may
yield a wrong picture of the real world
To support any analysis task, it is mandatory to retrieve “reliable”
information even if the data are inconsistent

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 3 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Querying Inconsistent Data

Digitized balance sheets can be analyzed for determining financial
reliability of companies
Examples of queries which can support this kind of analysis are:
q1 : for each year, is the value of net cash inflow greater than a given

threshold?
q2 : for years 2008 and 2009, is the sum of receivables greater than

payment of accounts?

The mere evaluation of these queries on inconsistent data may
yield a wrong picture of the real world
To support any analysis task, it is mandatory to retrieve “reliable”
information even if the data are inconsistent

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 3 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Consistent Query Answer (CQA)

A great deal of attention has been recently devoted the problem of
extracting reliable information from data violating a given set of
integrity constraints
Most of the approaches are based on the notions of repairs and
consistent query answer (CQA) introduced
in [Arenas et Al (PODS 1999)].

A repair is a database resulting from fixing the original database in a
minimal way (preserving information of the original database as
much as possible).
Consistent answers are those that can be obtained from every
possible repair of the database

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 4 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Consistent Query Answer (CQA)

A great deal of attention has been recently devoted the problem of
extracting reliable information from data violating a given set of
integrity constraints
Most of the approaches are based on the notions of repairs and
consistent query answer (CQA) introduced
in [Arenas et Al (PODS 1999)].

A repair is a database resulting from fixing the original database in a
minimal way (preserving information of the original database as
much as possible).
Consistent answers are those that can be obtained from every
possible repair of the database

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 4 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Consistent Query Answer (CQA)

A great deal of attention has been recently devoted the problem of
extracting reliable information from data violating a given set of
integrity constraints
Most of the approaches are based on the notions of repairs and
consistent query answer (CQA) introduced
in [Arenas et Al (PODS 1999)].

A repair is a database resulting from fixing the original database in a
minimal way (preserving information of the original database as
much as possible).
Consistent answers are those that can be obtained from every
possible repair of the database

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 4 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Consistent Query Answer (CQA)

A great deal of attention has been recently devoted the problem of
extracting reliable information from data violating a given set of
integrity constraints
Most of the approaches are based on the notions of repairs and
consistent query answer (CQA) introduced
in [Arenas et Al (PODS 1999)].

A repair is a database resulting from fixing the original database in a
minimal way (preserving information of the original database as
much as possible).
Consistent answers are those that can be obtained from every
possible repair of the database

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 4 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Aggregate Constraints

Often classical “classical” integrity constraints (keys, foreign keys,
FDs) do not suffice to manage data consistency

in scientific and statistical databases, data warehouses, numerical
values in some tuples result from aggregating values in other tuples
in the balance sheet example, the sum of cash sales and
receivables must the equal to the total cash receipts

Aggregate constraints allow us to define algebraic relations
between aggregate values extracted from the database
In [Flesca et Al (TODS 2010)] the CQA problem for atomic queries
in the presence of aggregate constraints was investigated

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 5 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Aggregate Constraints

Often classical “classical” integrity constraints (keys, foreign keys,
FDs) do not suffice to manage data consistency

in scientific and statistical databases, data warehouses, numerical
values in some tuples result from aggregating values in other tuples
in the balance sheet example, the sum of cash sales and
receivables must the equal to the total cash receipts

Aggregate constraints allow us to define algebraic relations
between aggregate values extracted from the database
In [Flesca et Al (TODS 2010)] the CQA problem for atomic queries
in the presence of aggregate constraints was investigated

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 5 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Aggregate Queries

Atomic queries are not expressive enough
analysis tasks, such as those performed on balance sheet data,
cannot be supported by simple atomic queries

We study the CQA of boolean aggregate queries
This kind of queries allow us to express conditions consisting of
linear inequalities on aggregate-sum functions
q1 : for each year, is the value of net cash inflow greater than a given

threshold?
q2 : for years 2008 and 2009, is the sum of receivables greater than

payment of accounts?

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 6 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

Aggregate Queries

Atomic queries are not expressive enough
analysis tasks, such as those performed on balance sheet data,
cannot be supported by simple atomic queries

We study the CQA of boolean aggregate queries
This kind of queries allow us to express conditions consisting of
linear inequalities on aggregate-sum functions
q1 : for each year, is the value of net cash inflow greater than a given

threshold?
q2 : for years 2008 and 2009, is the sum of receivables greater than

payment of accounts?

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 6 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

CQA for Aggregate Queries under Aggregate
Constraints

We characterized the computational complexity of the CQA
problem for boolean aggregate queries in the presence of
aggregate constraints
We devised a strategy for computing consistent answers to
boolean aggregate queries in the presence of aggregate
constraints
Our approach computes consistent answers by solving Integer
Linear Programming (ILP) problem instances
Our approach enables the computation of CQA by means of
well-known techniques for solving ILP problems
We experimentally validated our approach

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 7 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

CQA for Aggregate Queries under Aggregate
Constraints

We characterized the computational complexity of the CQA
problem for boolean aggregate queries in the presence of
aggregate constraints
We devised a strategy for computing consistent answers to
boolean aggregate queries in the presence of aggregate
constraints
Our approach computes consistent answers by solving Integer
Linear Programming (ILP) problem instances
Our approach enables the computation of CQA by means of
well-known techniques for solving ILP problems
We experimentally validated our approach

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 7 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

CQA for Aggregate Queries under Aggregate
Constraints

We characterized the computational complexity of the CQA
problem for boolean aggregate queries in the presence of
aggregate constraints
We devised a strategy for computing consistent answers to
boolean aggregate queries in the presence of aggregate
constraints
Our approach computes consistent answers by solving Integer
Linear Programming (ILP) problem instances
Our approach enables the computation of CQA by means of
well-known techniques for solving ILP problems
We experimentally validated our approach

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 7 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

CQA for Aggregate Queries under Aggregate
Constraints

We characterized the computational complexity of the CQA
problem for boolean aggregate queries in the presence of
aggregate constraints
We devised a strategy for computing consistent answers to
boolean aggregate queries in the presence of aggregate
constraints
Our approach computes consistent answers by solving Integer
Linear Programming (ILP) problem instances
Our approach enables the computation of CQA by means of
well-known techniques for solving ILP problems
We experimentally validated our approach

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 7 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Motivation
Previous Work
Contribution

CQA for Aggregate Queries under Aggregate
Constraints

We characterized the computational complexity of the CQA
problem for boolean aggregate queries in the presence of
aggregate constraints
We devised a strategy for computing consistent answers to
boolean aggregate queries in the presence of aggregate
constraints
Our approach computes consistent answers by solving Integer
Linear Programming (ILP) problem instances
Our approach enables the computation of CQA by means of
well-known techniques for solving ILP problems
We experimentally validated our approach

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 7 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Outline
1 Introduction

Motivation
Previous Work
Contribution

2 Preliminaries
Aggregate Constraints
Repairs
Aggregate Queries

3 Query Answering
Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

4 Conclusion and Future Work
Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 8 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Aggregation Expressions

Both aggregate constraints and aggregate queries will be
expressed by aggregation expressions

Definition (Aggregation Expression)

An aggregation expression is of the form:
∀~x

(
φ(~x) =⇒

∑n
i=1 ci · χi(~yi) ≤ K

)
φ(~x) is a conjunction of relation atoms

c1, . . . , cn,K are constants

each χi (~yi) is an aggregation function (with variables(~yi) ⊆ ~x)

The aggregation function χ(~y) = 〈R,e, α(~y)〉 corresponds to the
SQL query SELECT SUM(e) FROM R WHERE α(~y), where e is
an attribute of R or a constant

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 9 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Aggregation Expressions

Both aggregate constraints and aggregate queries will be
expressed by aggregation expressions

Definition (Aggregation Expression)

An aggregation expression is of the form:
∀~x

(
φ(~x) =⇒

∑n
i=1 ci · χi(~yi) ≤ K

)
φ(~x) is a conjunction of relation atoms

c1, . . . , cn,K are constants

each χi (~yi) is an aggregation function (with variables(~yi) ⊆ ~x)

The aggregation function χ(~y) = 〈R,e, α(~y)〉 corresponds to the
SQL query SELECT SUM(e) FROM R WHERE α(~y), where e is
an attribute of R or a constant

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 9 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Aggregation Expressions

Both aggregate constraints and aggregate queries will be
expressed by aggregation expressions

Definition (Aggregation Expression)

An aggregation expression is of the form:
∀~x

(
φ(~x) =⇒

∑n
i=1 ci · χi(~yi) ≤ K

)
φ(~x) is a conjunction of relation atoms

c1, . . . , cn,K are constants

each χi (~yi) is an aggregation function (with variables(~yi) ⊆ ~x)

The aggregation function χ(~y) = 〈R,e, α(~y)〉 corresponds to the
SQL query SELECT SUM(e) FROM R WHERE α(~y), where e is
an attribute of R or a constant

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 9 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Example of Aggregate Constraint

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

χ1(x , y , z) = 〈BalanceSheets, Value, (Year=x ∧ Section=y ∧ Type=z) 〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, x2, ‘det’) = χ1(x1, x2, ‘aggr’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 10 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Example of Aggregate Constraint

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

χ1(x , y , z) = 〈BalanceSheets, Value, (Year=x ∧ Section=y ∧ Type=z) 〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, x2, ‘det’) = χ1(x1, x2, ‘aggr’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 10 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Example of Aggregate Constraint

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

χ1(x , y , z) = 〈BalanceSheets, Value, (Year=x ∧ Section=y ∧ Type=z) 〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, x2, ‘det’) = χ1(x1, x2, ‘aggr’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 10 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Repairing strategy

A repair for a database w.r.t. a set of aggregate constraints is a set
of value updates making the database consistent
We adopt the strategy proposed in [Flesca et Al (TODS 2010)] for
repairing data inconsistent w.r.t. a set of aggregate constraints
Reasonable repairs, called card-minimal repairs, are those having
minimum cardinality
Repairing by card-minimal repairs means assuming that the
minimum number of errors occurred

In the balance-sheet context: the most probable case is that the
acquiring system made the minimum number of errors

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 11 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Repairing strategy

A repair for a database w.r.t. a set of aggregate constraints is a set
of value updates making the database consistent
We adopt the strategy proposed in [Flesca et Al (TODS 2010)] for
repairing data inconsistent w.r.t. a set of aggregate constraints
Reasonable repairs, called card-minimal repairs, are those having
minimum cardinality
Repairing by card-minimal repairs means assuming that the
minimum number of errors occurred

In the balance-sheet context: the most probable case is that the
acquiring system made the minimum number of errors

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 11 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Repairing strategy

A repair for a database w.r.t. a set of aggregate constraints is a set
of value updates making the database consistent
We adopt the strategy proposed in [Flesca et Al (TODS 2010)] for
repairing data inconsistent w.r.t. a set of aggregate constraints
Reasonable repairs, called card-minimal repairs, are those having
minimum cardinality
Repairing by card-minimal repairs means assuming that the
minimum number of errors occurred

In the balance-sheet context: the most probable case is that the
acquiring system made the minimum number of errors

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 11 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 12 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 12 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 12 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 12 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Aggregate Queries and Consistent Answers

Aggregate queries are defined by aggregation expressions
For BalanceSheets(Year ,Section,Subsection,Type,Value)

q1 : for each year, is the value of net cash inflow greater than 20?
- χ2(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

Definition (Consistent query answer)

Let D be a database scheme, D an instance of D, AC a set of
aggregate constraints on D and q an aggregate query over D. The
consistent query answer to q on D w.r.t. AC is true iff, for each
card-minimal repair ρ for D w.r.t. AC, it holds that q evaluates to true on
the database resulting from performing all the updates in ρ.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 13 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Aggregate Queries and Consistent Answers

Aggregate queries are defined by aggregation expressions
For BalanceSheets(Year ,Section,Subsection,Type,Value)

q1 : for each year, is the value of net cash inflow greater than 20?
- χ2(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

Definition (Consistent query answer)

Let D be a database scheme, D an instance of D, AC a set of
aggregate constraints on D and q an aggregate query over D. The
consistent query answer to q on D w.r.t. AC is true iff, for each
card-minimal repair ρ for D w.r.t. AC, it holds that q evaluates to true on
the database resulting from performing all the updates in ρ.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 13 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Aggregate Constraints
Repairs
Aggregate Queries

Aggregate Queries and Consistent Answers

Aggregate queries are defined by aggregation expressions
For BalanceSheets(Year ,Section,Subsection,Type,Value)

q1 : for each year, is the value of net cash inflow greater than 20?
- χ2(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

Definition (Consistent query answer)

Let D be a database scheme, D an instance of D, AC a set of
aggregate constraints on D and q an aggregate query over D. The
consistent query answer to q on D w.r.t. AC is true iff, for each
card-minimal repair ρ for D w.r.t. AC, it holds that q evaluates to true on
the database resulting from performing all the updates in ρ.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 13 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Outline
1 Introduction

Motivation
Previous Work
Contribution

2 Preliminaries
Aggregate Constraints
Repairs
Aggregate Queries

3 Query Answering
Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

4 Conclusion and Future Work
Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 14 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Steady Aggregate Constraints and Queries

Our approach for computing consistent answers exploits a
restrictions imposed on aggregation expressions

Definition (Steady aggregation expression)

Aggregation expression ∀~x
(
φ(~x) =⇒

∑n
i=1 ci · χi(~yi) ≤ K

)
is steady if:

1 for each χi = 〈Ri ,ei , αi〉, no measure attribute occurs in αi

2 measure variables occur at most once in the aggregation
expression

3 no constant occurring in φ is associated with a measure attribute

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 15 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Steady Aggregate Constraints and Queries

Our approach for computing consistent answers exploits a
restrictions imposed on aggregation expressions

Definition (Steady aggregation expression)

Aggregation expression ∀~x
(
φ(~x) =⇒

∑n
i=1 ci · χi(~yi) ≤ K

)
is steady if:

1 for each χi = 〈Ri ,ei , αi〉, no measure attribute occurs in αi

2 measure variables occur at most once in the aggregation
expression

3 no constant occurring in φ is associated with a measure attribute

- measure attributes are those that can be updated by a repair
- attribute Value is the measure attribute of

BalanceSheets(Year ,Section,Subsection,Type,Value)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 15 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Steady Aggregate Constraints and Queries

Our approach for computing consistent answers exploits a
restrictions imposed on aggregation expressions

Definition (Steady aggregation expression)

Aggregation expression ∀~x
(
φ(~x) =⇒

∑n
i=1 ci · χi(~yi) ≤ K

)
is steady if:

1 for each χi = 〈Ri ,ei , αi〉, no measure attribute occurs in αi

2 measure variables occur at most once in the aggregation
expression

3 no constant occurring in φ is associated with a measure attribute

- measure variables are those variables occurring at the position of
a measure attribute in φ

- x5 is the measure variable for φ = BalanceSheets(x1, x2, x3, x4, x5)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 15 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Steady Aggregate Constraints and Queries

Our approach for computing consistent answers exploits a
restrictions imposed on aggregation expressions

Definition (Steady aggregation expression)

Aggregation expression ∀~x
(
φ(~x) =⇒

∑n
i=1 ci · χi(~yi) ≤ K

)
is steady if:

1 for each χi = 〈Ri ,ei , αi〉, no measure attribute occurs in αi

2 measure variables occur at most once in the aggregation
expression

3 no constant occurring in φ is associated with a measure attribute

- a constant in φ is associated with a measure attribute if it occurs at
the position of a measure attribute in φ

- for φ = BalanceSheets(x1, x2, x3, x4, x5) , x5 cannot be a constant
Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 15 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Complexity Results

Steady aggregation expressions are less expressive than (general)
aggregation expressions
The loss in expressiveness is not dramatic, as steady aggregate
constraints/queries can model several real-life conditions

The consistent query answer problem is hard also when both the
aggregate constraints and the query are steady

Theorem (Complexity of CQA)

Let D be a fixed database scheme, AC a fixed set of aggregate
constraints on D, q a fixed aggregate query over D, and D an instance
of D. Deciding whether CQAD,AC,q(D) is true is ∆p

2[log n]-complete,
even if both AC and q are steady.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 16 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Complexity Results

Steady aggregation expressions are less expressive than (general)
aggregation expressions
The loss in expressiveness is not dramatic, as steady aggregate
constraints/queries can model several real-life conditions

The consistent query answer problem is hard also when both the
aggregate constraints and the query are steady

Theorem (Complexity of CQA)

Let D be a fixed database scheme, AC a fixed set of aggregate
constraints on D, q a fixed aggregate query over D, and D an instance
of D. Deciding whether CQAD,AC,q(D) is true is ∆p

2[log n]-complete,
even if both AC and q are steady.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 16 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Basic Steps

Our approach for computing consistent answers of steady
aggregate queries w.r.t. steady aggregate constraints consists of
two steps:

1 first, we compute the cardinality of card-minimal repairs by solving
an ILP instance

2 starting from the knowledge of this cardinality another ILP instance
is solved for computing CQA

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 17 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Steady Aggregation Expressions as Inequalities (1/2)

A set of steady aggregation expressions E on a database scheme
D and an instance D of D can be translated into a set of linear
inequalities S(D, E ,D)

Year Section Subsection Type Value
2008 Receipts beginning cash drv 50 → z1
2008 Receipts cash sales det 100 → z2
2008 Receipts receivables det 120 → z3
2008 Receipts total cash receipts aggr 250 → z4
2008 Disburs. payment of accounts det 120 → z5
2008 Disburs. capital expenditure det 20 → z6
2008 Disburs. long-term financing det 80 → z7
2008 Disburs. total disbursements aggr 220 → z8
2008 Balance net cash inflow drv 30 → z9
2008 Balance ending cash balance drv 80 → z10

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 18 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Steady Aggregation Expressions as Inequalities (1/2)

A set of steady aggregation expressions E on a database scheme
D and an instance D of D can be translated into a set of linear
inequalities S(D, E ,D)

Year Section Subsection Type Value
2008 Receipts beginning cash drv 50 → z1
2008 Receipts cash sales det 100 → z2
2008 Receipts receivables det 120 → z3
2008 Receipts total cash receipts aggr 250 → z4
2008 Disburs. payment of accounts det 120 → z5
2008 Disburs. capital expenditure det 20 → z6
2008 Disburs. long-term financing det 80 → z7
2008 Disburs. total disbursements aggr 220 → z8
2008 Balance net cash inflow drv 30 → z9
2008 Balance ending cash balance drv 80 → z10

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 18 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Steady Aggregation Expressions as Inequalities (1/2)

A set of steady aggregation expressions E on a database scheme
D and an instance D of D can be translated into a set of linear
inequalities S(D, E ,D)

Year Section Subsection Type Value
2008 Receipts beginning cash drv 50 → z1
2008 Receipts cash sales det 100 → z2
2008 Receipts receivables det 120 → z3
2008 Receipts total cash receipts aggr 250 → z4
2008 Disburs. payment of accounts det 120 → z5
2008 Disburs. capital expenditure det 20 → z6
2008 Disburs. long-term financing det 80 → z7
2008 Disburs. total disbursements aggr 220 → z8
2008 Balance net cash inflow drv 30 → z9
2008 Balance ending cash balance drv 80 → z10

{
z2 + z3 = z4
z5 + z6 + z7 = z8

κ1 :BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ2(x1, x2,det)=χ2(x1, x2,aggr)
where χ1(x , y , z)=〈BalanceSheets, Value, (Year=x ∧Section=y ∧Type=z) 〉

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 18 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Steady Aggregation Expressions as Inequalities (1/2)

A set of steady aggregation expressions E on a database scheme
D and an instance D of D can be translated into a set of linear
inequalities S(D, E ,D)

Year Section Subsection Type Value
2008 Receipts beginning cash drv 50 → z1
2008 Receipts cash sales det 100 → z2
2008 Receipts receivables det 120 → z3
2008 Receipts total cash receipts aggr 250 → z4
2008 Disburs. payment of accounts det 120 → z5
2008 Disburs. capital expenditure det 20 → z6
2008 Disburs. long-term financing det 80 → z7
2008 Disburs. total disbursements aggr 220 → z8
2008 Balance net cash inflow drv 30 → z9
2008 Balance ending cash balance drv 80 → z10

z9 ≥ 20

q1 : BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20
where χ2(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 18 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Steady Aggregation Expressions as Inequalities (2/2)

Every solution of S(D, E ,D) corresponds to a database update U
such that the database resulting from applying U to D satisfies the
aggregation expressions E
For AC = {κ1, κ2, κ3}, every solution of S(D,AC,D) corresponds
to a (possibly not minimal) repair for D w.r.t. AC

Year Section Subsection Type Value
2008 Receipts beginning cash drv 50 z1
2008 Receipts cash sales det 100 z2
2008 Receipts receivables det 120 z3
2008 Receipts total cash receipts aggr 250 z4
2008 Disburs. payment of accounts det 120 z5
2008 Disburs. capital expenditure det 20 z6
2008 Disburs. long-term financing det 80 z7
2008 Disburs. total disbursements aggr 220 z8
2008 Balance net cash inflow drv 30 z9
2008 Balance ending cash balance drv 80 z10

S(D,AC,D) :
z4 − z8 = z9
z1 + z9 = z10
z2 + z3 = z4
z5 + z6 + z7 = z8

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 19 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Steady Aggregation Expressions as Inequalities (2/2)

Every solution of S(D, E ,D) corresponds to a database update U
such that the database resulting from applying U to D satisfies the
aggregation expressions E
For AC = {κ1, κ2, κ3}, every solution of S(D,AC,D) corresponds
to a (possibly not minimal) repair for D w.r.t. AC

Year Section Subsection Type Value
2008 Receipts beginning cash drv 50 z1
2008 Receipts cash sales det 100 z2
2008 Receipts receivables det 120 z3
2008 Receipts total cash receipts aggr 250 z4
2008 Disburs. payment of accounts det 120 z5
2008 Disburs. capital expenditure det 20 z6
2008 Disburs. long-term financing det 80 z7
2008 Disburs. total disbursements aggr 220 z8
2008 Balance net cash inflow drv 30 z9
2008 Balance ending cash balance drv 80 z10

S(D,AC,D) :
z4 − z8 = z9
z1 + z9 = z10
z2 + z3 = z4
z5 + z6 + z7 = z8

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 19 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing the Minimum Cardinality of Repairs (1/2)

Definition (ILP(D,AC,D))

Let S(D,AC,D) be A× ~z ≤ B.
ILP(D,AC,D) is an ILP
of the form:


A× ~z ≤ B;
wi = zi − vi
zi −M ≤ 0; −zi −M ≤ 0;
wi −Mδi ≤ 0; −wi −Mδi ≤ 0;
zi ,wi ∈ Z; δi ∈ {0,1};

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 20 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing the Minimum Cardinality of Repairs (1/2)

Definition (ILP(D,AC,D))

Let S(D,AC,D) be A× ~z ≤ B.
ILP(D,AC,D) is an ILP
of the form:


A× ~z ≤ B;
wi = zi − vi
zi −M ≤ 0; −zi −M ≤ 0;
wi −Mδi ≤ 0; −wi −Mδi ≤ 0;
zi ,wi ∈ Z; δi ∈ {0,1};

vi is the database value corresponding to the variable zi
· · · · · · · · · · · · · · ·
2008 Receipts beginning cash drv 50 → z1

· · · · · · · · · · · · · · ·
v1 = 50

wi and δi are new variables

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 20 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing the Minimum Cardinality of Repairs (1/2)

Definition (ILP(D,AC,D))

Let S(D,AC,D) be A× ~z ≤ B.
ILP(D,AC,D) is an ILP
of the form:


A× ~z ≤ B;
wi = zi − vi
zi −M ≤ 0; −zi −M ≤ 0;
wi −Mδi ≤ 0; −wi −Mδi ≤ 0;
zi ,wi ∈ Z; δi ∈ {0,1};

The constant M is introduced for a twofold objective:
1 considering solutions of ILP(D,AC,D) which correspond to

polynomial-size repairs for D w.r.t. AC

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 20 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing the Minimum Cardinality of Repairs (1/2)

Definition (ILP(D,AC,D))

Let S(D,AC,D) be A× ~z ≤ B.
ILP(D,AC,D) is an ILP
of the form:


A× ~z ≤ B;
wi = zi − vi
zi −M ≤ 0; −zi −M ≤ 0;
wi −Mδi ≤ 0; −wi −Mδi ≤ 0;
zi ,wi ∈ Z; δi ∈ {0,1};

The constant M is introduced for a twofold objective:
1 considering solutions of ILP(D,AC,D) which correspond to

polynomial-size repairs for D w.r.t. AC
2 building a mechanism for counting the number of updates (i.e., the

number of variables wi which are assigned a value different from 0)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 20 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing the Minimum Cardinality of Repairs (1/2)

Definition (ILP(D,AC,D))

Let S(D,AC,D) be A× ~z ≤ B.
ILP(D,AC,D) is an ILP
of the form:


A× ~z ≤ B;
wi = zi − vi
zi −M ≤ 0; −zi −M ≤ 0;
wi −Mδi ≤ 0; −wi −Mδi ≤ 0;
zi ,wi ∈ Z; δi ∈ {0,1};

The value of M derives from a well-known general result shown
in [Papadimitriou (JACM 1981)] regarding the existence of
bounded solutions of systems of linear equalities
The sum of the values assigned to variables δi is an upper bound
on the number of updates performed by the repair corresponding
to the solution of ILP(D,AC,D)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 20 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing the Minimum Cardinality of Repairs (2/2)

Theorem (Cardinality of Card-minimal repairs)

Let D be a database scheme, AC a set of steady aggregate constraints
on D, and D an instance of D. A repair for D w.r.t. AC exists iff
ILP(D,AC,D) has at least one solution, and the optimal value of the
optimization problem:

OPT (D,AC,D) := minimize
∑

i

δi subject to ILP(D,AC,D)

coincides with the cardinality of any card-minimal repair for D w.r.t. AC.

The solution of OPT (D,AC,D) is exploited to compute consistent
query answers

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 21 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing the Minimum Cardinality of Repairs -
Example

For the BalanceSheets database where AC = {κ1, κ2, κ3},
OPT (D,AC,D) is

minimize
∑

i δi subject to

z4 − z8 = z9
z1 + z9 = z10
z2 + z3 = z4
z5 + z6 + z7 = z8
w1 = z1 − 50
w2 = z2 − 100

w3 = z3 − 120
w4 = z4 − 250
w5 = z5 − 120
w6 = z6 − 20
w7 = z7 − 80
w8 = z8 − 220
w9 = z9 − 30

w10 = z10 − 80
wi −Mδi ≤ 0
−wi −Mδi ≤ 0
zi −M ≤ 0
−zi −M ≤ 0
δi ∈ {0, 1}

encoding of the aggregate constraints
mechanism for counting the number of updates and considering
polynomial solution w.r.t. the size of the database

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 22 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing Consistent Answers (1/2)

Given an aggregate query q, consider ILP(D,AC ∪ {¬q},D)

ILP(D,AC ∪ {¬q},D) is obtained by treating the aggregation
expression corresponding to the negation of q as a constraint

- For the BalanceSheets database with AC = {κ1, κ2, κ3} and
q1 : BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

ILP(D, {κ1, κ2, κ3} ∪ {,¬q1},D) :

z4 − z8 = z9
z1 + z9 = z10
z2 + z3 = z4
z5 + z6 + z7 = z8
z9 ≤ 20
w1 = z1 − 50
w2 = z2 − 100

w3 = z3 − 120
w4 = z4 − 250
w5 = z5 − 120
w6 = z6 − 20
w7 = z7 − 80
w8 = z8 − 220
w9 = z9 − 30

w10 = z10 − 80
wi −Mδi ≤ 0
−wi −Mδi ≤ 0
zi −M ≤ 0
−zi −M ≤ 0
zi ,wi ∈ Z
δi ∈ {0, 1}

encoding of the negated aggregate query

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 23 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing Consistent Answers (1/2)

Given an aggregate query q, consider ILP(D,AC ∪ {¬q},D)

ILP(D,AC ∪ {¬q},D) is obtained by treating the aggregation
expression corresponding to the negation of q as a constraint

- For the BalanceSheets database with AC = {κ1, κ2, κ3} and
q1 : BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

ILP(D, {κ1, κ2, κ3} ∪ {,¬q1},D) :

z4 − z8 = z9
z1 + z9 = z10
z2 + z3 = z4
z5 + z6 + z7 = z8
z9 ≤ 20
w1 = z1 − 50
w2 = z2 − 100

w3 = z3 − 120
w4 = z4 − 250
w5 = z5 − 120
w6 = z6 − 20
w7 = z7 − 80
w8 = z8 − 220
w9 = z9 − 30

w10 = z10 − 80
wi −Mδi ≤ 0
−wi −Mδi ≤ 0
zi −M ≤ 0
−zi −M ≤ 0
zi ,wi ∈ Z
δi ∈ {0, 1}

encoding of the negated aggregate query

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 23 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing Consistent Answers (1/2)

Given an aggregate query q, consider ILP(D,AC ∪ {¬q},D)

ILP(D,AC ∪ {¬q},D) is obtained by treating the aggregation
expression corresponding to the negation of q as a constraint

- For the BalanceSheets database with AC = {κ1, κ2, κ3} and
q1 : BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

ILP(D, {κ1, κ2, κ3} ∪ {,¬q1},D) :

z4 − z8 = z9
z1 + z9 = z10
z2 + z3 = z4
z5 + z6 + z7 = z8
z9 ≤ 20
w1 = z1 − 50
w2 = z2 − 100

w3 = z3 − 120
w4 = z4 − 250
w5 = z5 − 120
w6 = z6 − 20
w7 = z7 − 80
w8 = z8 − 220
w9 = z9 − 30

w10 = z10 − 80
wi −Mδi ≤ 0
−wi −Mδi ≤ 0
zi −M ≤ 0
−zi −M ≤ 0
zi ,wi ∈ Z
δi ∈ {0, 1}

encoding of the negated aggregate query

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 23 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing Consistent Answers (2/2)

The solutions of ILP(D,AC ∪ {¬q},D) correspond to (possibly
non-minimal) repairs for D w.r.t. AC such that q evaluates to false
on the repaired databases

Let CQAP(D,AC,q,D) =

{
ILP(D,AC ∪ {¬q},D)
λ =

∑
i δi

where λ is the value returned by OPT (D,AC,D).

Theorem (Consistent Query Answer)

Let D be a database scheme, AC a set of steady aggregate constraints
on D, q a steady aggregate query on D, and D an instance of D. The
consistent query answer to q over D w.r.t. AC is true iff
CQAP(D,AC,q,D) has no solution.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 24 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing Consistent Answers (2/2)

The solutions of ILP(D,AC ∪ {¬q},D) correspond to (possibly
non-minimal) repairs for D w.r.t. AC such that q evaluates to false
on the repaired databases

Let CQAP(D,AC,q,D) =

{
ILP(D,AC ∪ {¬q},D)
λ =

∑
i δi

where λ is the value returned by OPT (D,AC,D).

Theorem (Consistent Query Answer)

Let D be a database scheme, AC a set of steady aggregate constraints
on D, q a steady aggregate query on D, and D an instance of D. The
consistent query answer to q over D w.r.t. AC is true iff
CQAP(D,AC,q,D) has no solution.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 24 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing Consistent Answers (2/2)

The solutions of ILP(D,AC ∪ {¬q},D) correspond to (possibly
non-minimal) repairs for D w.r.t. AC such that q evaluates to false
on the repaired databases

Let CQAP(D,AC,q,D) =

{
ILP(D,AC ∪ {¬q},D)
λ =

∑
i δi

where λ is the value returned by OPT (D,AC,D).

Theorem (Consistent Query Answer)

Let D be a database scheme, AC a set of steady aggregate constraints
on D, q a steady aggregate query on D, and D an instance of D. The
consistent query answer to q over D w.r.t. AC is true iff
CQAP(D,AC,q,D) has no solution.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 24 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Computing Consistent Answers - Example

BalanceSheets database with AC = {κ1, κ2, κ3} and
q1 : BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

the cardinality λ of card-minimal repairs is 1

CQAP(D,AC, q,D) :

1 =
∑

i=∈I δi
z4 − z8 = z9
z1 + z9 = z10
z2 + z3 = z4
z5 + z6 + z7 = z8
z9 ≤ 20
w1 = z1 − 50
w2 = z2 − 100

w3 = z3 − 120
w4 = z4 − 250
w5 = z5 − 120
w6 = z6 − 20
w7 = z7 − 80
w8 = z8 − 220
w9 = z9 − 30

w10 = z10 − 80
wi −Mδi ≤ 0
−wi −Mδi ≤ 0
zi −M ≤ 0
−zi −M ≤ 0
zi ,wi ∈ Z
δi ∈ {0, 1}

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 25 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Eliminating variables and inequalities

The size of OPT (D,AC,D) and CQAP(D,AC,q,D) can be
reduced in the number of both variables and (in)equalities
Removing linearly dependent columns of the coefficient matrix A|B
entails a reduction of variables zi which in turn implies a reduction
of inequalities involving variables δi and wi

CQAP(D,AC, q,D) :

1 =
∑

i=∈I δi
z4 − z8 = z9
z1 + z9 = z10
z2 + z3 = z4
z5 + z6 + z7 = z8
z9 ≤ 20
w1 = z1 − 50
w2 = z2 − 100

w3 = z3 − 120
w4 = z4 − 250
w5 = z5 − 120
w6 = z6 − 20
w7 = z7 − 80
w8 = z8 − 220
w9 = z9 − 30

w10 = z10 − 80
wi −Mδi ≤ 0
−wi −Mδi ≤ 0
zi −M ≤ 0
−zi −M ≤ 0
zi ,wi ∈ Z
δi ∈ {0, 1}

Linearly dependent columns in A× ~z ≤ B must be removed before
generating OPT (D,AC,D) and CQAP(D,AC,q,D)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 26 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Eliminating variables and inequalities

The size of OPT (D,AC,D) and CQAP(D,AC,q,D) can be
reduced in the number of both variables and (in)equalities
Removing linearly dependent columns of the coefficient matrix A|B
entails a reduction of variables zi which in turn implies a reduction
of inequalities involving variables δi and wi

CQAP(D,AC, q,D) :

1 =
∑

i=∈I δi
z4 − z8 = z9
z1 + z9 = z10
z2 + z3 = z4
z5 + z6 + z7 = z8
z9 ≤ 20
w1 = z1 − 50
w2 = z2 − 100

w3 = z3 − 120
w4 = z4 − 250
w5 = z5 − 120
w6 = z6 − 20
w7 = z7 − 80
w8 = z8 − 220
w9 = z9 − 30

w10 = z10 − 80
wi −Mδi ≤ 0
−wi −Mδi ≤ 0
zi −M ≤ 0
−zi −M ≤ 0
zi ,wi ∈ Z
δi ∈ {0, 1}

Linearly dependent columns in A× ~z ≤ B must be removed before
generating OPT (D,AC,D) and CQAP(D,AC,q,D)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 26 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Eliminating variables and inequalities

The size of OPT (D,AC,D) and CQAP(D,AC,q,D) can be
reduced in the number of both variables and (in)equalities
Removing linearly dependent columns of the coefficient matrix A|B
entails a reduction of variables zi which in turn implies a reduction
of inequalities involving variables δi and wi

CQAP(D,AC, q,D) :

1 =
∑

i=∈I δi
z4 − z8 = z9
z1 + z9 = z10
z2,3 = z4
z5,6,7 = z8
z9 ≤ 20
w1 = z1 − 50
w2 = z2 − 100

w3 = z3 − 120
w4 = z4 − 250
w5 = z5 − 120
w6 = z6 − 20
w7 = z7 − 80
w8 = z8 − 220
w9 = z9 − 30

w10 = z10 − 80
wi −Mδi ≤ 0
−wi −Mδi ≤ 0
zi −M ≤ 0
−zi −M ≤ 0
zi ,wi ∈ Z
δi ∈ {0, 1}

Linearly dependent columns in A× ~z ≤ B must be removed before
generating OPT (D,AC,D) and CQAP(D,AC,q,D)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 26 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Eliminating variables and inequalities

The size of OPT (D,AC,D) and CQAP(D,AC,q,D) can be
reduced in the number of both variables and (in)equalities
Removing linearly dependent columns of the coefficient matrix A|B
entails a reduction of variables zi which in turn implies a reduction
of inequalities involving variables δi and wi

CQAP(D,AC, q,D) :

1 =
∑

i=∈I δi
z4 − z8 = z9
z1 + z9 = z10
z2,3 = z4
z5,6,7 = z8
z9 ≤ 20
w1 = z1 − 50

w2,3 = z2 − 100− 120
w4 = z4 − 250
w5,6,7 = z5 − 120− 20− 80
w8 = z8 − 220
w9 = z9 − 30

w10 = z10 − 80
wi −Mδi ≤ 0
−wi −Mδi ≤ 0
zi −M ≤ 0
−zi −M ≤ 0
zi ,wi ∈ Z
δi ∈ {0, 1}

Linearly dependent columns in A× ~z ≤ B must be removed before
generating OPT (D,AC,D) and CQAP(D,AC,q,D)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 26 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Eliminating variables and inequalities

The size of OPT (D,AC,D) and CQAP(D,AC,q,D) can be
reduced in the number of both variables and (in)equalities
Removing linearly dependent columns of the coefficient matrix A|B
entails a reduction of variables zi which in turn implies a reduction
of inequalities involving variables δi and wi

CQAP(D,AC, q,D) :

1 =
∑

i=∈I δi
z4 − z8 = z9
z1 + z9 = z10
z2,3 = z4
z5,6,7 = z8
z9 ≤ 20
w1 = z1 − 50

w2,3 = z2 − 100− 120
w4 = z4 − 250
w5,6,7 = z5 − 120− 20− 80
w8 = z8 − 220
w9 = z9 − 30

w10 = z10 − 80
wi −Mδi ≤ 0
−wi −Mδi ≤ 0
zi −M ≤ 0
−zi −M ≤ 0
zi ,wi ∈ Z
δi ∈ {0, 1}

Linearly dependent columns in A× ~z ≤ B must be removed before
generating OPT (D,AC,D) and CQAP(D,AC,q,D)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 26 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Experiments on data set Balance Sheets

Average time needed for computing the consistent answers vs. the
percentage of erroneous values

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10
N. of errors / N. of items (%)

se
c.

B2
B2

B1
B1

B3 B3

B1, B2, B3 contains 112,
256, and 378 tuples,
respectively

Lines labeled with Bi and
Bi refer to basic and
reduced-size ILPs,
respectively

the typical number of items in a balance sheet is less than 400 and
the typical percentage of errors is less than 5% of acquired data
In this range, at most 3 seconds are needed to compute CQAs

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 27 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Experiments on data set Balance Sheets

Average time needed for computing the consistent answers vs. the
percentage of erroneous values

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10
N. of errors / N. of items (%)

se
c.

B2
B2

B1
B1

B3 B3

B1, B2, B3 contains 112,
256, and 378 tuples,
respectively

Lines labeled with Bi and
Bi refer to basic and
reduced-size ILPs,
respectively

the typical number of items in a balance sheet is less than 400 and
the typical percentage of errors is less than 5% of acquired data
In this range, at most 3 seconds are needed to compute CQAs

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 27 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Experiments on data set Departmental Projects

We analyzed the execution times for CQA on increasing database
sizes and different percentages of erroneous values

0

50

100

150

200

250

300

350

400

0 10000 20000 30000 40000 50000 60000 70000
Number of tuples

se
c.

2%

4%

6%

2%
4%

6%

lines labeled with
underlined
percentage values
refer to reduced-size
ILPs

For the algorithm using reduced-size ILPs the average execution
time remains sufficiently small (less than 2 mins and 30 secs for
6% and 2% error rates, respectively)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 28 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

Experiments on data set Departmental Projects

We analyzed the execution times for CQA on increasing database
sizes and different percentages of erroneous values

0

50

100

150

200

250

300

350

400

0 10000 20000 30000 40000 50000 60000 70000
Number of tuples

se
c.

2%

4%

6%

2%
4%

6%

lines labeled with
underlined
percentage values
refer to reduced-size
ILPs

For the algorithm using reduced-size ILPs the average execution
time remains sufficiently small (less than 2 mins and 30 secs for
6% and 2% error rates, respectively)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 28 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Outline
1 Introduction

Motivation
Previous Work
Contribution

2 Preliminaries
Aggregate Constraints
Repairs
Aggregate Queries

3 Query Answering
Steady Aggregation Expressions
Computing Consistent Answers
Reducing the size of ILP
Experimental Results

4 Conclusion and Future Work
Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 29 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Conclusion and Future Work

We have introduced a framework for computing consistent
answers to aggregate queries in numerical databases violating a
given set of aggregate constraints
Our approach exploits a transformation into integer linear
programming (ILP), thus allowing us to exploit well-known
techniques for solving ILP problems
Experimental results prove the feasibility of the proposed approach
in real-life application scenarios
Further work will be devoted to devising strategies for computing
consistent answers to more expressive forms of queries

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 30 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Conclusion and Future Work

We have introduced a framework for computing consistent
answers to aggregate queries in numerical databases violating a
given set of aggregate constraints
Our approach exploits a transformation into integer linear
programming (ILP), thus allowing us to exploit well-known
techniques for solving ILP problems
Experimental results prove the feasibility of the proposed approach
in real-life application scenarios
Further work will be devoted to devising strategies for computing
consistent answers to more expressive forms of queries

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 30 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Conclusion and Future Work

We have introduced a framework for computing consistent
answers to aggregate queries in numerical databases violating a
given set of aggregate constraints
Our approach exploits a transformation into integer linear
programming (ILP), thus allowing us to exploit well-known
techniques for solving ILP problems
Experimental results prove the feasibility of the proposed approach
in real-life application scenarios
Further work will be devoted to devising strategies for computing
consistent answers to more expressive forms of queries

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 30 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Conclusion and Future Work

We have introduced a framework for computing consistent
answers to aggregate queries in numerical databases violating a
given set of aggregate constraints
Our approach exploits a transformation into integer linear
programming (ILP), thus allowing us to exploit well-known
techniques for solving ILP problems
Experimental results prove the feasibility of the proposed approach
in real-life application scenarios
Further work will be devoted to devising strategies for computing
consistent answers to more expressive forms of queries

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 30 / 31

Introduction
Preliminaries

Query Answering
Conclusion and Future Work

Thank you!

... any question?

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 31 / 31

Appendix
For Further Reading I
Backup Slides

For Further Reading

Arenas, M., Bertossi, L.E., Chomicki, J.:
Consistent query answers in inconsistent databases.
In: Proc. 18th ACM Symp. on Principles of Database Systems
(PODS). (1999) 68–79

Flesca, S., Furfaro, F., Parisi, F.:
Querying and Repairing Inconsistent Numerical Databases.
ACM Transactions on Database Systems (TODS), Vol 35 (2), 2010

Papadimitriou, C.H.:
On the complexity of integer programming.
Journal of the Association for Computing Machinery (JACM) Vol.
28(4) (1981) 765–768

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 32 / 31

Appendix
For Further Reading I
Backup Slides

Semantics of Aggregate Constraints

An aggregate constraint is an aggregation expression that a
database should satisfy
The database D satisfies the aggregate constraint

κ : ∀~x
(
φ(~x) =⇒

∑n
i=1 ci · χi(~yi) ≤ K

)
if, for all the substitutions of the variables in ~x with constants
making the conjunction of atoms on the LHS(κ) true, the inequality
on the RHS(κ) holds on D.
A database D is consistent w.r.t. a set of aggregate constraints AC
if D |= AC

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 33 / 31

Appendix
For Further Reading I
Backup Slides

Semantics of Aggregate Constraints

An aggregate constraint is an aggregation expression that a
database should satisfy
The database D satisfies the aggregate constraint

κ : ∀~x
(
φ(~x) =⇒

∑n
i=1 ci · χi(~yi) ≤ K

)
if, for all the substitutions of the variables in ~x with constants
making the conjunction of atoms on the LHS(κ) true, the inequality
on the RHS(κ) holds on D.
A database D is consistent w.r.t. a set of aggregate constraints AC
if D |= AC

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 33 / 31

Appendix
For Further Reading I
Backup Slides

Semantics of Aggregate Constraints

An aggregate constraint is an aggregation expression that a
database should satisfy
The database D satisfies the aggregate constraint

κ : ∀~x
(
φ(~x) =⇒

∑n
i=1 ci · χi(~yi) ≤ K

)
if, for all the substitutions of the variables in ~x with constants
making the conjunction of atoms on the LHS(κ) true, the inequality
on the RHS(κ) holds on D.
A database D is consistent w.r.t. a set of aggregate constraints AC
if D |= AC

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 33 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (1/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’)−

(χ1(x1, ‘total cash receipts’)− χ1(x1, ‘total disbursements’)) = 0

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 34 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (1/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’)−

(χ1(x1, ‘total cash receipts’)− χ1(x1, ‘total disbursements’)) = 0

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 34 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (1/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’)−

(χ1(x1, ‘total cash receipts’)− χ1(x1, ‘total disbursements’)) = 0

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 34 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (1/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’)−

(χ1(x1, ‘total cash receipts’)− χ1(x1, ‘total disbursements’)) = 0

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 34 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (2/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ2 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow.

χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘ending cash balance’)−

(χ1(x1, ‘ beginning cash’) + χ1(x1, ’net cash inflow’)) = 0

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 35 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (2/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ2 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow.

χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘ending cash balance’)−

(χ1(x1, ‘ beginning cash’) + χ1(x1, ’net cash inflow’)) = 0

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 35 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (2/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ2 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow.

χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘ending cash balance’)−

(χ1(x1, ‘ beginning cash’) + χ1(x1, ’net cash inflow’)) = 0

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 35 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (2/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ2 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow.

χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘ending cash balance’)−

(χ1(x1, ‘ beginning cash’) + χ1(x1, ’net cash inflow’)) = 0

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 35 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (3/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ3 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

χ2(x , y , z) = 〈BalanceSheets, Value, (Year=x ∧ Section=y ∧ Type=z) 〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ2(x1, x2, ‘det’) = χ2(x1, x2, ‘aggr’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 36 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (3/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ3 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

χ2(x , y , z) = 〈BalanceSheets, Value, (Year=x ∧ Section=y ∧ Type=z) 〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ2(x1, x2, ‘det’) = χ2(x1, x2, ‘aggr’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 36 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (3/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ3 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

χ2(x , y , z) = 〈BalanceSheets, Value, (Year=x ∧ Section=y ∧ Type=z) 〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ2(x1, x2, ‘det’) = χ2(x1, x2, ‘aggr’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 36 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Constraint (3/3)

BalanceSheets Year Section Subsection Type Value
2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ3 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

χ2(x , y , z) = 〈BalanceSheets, Value, (Year=x ∧ Section=y ∧ Type=z) 〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ2(x1, x2, ‘det’) = χ2(x1, x2, ‘aggr’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 36 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Queries

Consider the relation scheme
BalanceSheets(Year ,Section,Subsection,Type,Value)

q1 : for each year, is the value of net cash inflow greater than 20?
- χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 37 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Queries

Consider the relation scheme
BalanceSheets(Year ,Section,Subsection,Type,Value)

q1 : for each year, is the value of net cash inflow greater than 20?
- χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 37 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Queries

Consider the relation scheme
BalanceSheets(Year ,Section,Subsection,Type,Value)

q1 : for each year, is the value of net cash inflow greater than 20?
- χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 37 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Queries

Consider the relation scheme
BalanceSheets(Year ,Section,Subsection,Type,Value)

q2 : for years 2008 and 2009, is the sum of receivables greater than
payment of accounts?

- χ3(x) = 〈BalanceSheets, Value, ((Year=2008 ∨ 2009)∧Subsection=x)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ3(‘receivables’) ≥

χ3(‘payment of accounts’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 37 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Queries

Consider the relation scheme
BalanceSheets(Year ,Section,Subsection,Type,Value)

q2 : for years 2008 and 2009, is the sum of receivables greater than
payment of accounts?

- χ3(x) = 〈BalanceSheets, Value, ((Year=2008 ∨ 2009)∧Subsection=x)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ3(‘receivables’) ≥

χ3(‘payment of accounts’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 37 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Queries

Consider the relation scheme
BalanceSheets(Year ,Section,Subsection,Type,Value)

q3 : is the sum of incomings in cash sales for both years 2008 and
2009 sufficient to cover the expenses for long-term financing of
year 2009?

- χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- χ3(x) = 〈BalanceSheets, Value, ((Year=2008 ∨ 2009)∧Subsection=x)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ3(‘cash sales’) ≥

χ1(‘long-term financing’,2009)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 37 / 31

Appendix
For Further Reading I
Backup Slides

Example of Aggregate Queries

Consider the relation scheme
BalanceSheets(Year ,Section,Subsection,Type,Value)

q3 : is the sum of incomings in cash sales for both years 2008 and
2009 sufficient to cover the expenses for long-term financing of
year 2009?

- χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- χ3(x) = 〈BalanceSheets, Value, ((Year=2008 ∨ 2009)∧Subsection=x)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ3(‘cash sales’) ≥

χ1(‘long-term financing’,2009)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 37 / 31

Appendix
For Further Reading I
Backup Slides

Consistent Answers of Aggregate Queries

We adapt the notion of consistent query answer introduced
in [Arenas et Al (PODS 1999)] to our setting
Let ρ(D) be the database resulting from performing all the updates
in the card-minimal repair ρ on the database D

Definition (Consistent query answer)

Let D be a database scheme, D an instance of D, AC a set of
aggregate constraints on D and q an aggregate query over D. The
consistent query answer to q on D w.r.t. AC is true iff, for each
card-minimal repair ρ for D w.r.t. AC, it holds that ρ(D) |= q.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 38 / 31

Appendix
For Further Reading I
Backup Slides

Consistent Answers of Aggregate Queries

We adapt the notion of consistent query answer introduced
in [Arenas et Al (PODS 1999)] to our setting
Let ρ(D) be the database resulting from performing all the updates
in the card-minimal repair ρ on the database D

Definition (Consistent query answer)

Let D be a database scheme, D an instance of D, AC a set of
aggregate constraints on D and q an aggregate query over D. The
consistent query answer to q on D w.r.t. AC is true iff, for each
card-minimal repair ρ for D w.r.t. AC, it holds that ρ(D) |= q.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 38 / 31

Appendix
For Further Reading I
Backup Slides

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 39 / 31

Appendix
For Further Reading I
Backup Slides

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 39 / 31

Appendix
For Further Reading I
Backup Slides

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 39 / 31

Appendix
For Further Reading I
Backup Slides

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 39 / 31

Appendix
For Further Reading I
Backup Slides

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 39 / 31

Appendix
For Further Reading I
Backup Slides

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 39 / 31

Appendix
For Further Reading I
Backup Slides

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 39 / 31

Appendix
For Further Reading I
Backup Slides

Two examples of card-minimal repairs
Year Section Subsection Type Value ρ1 ρ2

2008 Receipts beginning cash drv 50
2008 Receipts cash sales det 100 −→ 130
2008 Receipts receivables det 120 −→ 150
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220
2008 Balance net cash inflow drv 30
2008 Balance ending cash balance drv 80

κ1 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year

κ2 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements

κ3 for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 39 / 31

Appendix
For Further Reading I
Backup Slides

Repairing non-numerical data (1/2)

We assume that inconsistencies involve numerical attributes
(measure attributes) only
Non-measure attributes are assumed to be consistent
In many real-life situations, even if integrity violations of measure
data can coexist with integrity violations involving non-measure
data, these inconsistencies can be fixed separately

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 40 / 31

Appendix
For Further Reading I
Backup Slides

Repairing non-numerical data (1/2)

We assume that inconsistencies involve numerical attributes
(measure attributes) only
Non-measure attributes are assumed to be consistent
In many real-life situations, even if integrity violations of measure
data can coexist with integrity violations involving non-measure
data, these inconsistencies can be fixed separately

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 40 / 31

Appendix
For Further Reading I
Backup Slides

Repairing non-numerical data (2/2)

In the balance sheet scenario, errors in the OCR-mediated
acquisition of non-measure attributes (such as lacks of
correspondences between real and acquired strings denoting item
descriptions) can be repaired in a pre-processing step using a
dictionary, by searching for the strings in the dictionary which are
the most similar to the acquired ones
[Fazzinga, et Al (IIDB 2006)] described a system adopting such a
dictionary-based repairing strategy for string attributes

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 41 / 31

Appendix
For Further Reading I
Backup Slides

Repairing non-numerical data (2/2)

In the balance sheet scenario, errors in the OCR-mediated
acquisition of non-measure attributes (such as lacks of
correspondences between real and acquired strings denoting item
descriptions) can be repaired in a pre-processing step using a
dictionary, by searching for the strings in the dictionary which are
the most similar to the acquired ones
[Fazzinga, et Al (IIDB 2006)] described a system adopting such a
dictionary-based repairing strategy for string attributes

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 41 / 31

Appendix
For Further Reading I
Backup Slides

Example of non-steady aggregate constraint

Consider the relation scheme R2(Project, Department, Costs)
database scheme
and the following constraint: There is at most one “expensive"
project (a project is considered expensive if its costs are not less
than 20K)
This constraint can be expressed by the following aggregate
constraint: χ() ≤ 1, where χ = 〈R2,1, (Costs ≥ 20K)〉
As attribute Costs is a measure attribute of R2, and it occurs in the
formula α of the aggregation function χ, the above-introduced
aggregate constraint is not steady (condition (1) of the Definition of
steady aggregate constraint is not satisfied).

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 42 / 31

Appendix
For Further Reading I
Backup Slides

Example of non-steady aggregate constraint

Consider the relation scheme R2(Project, Department, Costs)
database scheme
and the following constraint: There is at most one “expensive"
project (a project is considered expensive if its costs are not less
than 20K)
This constraint can be expressed by the following aggregate
constraint: χ() ≤ 1, where χ = 〈R2,1, (Costs ≥ 20K)〉
As attribute Costs is a measure attribute of R2, and it occurs in the
formula α of the aggregation function χ, the above-introduced
aggregate constraint is not steady (condition (1) of the Definition of
steady aggregate constraint is not satisfied).

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 42 / 31

Appendix
For Further Reading I
Backup Slides

Example of non-steady aggregate constraint

Consider the relation scheme R2(Project, Department, Costs)
database scheme
and the following constraint: There is at most one “expensive"
project (a project is considered expensive if its costs are not less
than 20K)
This constraint can be expressed by the following aggregate
constraint: χ() ≤ 1, where χ = 〈R2,1, (Costs ≥ 20K)〉
As attribute Costs is a measure attribute of R2, and it occurs in the
formula α of the aggregation function χ, the above-introduced
aggregate constraint is not steady (condition (1) of the Definition of
steady aggregate constraint is not satisfied).

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 42 / 31

Appendix
For Further Reading I
Backup Slides

Example of non-steady aggregate constraint

Consider the relation scheme R2(Project, Department, Costs)
database scheme
and the following constraint: There is at most one “expensive"
project (a project is considered expensive if its costs are not less
than 20K)
This constraint can be expressed by the following aggregate
constraint: χ() ≤ 1, where χ = 〈R2,1, (Costs ≥ 20K)〉
As attribute Costs is a measure attribute of R2, and it occurs in the
formula α of the aggregation function χ, the above-introduced
aggregate constraint is not steady (condition (1) of the Definition of
steady aggregate constraint is not satisfied).

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 42 / 31

Appendix
For Further Reading I
Backup Slides

Constant M (1/2)

The value of M derives from a well-known general result shown
in [Papadimitriou (JACM 1981)] regarding the existence of
bounded solutions of systems of linear equalities
In our case, this result implies that, if the first two (in)equalities of
ILP(D,AC,D) have at least one solution, then they admit at least
one solution where (absolute) values are less than M
this means that if there is a repair for D w.r.t. AC then there is an
M-bounded repair for D w.r.t. AC changing the same set of values
in order to repair card-minimal repairs and consistent answers we
can look at M-bounded repairs only

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 43 / 31

Appendix
For Further Reading I
Backup Slides

Constant M (1/2)

The value of M derives from a well-known general result shown
in [Papadimitriou (JACM 1981)] regarding the existence of
bounded solutions of systems of linear equalities
In our case, this result implies that, if the first two (in)equalities of
ILP(D,AC,D) have at least one solution, then they admit at least
one solution where (absolute) values are less than M
this means that if there is a repair for D w.r.t. AC then there is an
M-bounded repair for D w.r.t. AC changing the same set of values
in order to repair card-minimal repairs and consistent answers we
can look at M-bounded repairs only

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 43 / 31

Appendix
For Further Reading I
Backup Slides

Constant M (1/2)

The value of M derives from a well-known general result shown
in [Papadimitriou (JACM 1981)] regarding the existence of
bounded solutions of systems of linear equalities
In our case, this result implies that, if the first two (in)equalities of
ILP(D,AC,D) have at least one solution, then they admit at least
one solution where (absolute) values are less than M
this means that if there is a repair for D w.r.t. AC then there is an
M-bounded repair for D w.r.t. AC changing the same set of values
in order to repair card-minimal repairs and consistent answers we
can look at M-bounded repairs only

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 43 / 31

Appendix
For Further Reading I
Backup Slides

Constant M (2/2)

Given a database scheme D, a set E of steady aggregation
expressions on D, and an instance D of D, ILP(D, E ,D) is an ILP
of the form:

A× ~z ≤ B;
wi = zi − vi ∀ i ∈ I;
zi −M ≤ 0; −zi −M ≤ 0; ∀ i ∈ I
wi −Mδi ≤ 0; −wi −Mδi ≤ 0; ∀ i ∈ I;
zi ,wi ∈ Z; δi ∈ {0,1}; ∀ i ∈ I;

M = n · (ma)2m+1, where: a is the maximum among the modules
of the coefficients in A and of the values vi , and m = |I|+ r , and
n = 2 · |I|+ r , where r is the number of rows of A
The size of M is polynomial in the size of the database, as it is
bounded by log n + (2 ·m + 1) · log(ma)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 44 / 31

Appendix
For Further Reading I
Backup Slides

Constant M (2/2)

Given a database scheme D, a set E of steady aggregation
expressions on D, and an instance D of D, ILP(D, E ,D) is an ILP
of the form:

A× ~z ≤ B;
wi = zi − vi ∀ i ∈ I;
zi −M ≤ 0; −zi −M ≤ 0; ∀ i ∈ I
wi −Mδi ≤ 0; −wi −Mδi ≤ 0; ∀ i ∈ I;
zi ,wi ∈ Z; δi ∈ {0,1}; ∀ i ∈ I;

M = n · (ma)2m+1, where: a is the maximum among the modules
of the coefficients in A and of the values vi , and m = |I|+ r , and
n = 2 · |I|+ r , where r is the number of rows of A
The size of M is polynomial in the size of the database, as it is
bounded by log n + (2 ·m + 1) · log(ma)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 44 / 31

Appendix
For Further Reading I
Backup Slides

Eliminating variables and inequalities (2)

Both these ILP problems consist of A× ~z ≤ B augmented with
further inequalities involving new variables δi and wi

The number of these variables and inequalities depends on the
number of variables zi occurring in A× ~z ≤ B
The elimination of linearly dependent columns yields no reduction
of size when applied on the whole coefficient matrixes of
OPT (D,AC,D) or CQAP(D,AC,q,D)

The inequalities different from A× ~z ≤ B make all the columns of
the coefficient matrixes linearly independent
It is mandatory that linearly dependent columns in A× ~z ≤ B are
removed before generating OPT (D,AC,D) and
CQAP(D,AC,q,D).

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 45 / 31

Appendix
For Further Reading I
Backup Slides

Eliminating variables and inequalities (2)

Both these ILP problems consist of A× ~z ≤ B augmented with
further inequalities involving new variables δi and wi

The number of these variables and inequalities depends on the
number of variables zi occurring in A× ~z ≤ B
The elimination of linearly dependent columns yields no reduction
of size when applied on the whole coefficient matrixes of
OPT (D,AC,D) or CQAP(D,AC,q,D)

The inequalities different from A× ~z ≤ B make all the columns of
the coefficient matrixes linearly independent
It is mandatory that linearly dependent columns in A× ~z ≤ B are
removed before generating OPT (D,AC,D) and
CQAP(D,AC,q,D).

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 45 / 31

Appendix
For Further Reading I
Backup Slides

Experiment Setting

We experimentally validated our framework for computing
consistent answers on two data sets

Balance Sheets, containing real-life balance-sheet data

Departmental Projects, synthetic data set containing information
about projects developed in different departments

We used LINDO API 4.0 as ILP solver, and a PC with Intel
Pentium 4 Processor at 3.00 GHz and 4GB RAM

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 46 / 31

Appendix
For Further Reading I
Backup Slides

Experiment Setting

We experimentally validated our framework for computing
consistent answers on two data sets

Balance Sheets, containing real-life balance-sheet data

Departmental Projects, synthetic data set containing information
about projects developed in different departments

We used LINDO API 4.0 as ILP solver, and a PC with Intel
Pentium 4 Processor at 3.00 GHz and 4GB RAM

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 46 / 31

Appendix
For Further Reading I
Backup Slides

Constraints and Queries of Experiments on data set
Balance Sheets (1/3)

We considered the aggregate constraints AC = {κ1, κ2, κ3} and
the queries q1, q2, q3

κ1 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements
χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’)−

(χ1(x1, ‘total cash receipts’)− χ1(x1, ‘total disbursements’)) = 0
κ2 for each year, the ending cash balance must be equal to the sum of the

beginning cash and the net cash inflow.

BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘ending cash balance’)−
(χ1(x1, ‘ beginning cash’) + χ1(x1, ’net cash inflow’)) = 0

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 47 / 31

Appendix
For Further Reading I
Backup Slides

Constraints and Queries of Experiments on data set
Balance Sheets (1/3)

We considered the aggregate constraints AC = {κ1, κ2, κ3} and
the queries q1, q2, q3

κ1 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements
χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’)−

(χ1(x1, ‘total cash receipts’)− χ1(x1, ‘total disbursements’)) = 0
κ2 for each year, the ending cash balance must be equal to the sum of the

beginning cash and the net cash inflow.

BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘ending cash balance’)−
(χ1(x1, ‘ beginning cash’) + χ1(x1, ’net cash inflow’)) = 0

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 47 / 31

Appendix
For Further Reading I
Backup Slides

Constraints and Queries of Experiments on data set
Balance Sheets (1/3)

We considered the aggregate constraints AC = {κ1, κ2, κ3} and
the queries q1, q2, q3

κ1 for each year, the net cash inflow must be equal to the difference
between total cash receipts and total disbursements
χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’)−

(χ1(x1, ‘total cash receipts’)− χ1(x1, ‘total disbursements’)) = 0
κ2 for each year, the ending cash balance must be equal to the sum of the

beginning cash and the net cash inflow.

BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘ending cash balance’)−
(χ1(x1, ‘ beginning cash’) + χ1(x1, ’net cash inflow’)) = 0

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 47 / 31

Appendix
For Further Reading I
Backup Slides

Constraints and Queries of Experiments on data set
Balance Sheets (2/3)

κ3 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year
χ2(x , y , z) = 〈BalanceSheets, Value, (Year=x ∧ Section=y ∧ Type=z) 〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ2(x1, x2, ‘det’) = χ2(x1, x2, ‘aggr’)

q1 : for each year, is the value of net cash inflow greater than 20?
- χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

q2 : for years 2008 and 2009, is the sum of receivables greater than
payment of accounts?

- χ3(x) = 〈BalanceSheets, Value, ((Year=2008 ∨ 2009)∧Subsection=x)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ3(‘receivables’) ≥

χ3(‘payment of accounts’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 48 / 31

Appendix
For Further Reading I
Backup Slides

Constraints and Queries of Experiments on data set
Balance Sheets (2/3)

κ3 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year
χ2(x , y , z) = 〈BalanceSheets, Value, (Year=x ∧ Section=y ∧ Type=z) 〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ2(x1, x2, ‘det’) = χ2(x1, x2, ‘aggr’)

q1 : for each year, is the value of net cash inflow greater than 20?
- χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

q2 : for years 2008 and 2009, is the sum of receivables greater than
payment of accounts?

- χ3(x) = 〈BalanceSheets, Value, ((Year=2008 ∨ 2009)∧Subsection=x)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ3(‘receivables’) ≥

χ3(‘payment of accounts’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 48 / 31

Appendix
For Further Reading I
Backup Slides

Constraints and Queries of Experiments on data set
Balance Sheets (2/3)

κ3 for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year
χ2(x , y , z) = 〈BalanceSheets, Value, (Year=x ∧ Section=y ∧ Type=z) 〉
BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ2(x1, x2, ‘det’) = χ2(x1, x2, ‘aggr’)

q1 : for each year, is the value of net cash inflow greater than 20?
- χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ1(x1, ‘net cash inflow’) ≥ 20

q2 : for years 2008 and 2009, is the sum of receivables greater than
payment of accounts?

- χ3(x) = 〈BalanceSheets, Value, ((Year=2008 ∨ 2009)∧Subsection=x)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ3(‘receivables’) ≥

χ3(‘payment of accounts’)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 48 / 31

Appendix
For Further Reading I
Backup Slides

Constraints and Queries of Experiments on data set
Balance Sheets (3/3)

q3 : is the sum of incomings in cash sales for both years 2008 and
2009 sufficient to cover the expenses for long-term financing of
year 2009?

- χ1(x , y) = 〈BalanceSheets, Value, (Year=x ∧Subsection=y)〉
- χ3(x) = 〈BalanceSheets, Value, ((Year=2008 ∨ 2009)∧Subsection=x)〉
- BalanceSheets(x1, x2, x3, x4, x5) =⇒ χ3(‘cash sales’) ≥

χ1(‘long-term financing’,2009)

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 49 / 31

Appendix
For Further Reading I
Backup Slides

Constraints and Queries of Experiments on data set
Departmental Projects (1/4)

We considered the following database scheme D:
- Project(Name, Department, Funding)
- Expense(Project, Description, Type, Date, Amount)
- Department(Name, TotalFunding)
- MaxExpense(Type, Department, Threshold)

where underlined attributes denote keys, and measure attributes are as
follows: MProject = {Funding},MDepartment = {TotalFunding},
MMaxExpense = {Threshold},MExpense = {Amount}.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 50 / 31

Appendix
For Further Reading I
Backup Slides

Constraints and Queries of Experiments on data set
Departmental Projects (2/4)

We considered the following set of aggregate constraints AC:
1) Project(x ,_ _) =⇒ χ1(x)− χ2(x) ≥ 0,

where
χ1(x) = 〈 Project, Funding, (Name=x)〉
χ2(x) = 〈 Expense, Amount, (Project=x)〉.

This constraint imposes that the funding for each project must be
greater than or equal to the total expenses for the same project.

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 51 / 31

Appendix
For Further Reading I
Backup Slides

Constraints and Queries of Experiments on data set
Departmental Projects (3/4)

We considered the following set of aggregate constraints AC:
2) Department(x ,_ _) =⇒ χ3(x)− χ4(x) = 0

where
χ3(x) = 〈 Department, TotalFunding, (Name=x)〉 and
χ4(x) = 〈 Project, Funding, (Department=x)〉

This constraint imposes that for each department, the total amount
of funding allocated for developing all its projects must be equal to
the sum of funding allocated for every single project in the same
department

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 52 / 31

Appendix
For Further Reading I
Backup Slides

Constraints and Queries of Experiments on data set
Departmental Projects (4/4)

3) Project(x , y ,_),
MaxExpense(z, y ,_) =⇒ χ5(x , z)− χ6(z, y) ≤ 0,
where

χ5(x , z) = 〈 Expense, Amount, (Project=x ∧ Type= z)〉, and
χ6(z, y) = 〈 MaxExpense, Threshold, (Type=z ∧Department= y)〉

This constraint imposes that, for each project x developed in a
department y , and for each type of expense z which is bounded
for department y by the threshold τ , the total amount of expenses
of type z for project x must not be greater than τ .

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 53 / 31

Appendix
For Further Reading I
Backup Slides

Complexity Classes

PTIME: the class of decision problems solvable in polynomial time
by deterministic Turing Machines; this class is also denoted as P;
NP: the class of decision problems solvable in polynomial time by
nondeterministic Turing Machines;
∆p

2: the class of decision problems solvable in polynomial time by
deterministic Turing machines with an NP oracle; this class is also
denoted as PNP ;
∆p

2[log(n)]: the class of decision problems solvable in polynomial
time by deterministic Turing machines with an NP oracle which is
invoked O(log(n)) times; this class is also denoted as PNP[log(n)];

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 54 / 31

Appendix
For Further Reading I
Backup Slides

For Further Reading II

Fazzinga, B., Flesca, S., Furfaro, F., Parisi, F.:
Dart: A data acquisition and repairing tool.
In: Proc. Int. Workshop on Incons. and Incompl. in Databases
(IIDB). (2006) 297–317

Sergio Flesca, Filippo Furfaro, Francesco Parisi CQA for Aggregate Queries under Aggregate Constraints 55 / 31

	Introduction
	Motivation
	Previous Work
	Contribution

	Preliminaries
	Aggregate Constraints
	Repairs
	Aggregate Queries

	Query Answering
	Steady Aggregation Expressions
	Computing Consistent Answers
	Reducing the size of ILP
	Experimental Results

	Conclusion and Future Work
	
	Appendix
	Appendix
	For Further Reading I
	Backup Slides

