
Introduction Incremental Computation Experiments Conclusions and future work

Efficient Computation of Extensions for
Dynamic Abstract Argumentation Frameworks:

An Incremental Approach

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi

{g.alfano, greco, fparisi}@dimes.unical.it
Department of Informatics, Modeling, Electronics and System Engineering

University of Calabria
Italy

26th International Joint Conference on Artificial Intelligence
August 19-25, 2017

Melbourne, Australia

Introduction Incremental Computation Experiments Conclusions and future work

Motivation

Argumentation in AI

A general way for representing arguments and relationships (rebuttals)
between them
It allows representing dialogues, making decisions, and handling
inconsistency and uncertainty

Abstract Argumentation Framework (AF) [Dung 1995]: arguments are
abstract entities (no attention is paid to their internal structure) that may attack
and/or be attacked by other arguments

Example (a simple AF)

a = Our friends will have great fun at our party on Saturday
b = Saturday will rain (according to the weather forecasting

service 1)
c = Saturday will be sunny (according to the weather

forecasting service 2)

b

a

c

Introduction Incremental Computation Experiments Conclusions and future work

Motivation

Argumentation Semantics

Several semantics have been proposed to identify “reasonable” sets of
arguments, called extensions

Example (AF A0)

b c

d e f

g h

a Semantic S Set of extensions ES(A0)

complete (co) {{f ,g}, {a, f ,g}, {b, f ,g}}
preferred (pr) {{a, f ,g}, {b, f ,g}}

stable (st) {{b, f ,g}}
grounded (gr) {{f ,g}}

Argumentation semantics can be also defined in terms of labelling
Function L : A→ {IN, OUT, UN} assigns a label (accepted, rejected,
undecided) to each argument

Introduction Incremental Computation Experiments Conclusions and future work

Motivation

Argumentation Semantics

Several semantics have been proposed to identify “reasonable” sets of
arguments, called extensions

Example (AF A0)

b c

d e f

g h

a Semantic S Set of extensions ES(A0)

complete (co) {{f ,g}, {a, f ,g}, {b, f ,g}}
preferred (pr) {{a, f ,g}, {b, f ,g}}

stable (st) {{b, f ,g}}
grounded (gr) { {f,g} }

Argumentation semantics can be also defined in terms of labelling
Function L : A→ {IN, OUT, UN} assigns a label (accepted, rejected,
undecided) to each argument

Introduction Incremental Computation Experiments Conclusions and future work

Motivation

Dynamic Abstract Argumentation Frameworks

Most argumentation frameworks are dynamic systems, which are often
updated by adding/removing arguments/attacks.

For each semantics, extensions/labellings change if we update the initial
AF by adding/removing arguments/attacks

Example (Updated AF A = +(c, f)(A0))

b c

d e f

g h

a

+(c, f)
S ES(A0) ES(A))

co {{f , g}, {a, f , g}, {b, f , g}} ?
pr {{a, f , g}, {b, f , g}} ?
st {{b, f , g}} ?
gr {{f , g}} ?

Should we recompute the semantics of updated AFs from scratch?

Introduction Incremental Computation Experiments Conclusions and future work

Motivation

Dynamic Abstract Argumentation Frameworks

Most argumentation frameworks are dynamic systems, which are often
updated by adding/removing arguments/attacks.

For each semantics, extensions/labellings change if we update the initial
AF by adding/removing arguments/attacks

Example (Updated AF A = +(c, f)(A0))

b c

d e f

g h

a S ES(A0) ES(A))

co {{f , g}, {a, f , g}, {b, f , g}} {{g}, {a, g}, {b, f , g}}
pr {{a, f , g}, {b, f , g}} {{a, g}, {b, f , g}}
st {{b, f , g}} {{b, f , g} }
gr {{f , g}} { {g}}

Should we recompute the semantics of updated AFs from scratch?

Introduction Incremental Computation Experiments Conclusions and future work

Contributions

Reduced AF

We show that for four well-known semantics (i.e., grounded, complete,
preferred, and stable) an extension of the updated AF can be efficiently
computed by looking only at a small part of the AF, called the Reduced
AF, which is “influenced by” the update operation

Example (From the updated AF to the Reduced AF)

b c

d e f

g h

a

+(c, f)

⇒ Reduced AF: e f

Once computed an extension for the reduced AF, it can be combined with
the initial extension of the given AF to get an extension of the updated AF

Introduction Incremental Computation Experiments Conclusions and future work

Contributions

Incremental Algorithm

1 We formally define the Reduced AF
Sub-AF consisting of the arguments whose status could change after an
update
It depends on both the update and the initial extension E0 (and thus the
semantics)

2 We present an incremental algorithm for recomputing an extension of an
updated AF for the grounded, complete, preferred, and stable semantics

It calls a non-incremental solver to compute an extension of the reduced AF
It obtains the final extension by merging a portion of the initial extension with
that computed for the reduced AF.

3 A thorough experimental analysis showing the effectiveness of our
approach for all the four semantics

Our technique outperforms the computation from scratch of the best solvers
by two orders of magnitude

Introduction Incremental Computation Experiments Conclusions and future work

Outline

1 Introduction
Motivation
Contributions

2 Incremental Computation
Influenced Arguments
Reduced Argumentation Framework
Incremental Algorithm

3 Experiments

4 Conclusions and future work
References

Introduction Incremental Computation Experiments Conclusions and future work

Influenced Arguments

Overview of the approach

Given an initial AF A0, an extension E0, and an update u = ±(a,b)

Three main steps/modules:
1) Identify a sub-AF Ad = 〈Ad ,Σd 〉,

called reduced AF (R-AF) on the
basis of the updates in U and
additional information provided by
the initial extension E0

2) Compute an S-extension Ed of
the reduced AF Ad by using an
external (non-incremental) solver

3) Merge Ed with the portion
(E0 \ Ad) of the initial extension
that does not change

	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
							
	
	
	
	
	
	
	
	
	

Merger	R-AF	Builder	CoQuiAAS	

SOLVERS	 ERASE	

INPUT	

Meta	
Solver	

OUTPUT	R-AF	!" 		 #" 	

#$	

#	

!$	 %	
Cegartix	

b c

d e f

g h

a b c

d e f

g h

a

b c

d e f

g h

a

c

f

+(c, f)

e f

e f

Architecture of ERASE, our system for
Efficiently Recomputing Argumentation
SEmantics.

Introduction Incremental Computation Experiments Conclusions and future work

Influenced Arguments

Irrelevant updates (1/2)

Updates preserving a given initial extension/labelling
Cases for which E0 is still an extension of the updated AF after a positive
update

update L0(b)
+(a, b) IN UN OUT

L0(a)
IN co, pr, st, gr
UN co, gr co, pr, gr

OUT co, pr, st co, gr co, pr, st, gr

Example (For the update +(c, f) the initial preferred extension E0 = {b, f ,g} is
preserved, as L0(c) = OUT and L0(f) = IN)

initial labelling: b c

d e f

g h

a updated labelling: b c

d e f

g h

a

+(c, f)

Introduction Incremental Computation Experiments Conclusions and future work

Influenced Arguments

Irrelevant updates (2/2)

Similar result for negative updates
Cases for which E0 is still an extension of the updated AF after a negative
update

update L0(b)
−(a, b) IN UN OUT

L0(a)

IN NA NA
UN NA co, pr, gr

OUT co, pr, st, gr co, pr, gr co, pr, st, gr

In these cases we do not need to recompute the semantics of the
updated AF: just return the initial extension

Introduction Incremental Computation Experiments Conclusions and future work

Influenced Arguments

Influenced set: Intuition

I(u,A0,E0)) denotes the influenced set of u = ±(a,b) w.r.t. A0 and E0

1) I(u,A0,E0) = ∅ if u is irrelevant w.r.t. E0 and the considered semantics.

2) The status of an argument can change only if it is reachable from b:
I(u,A0,E0) ⊆ ReachA(b)

3) If argument z is not reachable from b and z ∈ E0, then also the status of
the arguments attacked by z cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)

b c

d e f

g h

a

+(c, f)

Update +(c, f) is irrelevant w.r.t. the preferred
extension E0 = {b, f ,g}

⇒ I(+(c, f),A0, {b, f ,g}) = ∅

Introduction Incremental Computation Experiments Conclusions and future work

Influenced Arguments

Influenced set: Intuition

I(u,A0,E0)) denotes the influenced set of u = ±(a,b) w.r.t. A0 and E0

1) I(u,A0,E0) = ∅ if u is irrelevant w.r.t. E0 and the considered semantics.

2) The status of an argument can change only if it is reachable from b:
I(u,A0,E0) ⊆ ReachA(b)

3) If argument z is not reachable from b and z ∈ E0, then also the status of
the arguments attacked by z cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)

b c

d e f

g h

a

+(c, f)
I(+(c, f),A0,E0) ⊆ ReachA(f) = {e,d ,a,b, c}

⇒ g,h 6∈ I(+(c, f),A0,E0)

Introduction Incremental Computation Experiments Conclusions and future work

Influenced Arguments

Influenced set: Intuition

I(u,A0,E0)) denotes the influenced set of u = ±(a,b) w.r.t. A0 and E0

1) I(u,A0,E0) = ∅ if u is irrelevant w.r.t. E0 and the considered semantics.

2) The status of an argument can change only if it is reachable from b:
I(u,A0,E0) ⊆ ReachA(b)

3) If argument z is not reachable from b and z ∈ E0, then also the status of
the arguments attacked by z cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)

b c

d e f

g h

a
d 6∈ I(+(d , f),A0,E0) since it is attacked by g ∈ E0
and g is not reachable from f .

Thus the arguments that can be reached only
using d cannot belong to I(+(c, f),A0,E0).

⇒ The influenced set is I(+(c, f),A0,E0) = {f ,e}

Introduction Incremental Computation Experiments Conclusions and future work

Influenced Arguments

Influenced set: Definition

I(±(a,b),A0,E0) is the set of arguments that can be reached from b
without using any intermediate argument y whose status is known to be
OUT because it is determined by an argument z ∈ E0 which is not
reachable from b

Definition (Influenced set)

Let A = 〈A,Σ〉 be an AF, u = ±(a,b) an update, E an extension of A under a
given semantics S, and let

I0(u,A,E)=


∅ if u is irrelevant w.r.t. E and S or
∃(z,b) ∈ Σ s.t . z ∈ E ∧ z 6∈ ReachA(b);

{b} otherwise;

Ii+1(u,A,E) = Ii (u,A,E) ∪ {y | ∃(x , y) ∈ Σ s.t . x ∈ Ii (u,A,E) ∧
6 ∃(z, y) ∈ Σ s.t . z ∈ E ∧ z 6∈ ReachA(b)}.

The influenced set of u w.r.t. A and E is I(u,A,E) = In(u,A,E) such that
In(u,A,E) = In+1(u,A,E). 2

Introduction Incremental Computation Experiments Conclusions and future work

Reduced Argumentation Framework

Reduced AF

Given an AF A0, an extension E0, and an update u = ±(a,b), an
extension for the updated AF is recomputed for a small part of the
updated AF, called reduced AF and denoted R(u,A0,E0)
R(u,A0,E0) consists of the subgraph of u(A0) induced by I(u,A0,E0)
plus additional nodes/edges representing the “external context”:

1) if there is in u(A0) an edge from a node a 6∈ I(u,A0,E0) to a node
b ∈ I(u,A0,E0), we add edge (a, b) if the status of a is IN,

2) if there is in u(A0) an edge from a node e 6∈ I(u,A0,E0) to a node
c ∈ I(u,A0,E0) such that e in UN, we add edge (c, c) to Rgr(u,A0,E0)

Example (Reduced AF)
A0 and E0 u = +(c, f) Sub-AF induced Reduced AF

by I(u,A0,E0)
b c

d e f

g h

a

+(c, f)

c

f

Introduction Incremental Computation Experiments Conclusions and future work

Reduced Argumentation Framework

Reduced AF

Given an AF A0, an extension E0, and an update u = ±(a,b), an
extension for the updated AF is recomputed for a small part of the
updated AF, called reduced AF and denoted R(u,A0,E0)
R(u,A0,E0) consists of the subgraph of u(A0) induced by I(u,A0,E0)
plus additional nodes/edges representing the “external context”:

1) if there is in u(A0) an edge from a node a 6∈ I(u,A0,E0) to a node
b ∈ I(u,A0,E0), we add edge (a, b) if the status of a is IN,

2) if there is in u(A0) an edge from a node e 6∈ I(u,A0,E0) to a node
c ∈ I(u,A0,E0) such that e in UN, we add edge (c, c) to Rgr(u,A0,E0)

Example (Reduced AF)
A0 and E0 u = +(c, f) Sub-AF induced Reduced AF

by I(u,A0,E0)
b c

d e f

g h

a

+(c, f)

c

f e f

Introduction Incremental Computation Experiments Conclusions and future work

Reduced Argumentation Framework

Reduced AF

Given an AF A0, an extension E0, and an update u = ±(a,b), an
extension for the updated AF is recomputed for a small part of the
updated AF, called reduced AF and denoted R(u,A0,E0)
R(u,A0,E0) consists of the subgraph of u(A0) induced by I(u,A0,E0)
plus additional nodes/edges representing the “external context”:

1) if there is in u(A0) an edge from a node a 6∈ I(u,A0,E0) to a node
b ∈ I(u,A0,E0), we add edge (a, b) if the status of a is IN,

2) if there is in u(A0) an edge from a node e 6∈ I(u,A0,E0) to a node
c ∈ I(u,A0,E0) such that e in UN, we add edge (c, c) to Rgr(u,A0,E0)

Example (Reduced AF)
A0 and E0 u = +(c, f) Sub-AF induced Reduced AF

by I(u,A0,E0)
b c

d e f

g h

a

+(c, f)

c

f e f e f

Introduction Incremental Computation Experiments Conclusions and future work

Incremental Algorithm

Using extensions of the reduced AF
Theorem (Merging extensions)

Let A0 be an AF, and A = u(A0) be the AF resulting from performing update
u = ±(a,b) on A0. Let E0 ∈ ES(A0) be an extension for A0 under a semantics
S ∈{co, pr, st, gr}. Then, if ES(R(u,A0,E0)) is not empty, then there is an
extension E ∈ ES(A) for the updated AF A such that
E = (E0 \ I(u,A0,E0)) ∪ Ed where
Ed is an S-extension for reduced AF R(u,A0,E0).

Example (Merging an initial extension with that of the reduced AF)
E0 ∈ Epr(A0) Ed ∈ Epr(R(u,A0,E0)) E ∈ Epr(u(A0))

b c

d e f

g h

a

e f

b c

d e f

g h

a

Introduction Incremental Computation Experiments Conclusions and future work

Incremental Algorithm

Incremental Algorithm
Algorithm Incr-Alg(A0,u,S,E0, SolverS)
Input: AF A0 = 〈A0,Σ0〉, update u = ±(a, b),

semantics S ∈{co, pr, st, gr}, extension E0 ∈ ES(A0),
function SolverS (A) returning an S-extension for AF A if it exists, ⊥ otherwise;

Output: An S-extension E ∈ ES(u(A0)) if it exists, ⊥ otherwise;
1: S = I(u,A0,E0); // Compute the influenced set
2: if (S = ∅) then
3: return E0; // If the influenced set is empty, return the initial extension E0
4: Ad = R(u,A0,E0); // Otherwise, compute the reduced AF
5: Let Ed = SolverS (Ad); // Compute an extension for the reduced AF using an external solver
6: if (Ed 6= ⊥) then
7: return E = (E0 \ S) ∪ Ed ; // Merge E0 with extension Ed of the reduced AF
8: else
9: return SolverS (u(A0)); // If an extension for the reduced AF doesn’t exist (it can happen

for stable semantics only), compute an extension from scratch

Theorem (The algorithm is sound and complete)

Let A0 be an AF, u = ±(a,b), and E0 ∈ ES(A0) an extension for A0 under
S ∈{co, pr, st, gr}. If SolverS is sound and complete then the algorithm
computes E ∈ ES(u(A0)) if ES(u(A0)) 6= ∅, otherwise it returns ⊥.

Introduction Incremental Computation Experiments Conclusions and future work

Outline

1 Introduction
Motivation
Contributions

2 Incremental Computation
Influenced Arguments
Reduced Argumentation Framework
Incremental Algorithm

3 Experiments

4 Conclusions and future work
References

Introduction Incremental Computation Experiments Conclusions and future work

Experimental validation

Datasets and algorithms

Datasets: ICCMA’15 benchmarks
TestSetGr consists of AFs with a very large grounded extension and
many arguments in general
TestSetSt consists of AFs with many complete/preferred/stable
extensions
TestSetSCC consists of AFs with a rich structure of strongly connected
components
for each of these test sets, three classes of AFs of different sizes: Small,
Medium, and Large.

Methodology: the average run time of our algorithm to compute an
S-extension was compared with the average run time of the best ICCMA
solver to compute an S-extension for u(A0) from scratch

As SolverS for computing an S-extension for the reduced AF we used the
solver that won the ICCMA’15 competition for the task S-SE
CoQuiAAS [Lagniez et al. 2015] for S=co and S=gr

Cegartix [Dvorák et al. 2014] for S=pr

ASPARTIX-D [Gaggl and Manthey 2015] for S=st.

Introduction Incremental Computation Experiments Conclusions and future work

Experimental validation

Experimental Results

14843 86636 172890
10−1

100

101

102

103

N. of Attacks

S = gr, TestSetGrSmall

CoQuiAAS 1 update

Incr-Alg 1 update

Incr-Alg 0.2% updates

2184 3337 4164

10−1

100

101

102

103

104

105

106

107

N. of Attacks

S = pr, TestSetStSmall

Cegartix 1 update

Incr-Alg 1 update

Incr-Alg 2% updates

2184 3337 4164

10−2

10−1

100

101

102

103

N. of Attacks

S = st, TestSetStSmall

ASPARTIX-D 1 update

Incr-Alg 1 update

Incr-Alg 2% updates

236573 600780 897131

100

101

102

103

104

N. of Attacks

S = gr, TestSetGrLarge

CoQuiAAS 1 update

Incr-Alg 1 update

Incr-Alg 0.1% updates

3747 3799 3840

100

101

102

103

104

105

106

N. of Attacks

S = pr, TestSetStMedium

Cegartix 1 update

Incr-Alg 1 update

Incr-Alg 1% updates

5395 5592 5756
101

102

103

104

N. of Attacks

S = st, TestSetStMedium

ASPARTIX-D 1 update

Incr-Alg 1 update

Incr-Alg 1% updates

Introduction Incremental Computation Experiments Conclusions and future work

Experimental validation

Results

The size of the reduced AF w.r.t. that of the input AF is about 9% for
single updates and 52% for multiple updates with about 1% of the attacks
updated.

Two orders of magnitude faster than the best ICCMA solvers for single
updates on average.

The harder the computation from scratch, the larger the improvements

Faster even when performing updates simultaneously (green lines) —
include the time needed to reduce the application of multiple updates to
single attack update

For sets of updates regarding a relevant portion of the input AF,
recomputing extensions after applying them simultaneously is faster than
recomputing extensions after applying them sequentially (dashed orange
lines)

Introduction Incremental Computation Experiments Conclusions and future work

Outline

1 Introduction
Motivation
Contributions

2 Incremental Computation
Influenced Arguments
Reduced Argumentation Framework
Incremental Algorithm

3 Experiments

4 Conclusions and future work
References

Introduction Incremental Computation Experiments Conclusions and future work

Conclusions and future work

Conclusions and Future Work

Our technique enables any non-incremental algorithm to be used as an
incremental one for computing some extension of dynamic AFs

The technique can be used for general (multiple) updates

We identified a tighter portion of the updated AF to be examined for
recomputing the semantics

Our algorithm exploits the initial extension of an AF for computing an
extension of the updated AF

The experiments showed that the incremental computation outperforms
that of the base (non-incremental) computation

Future work #1: applying the technique to other argumentation semantics
(good results for ideal semantics, using ConArg [Bistarelli et al. 2016])

Future work #2: enumerating all the extensions and deciding
credulous/sceptical acceptance

Introduction Incremental Computation Experiments Conclusions and future work

Thank you!

... questions?

see you at the poster!

Efficient Computation of Extensions for Dynamic Abstract
Argumentation Frameworks: An Incremental Approach

GIANVINCENZO ALFANO, SERGIO GRECO, FRANCESCO PARISI

Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria, ITALY
{g.alfano, greco, fparisi}@dimes.unical.it

ABSTRACT ARGUMENTATION
An (abstract) argumentation framework (AF) is a
pair 〈A,Σ〉, where A is a set of arguments and
Σ ⊆ A×A is a set of attacks.
– It allows representing dialogues, making de-

cisions, and handling inconsistency;

– An AF can be viewed as a direct graph,
whose nodes are arguments and whose
edges are attacks.

SEMANTICS FOR AFS
An argumentation semantics specifies the cri-
teria for identifying “reasonable” sets of argu-
ments, called extensions.
A complete extension (co) is an admissible set
that contains all the arguments that it defends.
A complete extension S is said to be:
– preferred (pr) iff it is maximal (w.r.t. ⊆);

– stable (st) iff it attacks all the arguments
in A \ S;

– grounded (gr) iff it is minimal (w.r.t. ⊆).

UPDATES
An update u for an AF A0 consists in modify-
ing A0 into an AF A by adding or removing
arguments or attacks.
– +(a, b) (resp. −(a, b)) denotes the addition

(resp. deletion) of an attack (a, b);

– u(A0) means applying u = ±(a, b) to A0;

– multiple (attacks) updates can be simulated
by a single attack update.

DYNAMIC ARGUMENTATION FRAMEWORKS
– An argumentation framework models a temporary situation as new arguments and attacks

can be added/removed to take into account new available knowledge.

– For each semantics S, the sets of extensions change if we update an initial AF A0 by
adding/removing arguments/attacks. For instance, Egr(A0) = {{f, g}} becomes Egr(A)) =
{{g}} for the updated AF A = +(c, f)(A0) obtained from A0 by adding attack (c, f).

AF A0

b c

d e f

g h

a S ES(A0) ES(A))

co {{f, g}, {a, f, g}, {b, f, g}} {{g}, {a, g}, {b, f, g}}
pr {{a, f, g}, {b, f, g}} {{a, g}, {b, f, g}}
st {{b, f, g}} {{b, f, g} }
gr {{f,g}} {{g}}

A = +(c, f)(A0)

b c

d e f

g h

a

– Should we recompute the semantics of updated AFs from scratch?

CONTRIBUTIONS

– We show that an extension of the updated AF can be efficiently computed by looking only at
a small part of the AF, called the Reduced AF, which is “influenced by” the update operation.

For the example above, the reduced AF is: e f

– We present an incremental technique for recomputing an
extension of an updated AF for the grounded, complete, pre-
ferred, and stable semantics.
It consists of the following three main steps:

1) Identify a sub-AF Ad = 〈Ad,Σd〉, called reduced AF (R-
AF) on the basis of the updates in U and additional in-
formation provided by the initial extension E0.

2) Give R-AF Ad as input to an external (non-incremental)
solver to compute an S-extension Ed of the reduced AF.

3) Merge Ed with the portion (E0 \Ad) of the initial exten-
sion that does not change.

	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
							
	
	
	
	
	
	
	
	
	

Merger	R-AF	Builder	CoQuiAAS	

SOLVERS	 ERASE	

INPUT	

Meta	
Solver	

OUTPUT	R-AF	!" 		 #" 	

#$	

#	

!$	 %	
Cegartix	

b c

d e f

g h

a b c

d e f

g h

a

b c

d e f

g h

a

c

f

+(c, f)

e f

e f

Architecture of ERASE, our sys-
tem for Efficiently Recomputing
Argumentation SEmantics.

– A thorough experimental analysis showing the effectiveness of our approach.

EXPERIMENTS

For each semantics S ∈ {co,pr,st,gr}, we compared the performance of our
technique with that of the solver that won the last ICCMA competition for the
computational task S-SE: Given an AF, determine some S-extension.
Datasets: ICCMA’15 benchmarks.
Results: The figure reports the average run times (ms) of ICCMA solvers and our
algorithm (Incr-Alg) for different semantics S over different datasets versus the
number of attacks.
– Our algorithm significantly outperforms the competitors that compute the ex-

tensions from scratch for single updates. In fact, on average, our technique
is two orders of magnitude faster than them. Moreover, the harder the com-
putation from scratch is, the larger the improvements are: the improvements
obtained for S ∈ {st, pr} go beyond those for S ∈ {gr, co}.

– Our algorithm remains faster than the competitors even when recomputing an
extension after performing a quite large number of updates simultaneously.
In particular, in the graphs we show the threshold percentages of updated at-
tacks (green lines) up to which the incremental approach for multiple updates
is faster than the computation from scratch.

– For sets of updates regarding a relevant portion of the input AF (on average at
least 1% of the attacks for S ∈ {st, pr} and 0, 1% of the attacks for S ∈ {gr,
co}) recomputing extensions after applying them simultaneously is faster
than recomputing extensions after applying them sequentially. Indeed, the
green lines in the graphs are mostly below the (dashed) orange lines repre-
senting the run times of recomputing extensions after applying the updates
sequentially.

The experiments also showed that, on average, the size of the reduced AF w.r.t.
that of the input AF is about 9% for single updates and 52% for multiple updates
with about 1% of the attacks updated.

14843 86636 172890
10−1

100

101

102

103

N. of Attacks

S = gr, TestSetGrSmall

CoQuiAAS 1 update

Incr-Alg 1 update

Incr-Alg 0.2% updates

236573 600780 897131

100

101

102

103

104

N. of Attacks

S = gr, TestSetGrLarge

CoQuiAAS 1 update

Incr-Alg 1 update

Incr-Alg 0.1% updates

2184 3337 4164

10−1

100

101

102

103

104

105

106

107

N. of Attacks

S = pr, TestSetStSmall

Cegartix 1 update

Incr-Alg 1 update

Incr-Alg 2% updates

2184 3337 4164

10−2

10−1

100

101

102

103

N. of Attacks

S = st, TestSetStSmall

ASPARTIX-D 1 update

Incr-Alg 1 update

Incr-Alg 2% updates

3747 3799 3840

100

101

102

103

104

105

106

N. of Attacks

S = pr, TestSetStMedium

Cegartix 1 update

Incr-Alg 1 update

Incr-Alg 1% updates

5395 5592 5756
101

102

103

104

N. of Attacks

S = st, TestSetStMedium

ASPARTIX-D 1 update

Incr-Alg 1 update

Incr-Alg 1% updates

Introduction Incremental Computation Experiments Conclusions and future work

References

Selected References

Phan Minh Dung.

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.
Artif. Intell., 77(2):321–358, 1995.

Bei Shui Liao, Li Jin, Robert C. Koons.

Dynamics of argumentation systems: A division-based method.
Artif. Intell., 175(11), 1790–1814, (2011).

Baroni, P., Giacomin, M., Liao, B.

On topology-related properties of abstract argumentation semantics. A correction and extension to dynamics of argumentation systems: A
division-based method.
Artificial Intelligence 212, 104–115 (2014)

Jean-Marie Lagniez, Emmanuel Lonca, and Jean-Guy Mailly.

CoQuiAAS: A constraint-based quick abstract argumentation solver.
In ICTAI, pages 928–935, 2015.

Wolfgang Dvorák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran.

Complexity-sensitive decision procedures for abstract argumentation.
AI, 206:53–78, 2014.

Sarah Alice Gaggl and Norbert Manthey.

ASPARTIX-D ready for the competition, 2015.

Stefano Bistarelli, Fabio Rossi, and Francesco Santini.

ConArg: A tool for classical and weighted argumentation.
In COMMA, 2016.

Sergio Greco, Francesco Parisi.

Efficient Computation of Deterministic Extensions for Dynamic Abstract Argumentation Frameworks.
In ECAI, 2016.

	Introduction
	Motivation
	Contributions

	Incremental Computation
	Influenced Arguments
	Reduced Argumentation Framework
	Incremental Algorithm

	Experiments
	Conclusions and future work
	References

