Introduction 00000 Incremental Computation

Experiments

Conclusions and future work

An Efficient Algorithm for Skeptical Preferred Acceptance in Dynamic Argumentation Frameworks

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi

Department of Informatics, Modeling, Electronics and System Engineering University of Calabria Italy {g.alfano, greco, fparisi}@dimes.unical.it

28th International Joint Conference on Artificial Intelligence

August 10-16, 2019

Macao, China

Introduction	Incremental Computation	Experiments 0000	Conclusions and future work
Motivation			
Argume	ntation in AI		

- A general way for representing arguments and relationships (attacks) between them
- It allows representing dialogues, making decisions, and handling inconsistency and uncertainty

Abstract Argumentation Framework (AF) [Dung1995]: arguments are abstract entities (no attention is paid to their internal structure) that may attack and/or be attacked by other arguments

a

b

Example (a simple AF)

- a = Our friends will have great fun at our party on Saturday
- b = Saturday will rain (according to the weather forecasting service 1)
- c = Saturday will be sunny (according to the weather forecasting service 2)

Introduction OOOO	Incremental Computation	Experiments 0000	Conclusions and future work
Motivation			

Argumentation Semantics

- Several semantics (such as *preferred*, and *ideal*) have been proposed to identify "reasonable" sets of arguments, called *extensions*.
- A preferred extension of an AF \mathcal{A} is a maximal admissible set of \mathcal{A} .
- The ideal extension of \mathcal{A} is the biggest admissible set of \mathcal{A} which is contained in every preferred extension of \mathcal{A} .

Example (AF \mathcal{A}_0)abjfecdkghiIideal (id){{a, d, f, h, j, 1}, {b, d, f, h, k}}

• An argument *g* is skeptically preferred accepted w.r.t. A (denoted as $SA_A(g) = true$) iff it appears in every pr-extension of A.

• In our example $SA_{\mathcal{A}}(d) = SA_{\mathcal{A}}(f) = SA_{\mathcal{A}}(h) = true$.

Introduction 00000	Incremental Computation	Experiments 0000	Conclusions and future work
Motivation			

Argumentation Semantics

- Several semantics (such as *preferred*, and *ideal*) have been proposed to identify "reasonable" sets of arguments, called *extensions*.
- A preferred extension of an AF \mathcal{A} is a maximal admissible set of \mathcal{A} .
- The ideal extension of \mathcal{A} is the biggest admissible set of \mathcal{A} which is contained in every preferred extension of \mathcal{A} .

Example (AF \mathcal{A}_0)abjfecdkghii

- An argument *g* is skeptically preferred accepted w.r.t. \mathcal{A} (denoted as $SA_{\mathcal{A}}(g) = true$) iff it appears in every pr-extension of \mathcal{A} .
- In our example $SA_{\mathcal{A}}(d) = SA_{\mathcal{A}}(f) = SA_{\mathcal{A}}(h) = true$.

Introduction OO●OO	Incremental Computation	Experiments 0000	Conclusions and future work
Motivation			

Dynamic Abstract Argumentation Frameworks

- Most argumentation frameworks are dynamic systems, which are often updated by adding/removing arguments/attacks.
- For each semantics, extensions may change if we update the initial AF by adding/removing arguments/attacks.

Example (Updated AF $\mathcal{A} = +(h, d)(\mathcal{A}_0)$)

S	Set of extensions of \mathcal{A}_0	Set of extensions of ${\cal A}$
pr	$\{\{a, d, f, h, j, 1\},\$?
	$\{b,d,f,h,k\}\}$	
id	$\{\{d, f, h\}\}$?

• Should we recompute the skeptical acceptance of an argument w.r.t. an updated AF from scratch?

Introduction	Incremental Computation	Experiments 0000	Conclusions and future work
Motivation			

Dynamic Abstract Argumentation Frameworks

- Most argumentation frameworks are dynamic systems, which are often updated by adding/removing arguments/attacks.
- For each semantics, extensions may change if we update the initial AF by adding/removing arguments/attacks.

Example (Updated AF $\mathcal{A} = +(h, d)(\mathcal{A}_0)$)

0	Set of extensions of \mathcal{A}_0	Set of extensions of \mathcal{A}
pr	$\{\{a, d, f, h, j, 1\}, \{b, d, f, h, k\}\}$	{{a, f , h , j, 1}, {b, f , h , k}}
id	$\{\{d, f, h\}\}$	{{f}}

• Should we recompute the skeptical acceptance of an argument w.r.t. an updated AF from scratch?

Introduction	Incremental Computation	Experiments	Conclusions and future work
00000			
Contributions			

- Context-based AF (CBAF)
 - We show that the skeptical preferred acceptance of an argument w.r.t an updated AF can be efficiently computed by looking only at a small part of the AF, called the *context-based* AF, which contains arguments whose acceptance status may change after the update.

Introduction	Incremental Computation	Experiments 0000	Conclusions and future work
Contributions			
Increme	ntal Algorithm		

We formally define the CBAF

- Sub-AF consisting of the arguments whose status could change after an update
- It depends on both the update, the initial ideal extension, and the goal argument.

We present an incremental algorithm for recomputing the skeptical preferred acceptance of a goal argument of an updated AF

- It calls state of the art solvers to compute the skeptical preferred acceptance of the goal argument and the ideal extension of the CBAF
- It incrementally maintains the ideal extension using the CBAF.
- We present a thorough experimental analysis showing the effectiveness of our approach
 - Our technique outperforms the computation from scratch even when using the best available solver for determine the skeptical preferred acceptance.

Introduction	Incremental Computation	Experiments	Conclusions and future work
	00000		

Outline

- Motivation
- Contributions

- SPA
- Context-based Argumentation Framework
- Incremental Algorithm

3 Experiments

Introduction	Incremental Computation	Experiments	Conclusions and future work
	0000		
SPA			

Supporting set: Intuition

- Sup(u, A, E, g) is the set of arguments whose status may change after performing update u and s.t. they may imply a change of the status of g.
- Given $u = \pm(a, b)$, an argument is *steady* if it is attacked by an argument appearing in the initial ideal extension that is not reachable from *b*.
- Informal definition: Sup(u, A, E, g) for $u = \pm(a, b)$ and g consists of the arguments that (*i*) can be reached from *b* without using any steady argument; and (*ii*) allow to reach the goal g by using only the selected arguments.

Example (For update u = +(h, d))

g is steady since it is attacked by $f \in E_{id}$ and f is not reachable from d.

Introduction	Incremental Computation	Experiments	Conclusions and future work
00000	00000	0000	000
SPA			
-			

Supporting set: Intuition

- Sup(u, A, E, g) is the set of arguments whose status may change after performing update u and s.t. they may imply a change of the status of g.
- Given $u = \pm(a, b)$, an argument is *steady* if it is attacked by an argument appearing in the initial ideal extension that is not reachable from *b*.
- Informal definition: Sup(u, A, E, g) for u = ±(a, b) and g consists of the arguments that (i) can be reached from b without using any steady argument; and (ii) allow to reach the goal g by using only the selected arguments.

Example (For update u = +(h, d))

For the goal c the supporting set is: $Sup(u, AF_0, E_{id}, c) = \{c, d\}$

Introduction	Incremental Computation	Experiments	Conclusions and future work
	00000		
SPA			

Supporting set: Formal Definition

Let $A = \langle A, \Sigma \rangle$ be an AF, $u = \pm(a, b)$ an update, *E* the ideal extension of *A*, and *g* an argument in *A*. Let

$$- Sup_0(u, \mathcal{A}, E, g) = \begin{cases} \emptyset & \text{if } u = +(a, b) \land b \in (E(u))^+; \\ \emptyset & \text{if } b \notin Reach_{H(\mathcal{A}, u)}^{-1}(g); \\ \{b\} & \text{otherwise.} \end{cases}$$

 $\begin{array}{l} - \ Sup_{i+1}(u,\mathcal{A},E,g) = Sup_i(u,\mathcal{A},E,g) \cup \{y \mid \exists (x,y) \in \Sigma \ s.t.x \in \\ Sup_i(u,\mathcal{A},E,g) \ \land y \in Reach_{H(\mathcal{A},u)}^{-1}(g) \land y \notin Std_{\mathcal{A}}(u)\}. \end{array}$

Let *n* be the natural number such that $Sup_n(u, A, E, g) = Sup_{n+1}(u, A, E, g)$.

- The supporting set is $Sup(u, \mathcal{A}, E, g) = Sup_n(u, \mathcal{A}, E, g) \cap Reach_G^{-1}(g)$ where $G = \Pi(Sup_n(u, \mathcal{A}, E, g), H(\mathcal{A}, u))$ is the restriction of $H(\mathcal{A}, u)$ to $Sup_n(u, \mathcal{A}, E, g)$.
- If g is not specified, the supporting set, denoted as Sup(u, A, E, *), is defined as Sup(u, A, E, g) except that all the checks concerning Reach⁻¹ are omitted.

Introduction

Incremental Computation

Experiments

Conclusions and future work

Context-based Argumentation Framework

Context-based AF (CBAF)

- Using the supporting set we define the Context-based AF (CBAF).
- It is a restriction of the AF used to compute:
 - 1) The status of the goal after an update
 - 2) The updated ideal extension

Example (From the updated AF to the CBAF)

00000		OOOO	Conclusions and future work
Incremental Algorithm			
Incremental .	Algorithm		

Algorithm SPA($A_0, g, SA_{A_0}(g), u, E_0$)

Input: AF $A_0 = \langle A_0, \Sigma_0 \rangle$, argument $g \in A_0$, skeptical acceptance $SA_{A_0}(g)$ of g w.r.t. A_0 , update $u = \pm(a, b)$, ideal extension E_0 of A_0 ;

Output: skeptical acceptance $SA_{u(\mathcal{A}_0)}(g)$ of g w.r.t. $u(\mathcal{A}_0)$, ideal extension E of $u(\mathcal{A}_0)$;

- 1: Let $S_{\star} = Sup(u, A_0, E_0, \star)$ // Supporting set for computing the updated ideal extension
- 2: Let $A_{id} = CBAF(u, A_0, E_0, \star)// CBAF$ for computing the updated ideal extension
- 3: Let $E = (E_0 \setminus S_*) \cup$ ID-Solver(A_{id})// Computing the updated ideal extension using the CBAF 4: if $g \in E$ then
- 5: return $\langle true, E \rangle //g$ is in the ideal extension, thus skeptical accepted 6: if $g \in E^+$ then

7: return $\langle false, E \rangle //g$ is attacked by the ideal extension, thus it is not skeptically accepted 8: Let $S_g = Sup(u, A_0, E_0, g) //$ Supporting set for determining the skeptical acceptance of g 9: if S_g is empty then

10: **return** $(SA_{A_0}(g), E) //$ If the supporting set is empty, then the skeptical acceptance is preserved (result in the paper)

11: Let $A_{sa} = CBAF(u, A_0, E_0, g) // CBAF$ for determining the skeptical acceptance of g

12: **return** (SA-Solver(A_{sa}, g), E)// If the supporting set is not empty, it suffices to compute the skeptical acceptance only on the CBAF (result in the paper)

Introduction	Incremental Computation	Experiments •••••	Conclusions and future work

Outline

Introduction

- Motivation
- Contributions

Incremental Computation

- SPA
- Context-based Argumentation Framework
- Incremental Algorithm

3 Experiments

4 Conclusions and future work

Introduction	Incremental Computation	Experiments	Conclusions and future work		
Experimental validation					
Datasets and Metodology					

Datasets: ICCMA'17 benchmarks for the task DS-pr of determining the skeptical preferred acceptance.

- A2 consists of 50 $A \in [61, 20K]$ and $\Sigma \in [97, 358K]$
- A3 consists of 100 $A \in [39, 100K]$ and $\Sigma \in [72, 1.26M]$.

Methodology: For each AF we randomly selected an update u (or a set), and a goal argument g. Then, we computed $SA_{u(\mathcal{A}_0)}(g)$ by using

- SPA, where ID-Solver is pyglaf [Alviano, 2017] and SA-Solver is ArgSemSAT [Cerutti et al., 2014], the solver that won the the DS-pr track;
- SPA-base where the ideal extension is not used; and
- ArgSemSAT (from scratch).

We report on the improvements:

Introduction		Incremental Com	putation	Experiments	3	Conclusions and future work
00000		00000		0000		000
Experimental validation	ation					
-						

Experimental Results

Experiment 1

Experiment 2 10^{7} SPA SPA-base 10⁶ 10⁵ 10⁴ 10³ 10² 10^{1} 10^{0} 10^{-1} 10² 10^{3} 10^{4} N. of Attacks 10^{7} SPA SPA-base 10^{6} 10^{5} 10^{4} 10³ 10² 10^{1} 10⁰ 10-4000 5000 3000 N. of Attacks

Experiment 3

Introduction	Incremental Computation	Experiments ○OO●	Conclusions and future work
Experimental validation			
Results			

• Experiment 1:

- SPA and SPA-base turn out to be on average 5 and 4 orders of magnitude faster than ArgSemSAT, respectively—dashed lines reports median values (32 on A2, 134 on A3) and SPA-base (27 on A2, 40 on A3).
- SPA generally faster than SPA-base—not so if initial ideal extension is empty.

Experiment 2:

- We analyzed the performances of SPA and SPA-base by varying the number of attacks and keeping constant either the number of arguments or the average degree.
- The performance gets worse when the ratio between the size of the context-based AF and that of the initial AF becomes very large because of the increasing density of the initial AFs—from 4% to 95%.

• Experiment 3:

- SPA remains faster than the competitor even when 10 or 100 updates are performed simultaneously.
- Applying updates simultaneously is faster than applying them sequentially (dashed grey lines).

Introduction	Incremental Computation	Experiments 0000	Conclusions and future work

Outline

- Motivation
- Contributions

Incremental Computation

- SPA
- Context-based Argumentation Framework
- Incremental Algorithm

3 Experiments

Introduction 00000	Incremental Computation	Experiments 0000	Conclusions and future work
Conclusions and future work			

Conclusions and Future Work

- To the best our knowledge, this is the first paper proposing an efficient technique for the incremental computation of skeptical acceptance in dynamic AFs.
- The technique can be used for general (multiple) updates
- We identified a tighter portion of the updated AF to be examined for the recomputation.
- Both SPA and SPA-base outperform the computation from scratch, and SPA is generally faster than SPA-base. However, as the experiments showed, SPA may be slower than SPA-base when the initial ideal extension is empty. Thus, a first direction for future work is devising heuristics to take advantages of both algorithms.
- We plan to extend our technique to other argumentation semantics.

Introduction

Incremental Computation

Conclusions and future work 000

see you at the poster!

An Efficient Algorithm for Skeptical Preferred Acceptance in Dynamic Argumentation Frameworks

GIANVINCENZO ALFANO, SERGIO GRECO, FRANCESCO PARISI

Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria, ITALY

ABSTRACT ARGUMENTATION

can be added/removed to take into account new available knowledge.

pair (A, X), where A is a set of arguments and It allows representing dialogues, making de-An AF can be viewed as a direct graph. whose nodes are arguments and whose edges are attacks.

An argument is skeptical accepted under the

arguments or attacks. - +(a, b) (resp. -(a, b)) denotes the addition

 $u(A_{i})$ means applying $u = \pm (a, b)$ to A_{i} : multiple (attacks) updates can be simulated

An experimental analysis showing the effectiveness of our approach is proposed Datasets: ICCMA'17 benchmarks.

For each AF in the dataset, we compared the performance of our technique with

Results: The figure reports the improvement (log scale) of SPA and SPA-base over ArgSenSAT over different datasets versus the number of attacks. - Considering the averages of the improvements, SPA and SPA-base turn out to

as this can be skewed by extremely large values of improvements (e.g. 10^6) we also considered the medians of improvements for SPR (32 on .42, 13) or (4) and SPA-base (27 on A2, 4) on A3) (see dashed line), which coeffirm the significance of the gain in efficiency. The experiments show that SPA is generally faster than SPA-base, except for a few AFs whose initial ideal extension

- The performance gets worse when the ratio between the size of the context has dAF and that of the initial AF becomes very large because of the increas-ing density of the initial AFs.

- For sets of updates, results show that SPA remains faster than the competi-

Thanks...

Which one is your preferred extension?!