
DART:

 a Data Acquisition and Repairing Tool

Bettina Fazzinga, Sergio Flesca, Filippo Furfaro and Francesco Parisi

D.E.I.S.

 Università della Calabria

{bfazzinga, flesca, furfaro, fparisi}@deis.unical.it

International Workshop on Inconsistency and Incompleteness in Databases

March 26, 2006 - Munich (Germany)

Motivation

• Error-free acquisition of data is mandatory in several application scenarios
– balance sheet analysis

Balance

sheet

analysis tool

electronic doc analysis report

– generally balance sheets are available as paper documents, thus

they cannot be processed by balance analysis tools, since these

work only on electronic data

Motivation

• Error-free acquisition of data is mandatory in several application scenarios
– balance sheet analysis

• currently, integrity constraints defined on the input data are exploited
only for validating acquired data

• if data are inconsistent all the document portions involved into
unsatisfied constraint must be checked for locating and correcting
errors

analysis

tool
acquisition

phase
input

document

acquired

data
consistent? validation

yes

no

correction

electronic doc

paper doc

constraints
Current

approach
a massive human intervention is required

Motivation

cash sales 100

receivables 120

total cash receipts 220

payment of accounts 120

long-term financing 40

total disbursements 160

net cash inflow 60

cash sales 100

receivables 120

total cash receipts 250

payment of accounts 120

long-term financing 40

total disbursement 160

net cash inflow 60

source document acquired document

100 +

120 =

220

 40 =

160

120 +

160 =

 60

220 -

• For instance
OCR tool

a massive human intervention is required for correcting errors

• constraints like those defined in the context of balance-sheet data can
be express by aggregate constraints

Key Idea

exploit integrity constraints for suggesting corrections

acquisition

phase

compute a

repair

input

document

acquired

data
consistent? validation

the human intervention will be limited to verify only located suggestions

no

yes

electronic doc

constraints

paper doc

correction

Key Idea

exploit integrity constraints for suggesting corrections

cash sales 100

receivables 120

total cash receipts 250

payment of accounts 120

long-term financing 40

total disbursement 160

net cash inflow 60

acquired document

DART suggests decreasing

the value down to 220

• For instance

• in this case the operator will have to verify a single value instead of all
the values in the table

Outline

• Repairing strategies

• DART architecture

• Aggregate constraints

• Steady aggregate constraints (SAC)

• Computing a card-minimal repair

Adding a new tuple means that the OCR tool skipped a whole row when

acquiring ... It’s rather unrealistic!!!

Repairing strategy

• What is a reasonable strategy for repairing the acquired data?

Tuple deletion / insertion

 Receipts
 cash sales 100

 receivables 120

 total cash 250

The inconsistent cash budget

 Receipts cash sales 100

 receivables 120

XXXXX 30

 total cash 250

The repaired cash budget

100 + 120 ≠ 250

120 +

 30 =

250

100 +

Repairing strategy

• What is a reasonable strategy for repairing the acquired data?

• The most natural approach is updating directly the numerical data

– Work at attribute-level, rather than tuple-level

• In our context, we can reasonably assume that inconsistencies are

due to symbol recognition errors

• Thus, trying to re-construct the actual data values (without

changing the number of tuples) is well founded

 Receipts
 cash sales 100

 receivables 120

 total cash 250

The inconsistent cash budget

100 + 120 ≠ 250

 Receipts
 cash sales 100

 receivables 120

 total cash 220

The repaired cash budget

120 =

220

100 +

Card-minimal semantics

The most probable case is that the acquiring system made the

minimum number of errors

It means assuming that

the minimum number of

errors occurred

Card-minimal semantics

R

Only two updates do not

suffice to repair D!

A repair R is card-minimal for D iff there is no repair R’ for D consisting

of fewer updates than R

Outline

• Repairing strategies

• DART architecture

• Aggregate constraints

• Steady aggregate constraints (SAC)

• Computing a card-minimal repair

Acquisition

and Extraction

Module

DART architecture

output

data

electronic doc

paper doc

Extraction

Metadata

Constraint

Metadata

Repairing

Module

tabular input data

DART architecture - Acquisition and Extraction Module

Converter

OCR tool

Wrapper

DB generator

Acquisition

Extraction

electronic doc

paper doc

Extraction

Metadata

Constraint

Metadata

Repairing

Module

output

data

DART architecture - Repairing Module

output

data

Converter

OCR tool

Wrapper

DB generator

Acquisition

Extraction

electronic doc

paper doc

Extraction

Metadata

Constraint

Metadata

MILP

transformer

MILP solver

validation

interface

Outline

• Repairing strategies

• DART architecture

• Aggregate constraints

• Steady aggregate constraints (SAC)

• Computing a card-minimal repair

Aggregate constraints: the application context

Year 2004

Receipts

 beginning cash 20

 cash sales 100

 receivables 120

 total cash receipts 220

Disbursements

 payment of accounts 120

 capital expenditure 0

 long-term financing 40

 total disbursements 160

Balance

 net cash inflow 60

 ending cash balance 80

• A cash budget for a firm:

Sections

Subsections

aggregate items

are obtained by aggregating

detail items of the same

section

Aggregate constraints: the application context

Year 2004

Receipts

 beginning cash 20

 cash sales 100

 receivables 120

 total cash receipts 220

Disbursements

 payment of accounts 120

 capital expenditure 0

 long-term financing 40

 total disbursements 160

Balance

 net cash inflow 60

 ending cash balance 80

• A cash budget for a firm:

Sections

Subsections derived items
are obtained using the

value of other item of

any type and belonging

to any section

Aggregate constraints: the application context

• A cash budget satisfy some integrity constraints:

Year 2004

Receipts

 beginning cash 20

 cash sales 100

 receivables 120

 total cash receipts 220

Disbursements

 payment of accounts 120

 capital expenditure 0

 long-term financing 40

 total disbursements 160

Balance

 net cash inflow 60

 ending cash balance 80

for each section, the sum

of all detail items must be

equal to the value of the

aggregate item

1)

100 +

120 =

220

 0 +

 40 =

160

120 +

Aggregate constraints: the application context

• A cash budget satisfy some integrity constraints:

Year 2004

Receipts

 beginning cash 20

 cash sales 100

 receivables 120

 total cash receipts 220

Disbursements

 payment of accounts 120

 capital expenditure 0

 long-term financing 40

 total disbursements 160

Balance

 net cash inflow 60

 ending cash balance 80

160 =

 60

220 -

2)

the net cash inflow must be

equal to the difference

between total cash receipts

and total disbursements

From the paper document to its digitized version

Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

Year 2004

Receipts

 beginning cash 20

 cash sales 100

 receivables 120

 total cash receipts 220

Disbursements

 payment of accounts 120

 capital expenditure 0

 long-term financing 40

 total disbursements 160

Balance

 net cash inflow 60

 ending cash balance 80

Acquisition and Extraction Module

CashBudget

1. is a conjunction of atoms

2. is a constant

3. The aggregation formula is the linear combination of

aggregation functions

with

where:

Aggregate constraints

• can express constraints like those defined in the context

of balance-sheet data

Aggregation function

• Aggregation function

– Measure attributes: numerical attributes representing measures

• Such as weight, length, price, etc.

Boolean formula on constants and attributes of R

Linear combination of attributes

• Relational scheme R(A1,A2,…An)

Aggregate constraints

Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

• CashBudget(Section,Subsection,Type,Value)

for each section, the sum

of all detail items must be

equal to the value of the

aggregate item

Aggregation function:

Aggregate constraint:

1)

Aggregate constraints

Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

• CashBudget(Section,Subsection,Type,Value)

Aggregation function:

Aggregation constraint:

the net cash inflow must be

equal to the difference

between total cash receipts

and total disbursements

2)

Outline

• Repairing strategies

• DART architecture

• Aggregate constraints

• Steady aggregate constraints (SACs)

• Computing a card-minimal repair

Steady aggregate constraints (SACs)

• a restricted form of aggregate constraints

• computing a card-minimal repair w.r.t. a set of SAC can

be accomplished by solving an instance of MILP problem

Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

CashBudget

a system of inequalities

can be associated if values

“involved” in the

constraints are

independent on repairs

z1
z2
z3
z4
z5

z6
z7

z1+ z2= z3

z4+ z5 + z6 = z7

An aggregate constraint is an SAC if:

1) no attributes in the WHERE clause are measure attributes

2) no attributes corresponding to variables in the WHERE clause are

measure attributes

3) no attributes corresponding to variables shared by two atoms are

measure attributes

Steady aggregate constraints (SACs)

• CashBudget(Section,Subsection,Type,Value)

where:

Steady aggregate constraints (SACs)

• CashBudget(Section,Subsection,Type,Value)

where:

An aggregate constraint is an SAC if:

1) no attributes in the WHERE clause are measure attributes

2) no attributes corresponding to variables in the WHERE clause are

measure attributes

3) no attributes corresponding to variables shared by two atoms are

measure attributes

An aggregate constraint is an SAC if:

1) no attributes in the WHERE clause are measure attributes

2) no attributes corresponding to variables in the WHERE clause are

measure attributes

3) no attributes corresponding to variables shared by two atoms are

measure attributes

• CashBudget(Section,Subsection,Type,Value)

Steady aggregate constraints (SACs)

where:

Complexity results under SACs

• the repair existence problem

– deciding whether there is a repair for a database violating a

given set of SACs is NP-complete

• the minimal repair checking problem

– deciding whether a repair is minimal in CoNP-complete

• the consistent query answer problem

– deciding whether a query is true in every card-minimal repair is

• even if SACs are a restricted form of (general) aggregate

constraints, results obtained for (general) aggregate

constraints are still valid for SACs

Outline

• Repairing strategies

• DART architecture

• Aggregate constraints

• Steady aggregate constraints (SAC)

• Computing a card-minimal repair

Repairing Module – MILP transformer

• Under SACs a card-minimal repair can be computed

solving an MILP problem instance
– SACs are translated into a system of inequalities A Z ≤ B

z1
z2
z3
z4
z5
z6
z7

z1+ z2= z3

z4+ z5 + z6 = z7

• Z=[z1,z2,…,zN] is a vector of variables associated to database values v1,v2,…,vN

which are involved in a constraint

Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

1)

1)

Repairing Module – MILP transformer

– SACs are translated into a system of inequalities A Z ≤ B

z3- z7= z8

z1
z2
z3
z4
z5
z6
z7

• Z=[z1,z2,…,zN] is a vector of variables associated to database values v1,v2,…,vN

which are involved in a constraint

Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

z8

• Under SACs a card-minimal repair can be computed

solving an MILP problem instance

2)

z1+ z2= z3

z4+ z5 + z6 = z7

1)

2)

Repairing Module – MILP transformer

• Under SACs a card-minimal repair can be computed

solving an MILP problem instance
– SACs are translated into a system of inequalities A Z ≤ B

z3- z7= z8

z1+ z2= z3

z4+ z5 + z6 = z7

Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

• Z=[z1,z2,…,zN] is a vector of variables associated to database values v1,v2,…,vN

which are involved in a constraint

z1
z2
z3
z4
z5
z6
z7
z8

Repairing Module – MILP transformer

• Under SACs a card-minimal repair can be computed

solving an MILP problem instance
– SACs are translated into a system of inequalities A Z ≤ B

z3- z7= z8

z1+ z2= z3

z4+ z5 + z6 = z7

each solution

corresponds to a

(possible not minimal)

repair

Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

• Z=[z1,z2,…,zN] is a vector of variables associated to database values v1,v2,…,vN

which are involved in a constraint

z1=130

z2=120

z3=250

z4=120

z5=0

z6=40

z7=160

z8=90

Repairing Module – MILP transformer

• In order to decide whether a solution corresponds to a card-

minimal repair

– we define a variable yi= zi-vi

z3- z7= z8

z1+ z2= z3

z4+ z5 + z6 = z7
Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

z1

z2

z3

z4

z5

z6

z7

z8

Repairing Module – MILP transformer

• In order to decide whether a solution corresponds to a card-

minimal repair

– we define a variable yi= zi-vi

z3- z7= z8

z1+ z2= z3

z4+ z5 + z6 = z7
Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

z1

z2

z3

z4

z5

z6

z7

z8

y1= z1- 100
y2= z2- 120
y3= z3- 250

y8= z8- 60

y4= z4- 120
y5= z5- 0
y6= z6- 40
y7= z7- 160

Repairing Module – MILP transformer

• In order to decide whether a solution corresponds to a card-

minimal repair

– we define a variable yi= zi-vi

Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

z1=130

z2=120

z3=250

z4=120

z5=0

z6=40

z7=160

z8=90

z3- z7= z8

z1+ z2= z3

z4+ z5 + z6 = z7

y1= z1- 100
y2= z2- 120
y3= z3- 250

y8= z8- 60

y4= z4- 120
y5= z5- 0
y6= z6- 40
y7= z7- 160

Repairing Module – MILP transformer

• In order to decide whether a solution corresponds to a card-

minimal repair

– we define a variable yi= zi-vi

Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

y1=30

y2=0

y3=0

y4=0

y5=0

y6=0

y7=0

y8=30

z1=130

z2=120

z3=250

z4=120

z5=0

z6=40

z7=160

z8=90

yi≠0 atomic updated on database value vi

z3- z7= z8

z1+ z2= z3

z4+ z5 + z6 = z7

y1= z1- 100
y2= z2- 120
y3= z3- 250

y8= z8- 60

y4= z4- 120
y5= z5- 0
y6= z6- 40
y7= z7- 160

Repairing Module – MILP transformer

• In order to decide whether a solution corresponds to a card-

minimal repair

– we define a variable yi= zi-vi

Section Subsection Type Value

Receipts beginning cash drv 20

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Balance ending cash balance drv 80

y1=30

y2=0

y3=0

y4=0

y5=0

y6=0

y7=0

y8=30

z1=130

z2=120

z3=250

z4=120

z5=0

z6=40

z7=160

z8=90

– we have to count the number of variables yi such that yi≠0

z3- z7= z8

z1+ z2= z3

z4+ z5 + z6 = z7

y1= z1- 100
y2= z2- 120
y3= z3- 250

y8= z8- 60

y4= z4- 120
y5= z5- 0
y6= z6- 40
y7= z7- 160

Repairing Module – MILP transformer

• In order to detect if a variable zi is assigned a value

different vi, a binary variable δi is defined

yi>0 implies δi=1

yi<0 implies δi=1

yi≠0 δi=1 • we add the following constraints entailing that

yi ≤ Mδi

-Mδi ≤

yi

If a system of equalities has a solution, it has also

one where each variable takes a value in [-M,M]

Repairing Module – MILP transformer

• In order to detect if a variable zi is assigned (for each M-

bounded solution) a value different vi, a binary variable δi is

defined

yi>0 implies δi=1

yi<0 implies δi=1

yi≠0 δi=1 • we add the following constraints entailing that

yi ≤ Mδi

-Mδi ≤

yi z1 + z2 = z3

z4 + z5 + z6 = z7

z3 - z7 = z8

y1 = z1 - 100

y2 = z2 - 120

y3 = z3 - 250

y4 = z4 - 120

y5 = z5 - 0

y6 = z6 - 40

y7 = z7 - 160

y8 = z8 - 60

y1 ≤ Mδ1

-Mδ1 ≤ y1

y2 ≤ Mδ2

-Mδ2 ≤ y2

 …

 …

y8 ≤ Mδ8

-Mδ8 ≤ y8

y1=30

y2=0

y3=0

y4=0

y5=0

y6=0

y7=0

y8=30

z1=130

z2=120

z3=250

z4=120

z5=0

z6=40

z7=160

z8=90

δ1=1

Repairing Module – MILP transformer

• In order to detect if a variable zi is assigned (for each M-

bounded solution) a value different vi, a binary variable δi is

defined

yi>0 implies δi=1

yi<0 implies δi=1

yi≠0 δi=1 • we add the following constraints entailing that

yi ≤ Mδi

-Mδi ≤

yi z1 + z2 = z3

z4 + z5 + z6 = z7

z3 - z7 = z8

y1 = z1 - 100

y2 = z2 - 120

y3 = z3 - 250

y4 = z4 - 120

y5 = z5 - 0

y6 = z6 - 40

y7 = z7 - 160

y8 = z8 - 60

y1 ≤ Mδ1

-Mδ1 ≤ y1

y2 ≤ Mδ2

-Mδ2 ≤ y2

 …

 …

y8 ≤ Mδ8

-Mδ8 ≤ y8

y1=30

y2=0

y3=0

y4=0

y5=0

y6=0

y7=0

y8=30

z1=130

z2=120

z3=250

z4=120

z5=0

z6=40

z7=160

z8=90

yi=0 entails that

either δi=1or δi=0

Repairing Module – MILP transformer

1. any solution corresponds to an M-

bounded repair having minimum

cardinality w.r.t. all M-bounded repairs

2. It can be shown that if a repair exists then there

is a card-minimal repair that is M-bounded

any solution corresponds to a card-minimal repair

• In order to consider solutions where each δi=0 if yi=0, we minimize

the sum of values assigned to binary variables δi

min δ1+ δ2+…+ δ8

z1 + z2 = z3

z4 + z5 + z6 = z7

z3 - z7 = z8

y1 = z1 - 100

 …

y8 = z8 - 60

y1 ≤ Mδ1

-Mδ1 ≤ y1

 …

y8 ≤ Mδ8

-Mδ8 ≤ y8

Conclusions and future work

• An architecture providing robust data acquisition facilities has
been proposed

• An approach for computing a card-minimal repair in presence

of SACs has been provided

– standard techniques addressing MILP problem can be re-used

for computing a repair

• A restricted, but useful in many real-life scenario, class of

aggregate constraints has been located

• Experimental evaluation of the system effectiveness on large

data sets (working with real databases) will be accomplished

 Thank you!

 ...any questions?

DART architecture - Acquisition and Extraction Module

Converter

OCR tool

Wrapper

DB generator

Acquisition

Extraction

electronic doc

paper doc

Extraction

Metadata

Constraint

Metadata

Repairing

Module

output

data

Data Extraction Sub-Module - Wrapper

Receipts

 beginning cash 20

 cass salss 100

 receivables 120

 total cash receipts 250

2003 Disbursements

 payment of accounts 120

 capital expenditure 0

 long-term financing 40

 total disbursements 160

Balance

 net cash inflow 60

 ending cash balance 80

domain Section domain Subsection
digitized document

Receipts

Disbursements

Balance

beginning cash

cash sales

receivables

total cash receipts

payment of accounts …

Year Section Subsection Value

Integer Section Subsection Integer

Subsection Value

Subsection Integer

2003 Receipts cash sales 100

Row pattern instance

Row

 patterns

DART architecture - Acquisition and Extraction Module

Converter

OCR tool

Wrapper

DB generator

Acquisition

Extraction

electronic doc

paper doc

Extraction

Metadata

Constraint

Metadata

Repairing

Module

output

data

Data Extraction Sub-Module – DB generator

Year Section Subsection Value

Integer Section Subsection Integer

2003 Receipts beginning cash 20

Row pattern instances

2003 Receipts cash sales 100

2003 Receipts receivables 120

2003 Receipts total cash receipts 250

CashBudget(Year,Section,Subsection,Type,Value)

Year Section Subsection Type Value

2003 Receipts beginning cash drv 20

2003 Receipts cash sales det 100

2003 Receipts receivables det 120

2003 Receipts total cash receipts aggr 250

… … … … …

CashBudget

Subsection

detail derived aggregate

Row pattern

