DART: a Data Acquisition and Repairing Tool

Bettina Fazzinga, Sergio Flesca, Filippo Furfaro and Francesco Parisi

D.E.I.S. Università della Calabria

{bfazzinga, flesca, furfaro, fparisi}@deis.unical.it

International Workshop on Inconsistency and Incompleteness in Databases March 26, 2006 - Munich (Germany)

Motivation

- Error-free acquisition of data is mandatory in several application scenarios
 - balance sheet analysis

 generally balance sheets are available as paper documents, thus they cannot be processed by balance analysis tools, since these work only on electronic data

Motivation

• Error-free acquisition of data is mandatory in several application scenarios

- currently, integrity constraints defined on the input data are exploited only for validating acquired data
- if data are inconsistent all the document portions involved into unsatisfied constraint must be checked for locating and correcting errors

Motivation

• For instance

a massive human intervention is required for correcting errors

 constraints like those defined in the context of balance-sheet data can be express by aggregate constraints

Key Idea

the human intervention will be limited to verify only located suggestions

Key Idea

exploit integrity constraints for suggesting corrections

• For instance

 in this case the operator will have to verify a single value instead of all the values in the table

Outline

- Repairing strategies
- DART architecture
- Aggregate constraints
- Steady aggregate constraints (SAC)
- Computing a card-minimal repair

Repairing strategy

Tuple deletion / Insertion

• What is a reasonable strategy for repairing the acquired data?

The inconsistent cash budget

	total cash	250
	receivables	120
Receipts	cash sales	100

100 + 120 ≠ 250

The repaired cash budget

	total cash	250	
	XXXXX	30	250
	receivables	120	120 + 30 =
Receipts	cash sales	100	100 +

Adding a new tuple means that the OCR tool skipped a whole row when acquiring ... *It's rather unrealistic!!!*

Repairing strategy

- What is a reasonable strategy for repairing the acquired data?
- The most natural approach is updating directly the numerical data
 - Work at attribute-level, rather than tuple-level

100 + 120 ≠ 250

- In our context, we can reasonably assume that inconsistencies are due to symbol recognition errors
- Thus, trying to re-construct the actual data values (without changing the number of tuples) is well founded

Card-minimal semantics

The most probable case is that the acquiring system made the minimum number of errors

It means assuming that the minimum number of errors occurred

A repair R is *card*-minimal for D iff there is no repair R' for D consisting of fewer updates than R

Outline

- Repairing strategies
- DART architecture
- Aggregate constraints
- Steady aggregate constraints (SAC)
- Computing a card-minimal repair

DART architecture

DART architecture - Acquisition and Extraction Module

DART architecture - Repairing Module

Outline

- Repairing strategies
- DART architecture
- Aggregate constraints
- Steady aggregate constraints (SAC)
- Computing a card-minimal repair

• A cash budget for a firm:

	20004			
	Year		2004	
Sections	Receipts			ag
Subsections	beginning cash		20	ar
	<mark>cash s</mark>	ales	100	de
	receiva	ables	120	se
	total ca	ash receipts	220	
	Disbursements			
	<mark>payme</mark>	nt of accounts	120	
	<mark>capital</mark>	expenditure	0	
	long-te	erm financing	40	
	total di	sbursements	160	
	Balance			
	net cas	sh inflow	60	
	ending	cash balance	80	

aggregate items

are obtained by aggregating detail items of the same section

• A cash budget for a firm:

		Year			2004
Sections		Receipts			
Subsect	ions		beginnin	ig cash	20
			<mark>cash sal</mark>	es	100
			receivab	les	120
			total cas	h receipts	220
		Disburse	irsements		
			payment	t of accounts	120
			capital e	xpenditure	0
			long-terr	n financing	40
			total dist	oursements	160
		Balance			
			net cash	inflow	60
			ending c	ash balance	80

derived items

are obtained using the value of other item of any type and belonging to any section

• A cash budget satisfy some integrity constraints:

Year	2004	
Receipts		
beginning cash	20	
cash sales	100	100 +
receivables	120	120 =
total cash receipts	220	220
Disbursements		
payment of accounts	120	120 +
capital expenditure	0	0 +
long-term financing	40	40 =
total disbursements	160	160
Balance		
net cash inflow	60	
ending cash balance	80	

for each section, the sum of all detail items must be equal to the value of the aggregate item

• A cash budget satisfy some integrity constraints:

Year		2004	
Receipts	i		
	beginning cash	20	
	cash sales	100	
	receivables	120	
	total cash receipts	220	
Disbursements			
	payment of accounts	120	
	capital expenditure	0	
	long-term financing	40	
	total disbursements	160	
Balance			
	net cash inflow	60	
	ending cash balance	80	

From the paper document to its digitized version

Year		2004
Receipts		
	beginning cash	20
	cash sales	100
	receivables	120
	total cash receipts	220
Disburse	ements	
	payment of accounts	120
	capital expenditure	0
	long-term financing	40
	total disbursements	160
Balance		
	net cash inflow	60
	ending cash balance	80

CashBudget

Section	Subsection	Туре	Value
Receipts	beginning cash	drv	20
Receipts	cash sales	det	100
Receipts	receivables	det	120
Receipts	total cash receipts	aggr	250
Disbursements	payment of accounts	det	120
Disbursements	capital expenditure	det	0
Disbursements	long-term financing	det	40
Disbursements	total disbursements	aggr	160
Balance	net cash inflow	drv	60
Balance	ending cash balance	drv	80

Acquisition and Extraction Module

Aggregate constraints

 can express constraints like those defined in the context of balance-sheet data

$$\forall \overline{X} \ \left(\phi(\overline{X}) \implies AggrF(\overline{X}) \le K \right)$$

where:

- 1. $\phi(\overline{X})$ is a conjunction of atoms
- 2. K is a constant
- 3. The aggregation formula $AggrF(\overline{X})$ is the linear combination of aggregation functions with $\overline{X_i} \subseteq \overline{X}$ $\sum_{i=1}^{n} c_i \cdot \chi_i(\overline{X_i})$

Aggregation function

- Relational scheme $R(A_1, A_2, ..., A_n)$
 - Measure attributes: numerical attributes representing measures
 - Such as weight, length, price, etc.

Linear combination of attributes

• Aggregation function

$$\chi(x_1, \dots, x_k) = SELECT sum(e)$$

 $FROM R$
 $WHERE \alpha(x_1, \dots, x_k)$
Boolean formula on constants and attributes of R

Aggregate constraints

1)

CashBudget(Section,Subsection,Type,Value)

Section	Subsection	Туре	Value
Receipts	beginning cash	drv	20
Receipts	cash sales	det	100
Receipts	receivables	det	120
Receipts	total cash receipts	aggr	250
Disbursements	payment of accounts	det	120
Disbursements	capital expenditure	det	0
Disbursements	long-term financing	det	40
Disbursements	total disbursements	aggr	160
Balance	net cash inflow	drv	60
Balance	ending cash balance	drv	80

for each section, the sum of all detail items must be equal to the value of the aggregate item

Aggregation function:

 $\begin{array}{l} \chi_1(s,t) = SELECT \; sum(Value) \\ FROM \; CashBudget \\ WHERE \; Section = s \\ AND \; Type = t \end{array}$

Aggregate constraint:

 $CashBudget(s, _, _, _) \implies \chi_1(s, det) - \chi_1(s, aggr) = 0$

Aggregate constraints

CashBudget(Section,Subsection,Type,Value)

Section	Subsection	Туре	Value
Receipts	beginning cash	drv	20
Receipts	cash sales	det	100
Receipts	receivables	det	120
Receipts	total cash receipts	aggr	250
Disbursements	payment of accounts	det	120
Disbursements	capital expenditure	det	0
Disbursements	long-term financing	det	40
Disbursements	total disbursements	aggr	160
Balance	net cash inflow	drv	60
Balance	ending cash balance	drv	80

2) the net cash inflow must be equal to the difference between total cash receipts and total disbursements

Aggregation function:

 $\chi_2(ss) = SELECT \ sum(Value) \ FROM \ CashBudget \ WHERE \ Subsection = ss$

Aggregation constraint:

 $\begin{aligned} CashBudget(_,_,_,_) \implies \\ \chi_2(net\ cash\ inflow) - [\chi_2(total\ cash\ receipts) - \chi_2(total\ disbursements)] = 0 \end{aligned}$

Outline

- Repairing strategies
- DART architecture
- Aggregate constraints
- Steady aggregate constraints (SACs)
- Computing a card-minimal repair

- a restricted form of aggregate constraints
- computing a card-minimal repair w.r.t. a set of SAC can be accomplished by solving an instance of MILP problem

Section	Subsection	Туре	Value
Receipts	beginning cash	drv	20
Receipts	cash sales	det	100
Receipts	receivables	det	120
Receipts	total cash receipts	aggr	250
Disbursements	payment of accounts	det	120
Disbursements	capital expenditure	det	0
Disbursements	long-term financing	det	40
Disbursements	total disbursements	aggr	160
Balance	net cash inflow	drv	60
Balance	ending cash balance	drv	80

$$\begin{bmatrix}
 z_1 + z_2 = z_3 \\
 z_4 + z_5 + z_6 = z_7
 \end{bmatrix}$$

a system of inequalities can be associated if values "involved" in the constraints are independent on repairs

$$CashBudget(s, -, -, -) \implies \chi_1(s, det) - \chi_1(s, aggr) = 0$$

An aggregate constraint is an SAC if:

- 1) no attributes in the WHERE clause are measure attributes
- 2) no attributes corresponding to variables in the WHERE clause are measure attributes
- 3) no attributes corresponding to variables shared by two atoms are measure attributes
- CashBudget(Section,Subsection,Type,Value)

 $CashBudget(s,ss,t,v)\implies \chi_1(s,det)-\chi_1(s,aggr)=0$

where: $\chi_1(s,t) = SELECT \ sum(Value)$ $FROM \ CashBudget$ $WHERE \ Section = s$ $AND \ Type = t$

An aggregate constraint is an SAC if:

- 1) no attributes in the WHERE clause are measure attributes
- 2) no attributes corresponding to variables in the WHERE clause are measure attributes
- 3) no attributes corresponding to variables shared by two atoms are measure attributes
- CashBudget(Section,Subsection,Type,Value)

 $CashBudget(\textbf{s}, ss, \textbf{t}, v) \implies \chi_1(s, det) - \chi_1(s, aggr) = 0$

where: $\chi_1(s,t) = SELECT \ sum(Value)$ $FROM \ CashBudget$ $WHERE \ Section = s$ $AND \ Type = t$

An aggregate constraint is an SAC if:

- 1) no attributes in the WHERE clause are measure attributes
- 2) no attributes corresponding to variables in the WHERE clause are measure attributes
- 3) no attributes corresponding to variables shared by two atoms are measure attributes
- CashBudget(Section,Subsection,Type,Value)

 $CashBudget(s,ss,t,v)\implies \chi_1(s,det)-\chi_1(s,aggr)=0$

where: $\chi_1(s,t) = SELECT \ sum(Value)$ $FROM \ CashBudget$ $WHERE \ Section = s$ $AND \ Type = t$

Complexity results under SACs

- even if SACs are a restricted form of (general) aggregate constraints, results obtained for (general) aggregate constraints are still valid for SACs
- the repair existence problem
 - deciding whether there is a repair for a database violating a given set of SACs is NP-complete
- the minimal repair checking problem
 - deciding whether a repair is minimal in CoNP-complete
- the consistent query answer problem
 - deciding whether a query is true in every card-minimal repair is $\Delta_2^p[log n] complete$

Outline

- Repairing strategies
- DART architecture
- Aggregate constraints
- Steady aggregate constraints (SAC)
- Computing a card-minimal repair

- Under SACs a card-minimal repair can be computed solving an MILP problem instance
 - SACs are translated into a system of inequalities $AZ \le B$
 - $Z=[z_1, z_2, ..., z_N]$ is a vector of variables associated to database values $v_1, v_2, ..., v_N$ which are involved in a constraint

Section	Subsection	Туре	Value	
Receipts	beginning cash	drv	20	
Receipts	cash sales	det	100	→Z ₁
Receipts	receivables	det	120	→Z ₂
Receipts	total cash receipts	aggr	250	→Z ₃
Disbursements	payment of accounts	det	120	Z ₄
Disbursements	capital expenditure	det	0	Z ₅
Disbursements	long-term financing	det	40	Z ₆
Disbursements	total disbursements	aggr	160	Z_7
Balance	net cash inflow	drv	60	
Balance	ending cash balance	drv	80	

1)
$$\begin{cases} z_1 + z_2 = z_3 \\ z_4 + z_5 + z_6 = z_7 \end{cases}$$

) $CashBudget(s, -, -, -) \implies \chi_1(s, det) - \chi_1(s, aggr) = 0$

- Under SACs a card-minimal repair can be computed solving an MILP problem instance
 - SACs are translated into a system of inequalities $AZ \le B$
 - $Z=[z_1, z_2, ..., z_N]$ is a vector of variables associated to database values $v_1, v_2, ..., v_N$ which are involved in a constraint

Section	Subsection	Туре	Value	
Receipts	beginning cash	drv	20	
Receipts	cash sales	det	100	→Z ₁
Receipts	receivables	det	120	$\rightarrow Z_2$
Receipts	total cash receipts	aggr	250	→Z ₃
Disbursements	payment of accounts	det	120	Z ₄
Disbursements	capital expenditure	det	0	Z ₅
Disbursements	long-term financing	det	40	Z ₆
Disbursements	total disbursements	aggr	160	Z ₇
Balance	net cash inflow	drv	60	→Z ₈
Balance	ending cash balance	drv	80	

1)
$$\begin{cases} z_1 + z_2 = z_3 \\ z_4 + z_5 + z_6 = z_7 \end{cases}$$

2) $z_3 - z_7 = z_8$

$$CashBudget(_,_,_,_) \implies \chi_2(net\ cash\ inflow) - [\chi_2(total\ cash\ receipts) - \chi_2(total\ disbursements)] = 0$$

- Under SACs a card-minimal repair can be computed solving an MILP problem instance
 - SACs are translated into a system of inequalities $AZ \le B$
 - $Z=[z_1, z_2, ..., z_N]$ is a vector of variables associated to database values $v_1, v_2, ..., v_N$ which are involved in a constraint

Section	ion Subsection		Value	
Receipts	beginning cash	drv	20	
Receipts	cash sales	det	100	→ Z,
Receipts	receivables	det	120	$\rightarrow Z_2$
Receipts	total cash receipts	aggr	250	→Z ₃
Disbursements	payment of accounts	det	120	Z
Disbursements	capital expenditure	det	0	ZĘ
Disbursements	long-term financing	det	40	Ze
Disbursements	total disbursements	aggr	160	
Balance	net cash inflow	drv	60	→Z ₈
Balance	ending cash balance	drv	80	

$$Z_1 + Z_2 = Z_3$$

 $Z_4 + Z_5 + Z_6 = Z_7$
 $Z_3 - Z_7 = Z_8$

- Under SACs a card-minimal repair can be computed solving an MILP problem instance
 - SACs are translated into a system of inequalities $AZ \le B$
 - $Z=[z_1, z_2, ..., z_N]$ is a vector of variables associated to database values $v_1, v_2, ..., v_N$ which are involved in a constraint

Section	Subsection	Туре	Value		
Receipts	beginning cash	drv	20		
Receipts	cash sales	det	100		z ₁ =13
Receipts	receivables	det	120	-	z ₂ =12
Receipts	total cash receipts	aggr	250	-	z ₃ =25
Disbursements	payment of accounts	det	120		z ₄ =12
Disbursements	capital expenditure	det	0		z 5=0
Disbursements	long-term financing	det	40		z₆=40
Disbursements	total disbursements	aggr	160		z ₇ =16
Balance	net cash inflow	drv	60		z₈=90
Balance	ending cash balance	drv	80		

$$Z_1 + Z_2 = Z_3$$

 $Z_4 + Z_5 + Z_6 = Z_7$
 $Z_3 - Z_7 = Z_8$

each solution corresponds to a (possible not minimal) repair

- In order to decide whether a solution corresponds to a cardminimal repair
 - we define a variable $y_i = z_i v_i$

Section	Subsection	Туре	Value	
Receipts	beginning cash	drv	20	
Receipts	cash sales	det	100	→ z ₁
Receipts	receivables	det	120	$\rightarrow Z_2$
Receipts	total cash receipts	aggr	250	$\rightarrow Z_3$
Disbursements	payment of accounts	det	120	Z ₄
Disbursements	capital expenditure	det	0	Z 5
Disbursements	long-term financing	det	40	Z 6
Disbursements	total disbursements	aggr	160	Z 7
Balance	net cash inflow	drv	60	$\rightarrow z_8$
Balance	ending cash balance	drv	80	

$$Z_1 + Z_2 = Z_3$$

 $Z_4 + Z_5 + Z_6 = Z_7$
 $Z_3 - Z_7 = Z_8$

- In order to decide whether a solution corresponds to a cardminimal repair
 - we define a variable $y_i = z_i v_i$

Section	Subsection	Туре	Value	
Receipts	beginning cash	drv	20	
Receipts	cash sales	det	100	$\rightarrow z_1$
Receipts	receivables	det	120	$\rightarrow z_2$
Receipts	total cash receipts	aggr	250	$\rightarrow z_3$
Disbursements	payment of accounts	det	120	Z ₄
Disbursements	capital expenditure	det	0	Z 5
Disbursements	long-term financing	det	40	Z 6
Disbursements	total disbursements	aggr	160	Z 7
Balance	net cash inflow	drv	60	$\rightarrow z_8$
Balance	ending cash balance	drv	80	

$$Z_{1} + Z_{2} = Z_{3}$$

$$Z_{4} + Z_{5} + Z_{6} = Z_{7}$$

$$Z_{3} - Z_{7} = Z_{8}$$

$$y_{1} = Z_{1} - 100$$

$$y_{2} = Z_{2} - 120$$

$$y_{3} = Z_{3} - 250$$

$$y_{4} = Z_{4} - 120$$

$$y_{5} = Z_{5} - 0$$

$$y_{6} = Z_{6} - 40$$

$$y_{7} = Z_{7} - 160$$

$$y_{8} = Z_{8} - 60$$

- In order to decide whether a solution corresponds to a cardminimal repair
 - we define a variable $y_i = z_i v_i$

Section	Subsection	Туре	Value	
Receipts	beginning cash	drv	20	
Receipts	cash sales	det	100	→ z ₁=130
Receipts	receivables	det	120	→ z ₂=120
Receipts	total cash receipts	aggr	250	→ z ₃=250
Disbursements	payment of accounts	det	120	z₄=120
Disbursements	capital expenditure	det	0	z 5=0
Disbursements	long-term financing	det	40	z₆=4 0
Disbursements	total disbursements	aggr	160	z₇=160
Balance	net cash inflow	drv	60	→ z₈=9 0
Balance	ending cash balance	drv	80	

$$Z_{1} + Z_{2} = Z_{3}$$

$$Z_{4} + Z_{5} + Z_{6} = Z_{7}$$

$$Z_{3} - Z_{7} = Z_{8}$$

$$y_{1} = Z_{1} - 100$$

$$y_{2} = Z_{2} - 120$$

$$y_{3} = Z_{3} - 250$$

$$y_{4} = Z_{4} - 120$$

$$y_{5} = Z_{5} - 0$$

$$y_{6} = Z_{6} - 40$$

$$y_{7} = Z_{7} - 160$$

$$y_{8} = Z_{8} - 60$$

- In order to decide whether a solution corresponds to a cardminimal repair
 - we define a variable $y_i = z_i v_i$

– we de	efine a variabl	e y _i =	Z _i -V _i			$Z_1 + Z_2 = Z_3$ $Z_4 + Z_5 + Z_6 = Z_7$
Section	Subsection	Туре	Value]		$Z_3 - Z_7 = Z_8$
Receipts	beginning cash	drv	20			$v_{i} = z_{i} - 100$
Receipts	cash sales	det	100	→ z ₁ =130	y ₁ =30	$y_1 = z_1 = 120$
Receipts	receivables	det	120	→ z ₂ =120	y ₂ =0	$y_2 - z_2^{-1} z_0$
Receipts	total cash receipts	aggr	250	→ z ₃ =250	y ₃ =0	$y_3 = Z_3 - Z_50$
Disbursements	payment of accounts	det	120	z₄=120	y ₄ =0	$y_4 = Z_4 - 120$
Disbursements	capital expenditure	det	0	z 5=0	y 5=0	y ₅ = z ₅ - 0
Disbursements	long-term financing	det	40	z₆=4 0	y₆=0	y ₆ = z ₆ - 40
Disbursements	total disbursements	aggr	160	z₇=160	y ₇ =0	y ₇ = z ₇ - 160
Balance	net cash inflow	drv	60	→ z₈=9 0	y₈=30	y ₈ = z ₈ - 60
Balance	ending cash balance	drv	80		-	

atomic updated on database value v_i

- In order to decide whether a solution corresponds to a cardminimal repair
 - we define a variable $y_i = z_i \cdot v_i$

– we de	efine a variabl	е <i>у_і=</i>	$Z_i - V_i$			$Z_1 + Z_2 = Z_3$ $Z_4 + Z_5 + Z_6 = Z_7$
Section	Subsection	Туре	Value			$Z_3 - Z_7 = Z_8$
Receipts	beginning cash	drv	20			$v_{i} = z_{i} - 100$
Receipts	cash sales	det	100	→ z 1=130	y ₁ =30	$y_1 = z_1 + 100$
Receipts	receivables	det	120	→ z ₂=120	y ₂ =0	$y_2 - z_2^{-1} z_0$
Receipts	total cash receipts	aggr	250	→ z₃= 250	y ₃ =0	$y_3 = Z_3 - Z_50$
Disbursements	payment of accounts	det	120	z₄=120	y ₄ =0	$y_4 = Z_4 - 120$
Disbursements	capital expenditure	det	0	z 5=0	y ₅ =0	y ₅ = z ₅ - 0
Disbursements	long-term financing	det	40	z₆=4 0	y₆=0	y ₆ = z ₆ - 40
Disbursements	total disbursements	aggr	160	z₇=160	y ₇ =0	y ₇ = z ₇ - 160
Balance	net cash inflow	drv	60	$\rightarrow \mathbf{z}_8 = 90$	y₈=30	$y_8 = z_8 - 60$
Balance	ending cash balance	drv	80	-		

- we have to count the number of variables y_i such that $y_i \neq 0$

- In order to detect if a variable z_i is assigned a value different v_i, a binary variable δ_i is defined
- we add the following constraints entailing that $y_i \neq 0 \implies \delta_i = 1$

- In order to detect if a variable z_i is assigned (for each Mbounded solution) a value different v_i, a binary variable δ_i is defined
- we add the following constraints entailing that $y_i \neq 0 \implies \delta_i = 1$

- In order to detect if a variable z_i is assigned (for each Mbounded solution) a value different v_i, a binary variable δ_i is defined
- we add the following constraints entailing that $y_i \neq 0 \implies \delta_i = 1$

• In order to consider solutions where each $\delta_i=0$ if $y_i=0$, we minimize the sum of values assigned to binary variables δ_i

$$\begin{array}{l} \min \delta_{1} + \delta_{2} + \ldots + \delta_{8} \\ z_{1} + z_{2} = z_{3} \\ z_{4} + z_{5} + z_{6} = z_{7} \\ z_{3} - z_{7} = z_{8} \\ y_{1} = z_{1} - 100 \\ \ldots \\ y_{8} = z_{8} - 60 \\ y_{1} \le M\delta_{1} \\ -M\delta_{1} \le y_{1} \\ \ldots \\ y_{8} \le M\delta_{8} \\ -M\delta_{8} \le y_{8} \end{array}$$

- 1. any solution corresponds to an *M*bounded repair having minimum cardinality w.r.t. all *M*-bounded repairs
- 2. It can be shown that if a repair exists then there is a card-minimal repair that is *M*-bounded

any solution corresponds to a card-minimal repair

Conclusions and future work

- An architecture providing robust data acquisition facilities has been proposed
- A restricted, but useful in many real-life scenario, class of aggregate constraints has been located
- An approach for computing a card-minimal repair in presence of SACs has been provided
 - standard techniques addressing MILP problem can be re-used for computing a repair
- Experimental evaluation of the system effectiveness on large data sets (working with real databases) will be accomplished

Thank you!

...any questions?

DART architecture - Acquisition and Extraction Module

Data Extraction Sub-Module - Wrapper

DART architecture - Acquisition and Extraction Module

Data Extraction Sub-Module – DB generator

Row pattern

Year	Section	Subsection	Value
Integer	Section	Subsection	Integer

Row pattern instances

2003	Receipts	beginning cash	20
2003	Receipts	cash sales	100

2003 Receipts receivables 120	2003 Receipts	receivables	120
-------------------------------	---------------	-------------	-----

2003 F	Receipts	total cash receipts	250
--------	----------	---------------------	-----

Subsection

CashBudget(Year,Section,Subsection,Type,Value)

CashBudget

Year	Section	Subsection	Туре	Value
2003	Receipts	beginning cash	drv	20
2003	Receipts	cash sales	det	100
2003	Receipts	receivables	det	120
2003	Receipts	total cash receipts	aggr	250
		•••		