Introduction	Background	Frameworks	Computational Complexity	Conclusions and Future Work

Preferences and Constraints in Abstract Argumentation

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, Irina Trubitsyna

Department of Informatics, Modeling, Electronics and System Engineering (DIMES) University of Calabria Italy {g.alfano, greco, fparisi, i.trubitsyna}@dimes.unical.it

32nd International Joint Conference on Artificial Intelligence 19th-25th August 2023

Macao, S.A.R.

Introduction	Background 0000	Frameworks 000000000	Computational Complexity	Conclusions and Future Work
Motivation				

Argumentation and Domain Knowledge

- A general way for representing arguments and relationships (rebuttals) between them
- It allows representing dialogues, making decisions, and handling inconsistency and uncertainty

Abstract Argumentation Framework (AF) [Dung1995]: arguments are abstract entities (no attention is paid to their internal structure) that may attack and/or be attacked by other arguments

Example (AF describing what a person is going to have for lunch)

(S)he will have either fish or meat, and will drink either white wine or red wine. However, if (s)he will have meat, then (s)he will not drink white wine. Every solution (extension according to a semantics) represents a menu.

• However, in some cases it is difficult to accurately model domain knowledge in a natural and easy-to-understand way

Introduction	Background	Frameworks 000000000	Computational Complexity	Conclusions and Future Work
Motivation				

Argumentation and Domain Knowledge

- A general way for representing arguments and relationships (rebuttals) between them
- It allows representing dialogues, making decisions, and handling inconsistency and uncertainty

Abstract Argumentation Framework (AF) [Dung1995]: arguments are abstract entities (no attention is paid to their internal structure) that may attack and/or be attacked by other arguments

Example (AF describing what a person is going to have for lunch)

(S)he will have either fish or meat, and will drink either white wine or red wine. However, if (s)he will have meat, then (s)he will not drink white wine. Every solution (extension according to a semantics) represents a menu.

• However, in some cases it is difficult to accurately model domain knowledge in a natural and easy-to-understand way

Introduction	Background	Frameworks 000000000	Computational Complexity	Conclusions and Future Work
Motivation				

Argumentation and Domain Knowledge

- A general way for representing arguments and relationships (rebuttals) between them
- It allows representing dialogues, making decisions, and handling inconsistency and uncertainty

Abstract Argumentation Framework (AF) [Dung1995]: arguments are abstract entities (no attention is paid to their internal structure) that may attack and/or be attacked by other arguments

Example (AF describing what a person is going to have for lunch)

(S)he will have either fish or meat, and will drink either white wine or red wine. However, if (s)he will have meat, then (s)he will not drink white wine. Every solution (extension according to a semantics) represents a menu.

• However, in some cases it is difficult to accurately model domain knowledge in a natural and easy-to-understand way

Introduction	Background	Frameworks 000000000	Computational Complexity	Conclusions and Future Work
Contribution				

Preferences and Constraints in AF

- Several proposals have been made to extend AF with the aim of better modeling the knowledge to be represented, e.g. Preference-based AF (PAF) and Constrained AF (CAF)
- We introduce three new frameworks generalizing PAF and CAF:
- 1) extended Preference-based AF (ePAF), an extension of (P)AF where preferences are 3-valued (e.g. $red^t \succ red^u$)
- 2) *extended Preference-based Constrained AF* (ePCAF), combining the features of CAF and ePAF
- 3) *multi-agent* ePCAF (mPCAF), dealing with multiple agents sharing the same AF and having different constraints and preferences
 - Complexity of verification, credulous/skeptical acceptance problems

		Ver_{σ}						Ver_{σ_k}		
	NP-c		NP-c	co <i>NP-</i> c	co <i>NP-</i> c					
	NP-c		NP-c	co <i>NP-</i> c	co <i>NP-</i> c					
	NP-c									

Introduction	Background	Frameworks 000000000	Computational Complexity	Conclusions and Future Work
Contribution				

Preferences and Constraints in AF

- Several proposals have been made to extend AF with the aim of better modeling the knowledge to be represented, e.g. Preference-based AF (PAF) and Constrained AF (CAF)
- We introduce three new frameworks generalizing PAF and CAF:
- 1) extended Preference-based AF (ePAF), an extension of (P)AF where preferences are 3-valued (e.g. $red^t \succ red^u$)
- 2) *extended Preference-based Constrained AF* (ePCAF), combining the features of CAF and ePAF
- 3) *multi-agent* ePCAF (mPCAF), dealing with multiple agents sharing the same AF and having different constraints and preferences
- Complexity of verification, credulous/skeptical acceptance problems

	AF CAF		PAF		ePAF / ePCAF / mPCAF							
σ	Ver_{σ}	$C\!A_{\sigma}$	SA_{σ}	Ver_{σ}	$C\!A_{\sigma}$	SA_{σ}	Ver_{σ_k}	CA_{σ_k}	SA_{σ_k}	Ver_{σ_k}	CA_{σ_k}	SA_{σ_k}
со	Р	NP-c	Р	Р	NP-c	co <i>NP-</i> c	co <i>N</i> P-c	Σ2 ^P -c	Р	co <i>NP-</i> c	Σ ₂ ^P -c	П ₂ ^P -с
st	Р	NP-c	co <i>NP-</i> c	Р	NP-c	co <i>NP-</i> c	co <i>N</i> P-c	Σ ₂ ^P -c	П ₂ ^P -С	co <i>NP-</i> c	Σ ₂ ^P -c	П2 ^Р -С
pr	co <i>NP</i> -c	NP-c	П ₂ ^P -с	co <i>NP</i> -c	Σ ₂ ^P -c	П ^Р -с	П ₂ ^P -с	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P	П2 ^P -с	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P
SS	co <i>N</i> P-c	Σ ₂ ^P -c	П ₂ ^P -с	co <i>NP-</i> c	Σ ₂ ^P -c	П ₂ ^P -с	П ₂ ^P -с	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P	П ₂ ^P -с	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P

Introduction OO	Background ●○○○	Frameworks	Computational Complexity	Conclusions and Future Work
Outline				

- Motivation
- Contribution
- Contribution

2

- Background
 - Argumentation Semantics
 - AF with Preferences
 - AF with Constraints

Frameworks

- extended Preference-based AF
- extended Preference-based Constrained Argumentation Framework
- Multi-agent ePCAF
- 4 Computational Complexity
 - Complexity of Verification and Credulous/Skeptical Acceptance
 - Conclusions and Future Work

Introduction	Background	Frameworks	Computational Complexity	Conclusions and Future Work				
	0000							
Argumentation Semantics								

Argumentation Semantics and Decision Problems

 Several semantics have been proposed to identify "reasonable" sets of arguments (called *extensions*)

(fish meat white red)								
Semantic σ	Set of σ -extensions of AF Λ							
complete (co)	$\{E_0 = \emptyset, E_1 = \{\texttt{fish}, \texttt{white}\},\$							
	$E_2 = \{ \text{fish}, \text{red} \}, E_3 = \{ \text{meat}, \text{red} \},$							
	$\textit{E}_{4} = \{\texttt{fish}\}, \textit{E}_{5} = \{\texttt{red}\}\}$							
preferred (pr)	$\{E_1, E_2, E_3\}$							
semi-stable (sst)	$\{E_1, E_2, E_3\}$							
stable (st)	$\{E_1, E_2, E_3\}$							
grounded (gr)	$\{E_0\}$							

- Verification problem: Ver_{σ} is the problem of checking whether a given set of arguments is a σ -extension
- Credulous (resp. Skeptical) acceptance problem: for a goal argument g, CA_{σ} (resp. SA_{σ}) consists in deciding whether g belongs to at least one (resp. every) σ -extension

Introduction	Background	Frameworks	Computational Complexity	Conclusions and Future Work				
	0000							
Argumentation Semantics								

Argumentation Semantics and Decision Problems

 Several semantics have been proposed to identify "reasonable" sets of arguments (called *extensions*)

(fish meat white red			
Semantic σ	Set of σ -extensions of AF Λ		
complete (co)	$\{E_0 = \emptyset, E_1 = \{\texttt{fish}, \texttt{white}\},\$		
	$E_2 = \{ \text{fish}, \text{red} \}, E_3 = \{ \text{meat}, \text{red} \},$		
	$\textit{E}_{4} = \{\texttt{fish}\}, \textit{E}_{5} = \{\texttt{red}\}\}$		
preferred (pr)	$\{E_1, E_2, E_3\}$		
semi-stable (sst)	$\{E_1, E_2, E_3\}$		
stable (st)	$\{E_1, E_2, E_3\}$		
grounded (gr)	$\{E_0\}$		

- Verification problem: Ver_σ is the problem of checking whether a given set of arguments is a σ-extension
- Credulous (resp. Skeptical) acceptance problem: for a goal argument g, CA_{σ} (resp. SA_{σ}) consists in deciding whether g belongs to at least one (resp. every) σ -extension

Introduction	Background	Frameworks	Computational Complexity	Conclusions and Future Work
	0000			
AF with Preferences				

Preference-based AF

- A Preference-based AF (PAF) is an AF (A, R) augmented with a preference relation >, that is a strict partial order over the set of arguments, e.g. meat > fish
- Different proposals to define the best extensions, we focus on KVT:
 E ⊒ F if ∀a, b ∈ A the relation a > b with a ∈ F \ E and b ∈ E \ F does not hold (E ⊐ F, if E ⊒ F and F ⊉ E)
- Given a PAF Δ = ⟨A, R, >⟩, the best σ-extensions of Δ are the extensions E ∈ σ(⟨A, R⟩) such that there is no F ∈ σ(⟨A, R⟩) with F □ E

Example (PAF built from our example AF by adding preference ${\tt meat} > {\tt fish})$

preferred extensions: { $E_1 = \{ \text{fish, white} \}$, $E_2 = \{ \text{fish, red} \}$, $E_3 = \{ \text{meat, red} \}$ } $E_3 \supseteq E_1$ and $E_3 \supseteq E_2$

*E*₃ is the only best preferred extension (under KTV criterion)

Introduction	Background ○○●○	Frameworks 00000000	Computational Complexity	Conclusions and Future Work
AF with Preferences				

Preference-based AF

- A Preference-based AF (PAF) is an AF (A, R) augmented with a preference relation >, that is a strict partial order over the set of arguments, e.g. meat > fish
- Different proposals to define the best extensions, we focus on KVT:
 E ⊒ *F* if ∀*a*, *b* ∈ A the relation *a* > *b* with *a* ∈ *F* \ *E* and *b* ∈ *E* \ *F* does not hold (*E* ⊐ *F*, if *E* ⊒ *F* and *F* ⊉ *E*)
- Given a PAF Δ = ⟨A, R, >⟩, the best σ-extensions of Δ are the extensions E ∈ σ(⟨A, R⟩) such that there is no F ∈ σ(⟨A, R⟩) with F □ E

Example (PAF built from our example AF by adding preference meat > fish)

preferred extensions: ${E_1 = \{\text{fish}, \text{white}\}}, E_2 = \{\text{fish}, \text{red}\}, E_3 = \{\text{meat}, \text{red}\}\}$ $E_3 \supseteq E_1 \text{ and } E_3 \supseteq E_2$

 E_3 is the only best preferred extension (under KTV criterion)

Introduction	Background ○○○●	Frameworks 000000000	Computational Complexity	Conclusions and Future Work
AF with Constraints				

- A Constrained AF (CAF) is an AF (A, R) augmented with a set C of integrity constraints, that is a set of propositional formulae built from L_A
- *L_A* denotes the propositional language defined from a set of arguments
 A and the connectives ∧, ∨, ⇒, ¬
- A constraint is a formula of one of the following forms: (i) φ ⇒ v, or
 (ii) v ⇒ φ, where φ is a propositional formula in L_A and v ∈ {f, u, t}
- Constraints are interpreted under Lukasiewicz's logic
- Extensions (of the AF) not satisfying the constraints are filtered out
- Given a CAF $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$, a set $S \subseteq \mathcal{A}$ is a σ -extension for $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$ if S is a σ -extension for $\langle \mathcal{A}, \mathcal{R} \rangle$ and $S \models \mathcal{C}$

Example (CAF built from our example AF by adding $extsf{meat} \Rightarrow extsf{f}(extsf{alse}))$

Constrained AF

 $\begin{array}{l} \mbox{preferred extensions: } \{E_1 = \{\mbox{fish, white}\}, \\ E_2 = \{\mbox{fish, red}\}, E_3 = \{\mbox{meat, red}\} \} \\ E_3 \not\models \{\mbox{meat} \Rightarrow \mbox{f}\} \end{array}$

 E_1 and E_2 are the only best preferred extensions

Introduction	Background ○○○●	Frameworks 000000000	Computational Complexity	Conclusions and Future Work
AF with Constraints				

- A Constrained AF (CAF) is an AF (A, R) augmented with a set C of integrity constraints, that is a set of propositional formulae built from L_A
- *L_A* denotes the propositional language defined from a set of arguments
 A and the connectives ∧, ∨, ⇒, ¬
- A constraint is a formula of one of the following forms: (i) φ ⇒ v, or
 (ii) v ⇒ φ, where φ is a propositional formula in L_A and v ∈ {f, u, t}
- Constraints are interpreted under Lukasiewicz's logic
- Extensions (of the AF) not satisfying the constraints are filtered out
- Given a CAF $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$, a set $S \subseteq \mathcal{A}$ is a σ -extension for $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$ if S is a σ -extension for $\langle \mathcal{A}, \mathcal{R} \rangle$ and $S \models \mathcal{C}$

Example (CAF built from our example AF by adding $meat \Rightarrow f(alse)$)

Constrained AF

preferred extensions:
$$\{E_1 = \{\text{fish, white}\}, E_2 = \{\text{fish, red}\}, E_3 = \{\text{meat, red}\}\}$$

 $E_3 \not\models \{\text{meat} \Rightarrow \mathbf{f}\}$

 E_1 and E_2 are the only best preferred extensions

Introduction	Background	Frameworks	Computational Complexity	Conclusions and Future Work
Outline				

- Motivation
- Contribution

- Argumentation Semantics
- AF with Preferences
- AF with Constraints

Frameworks

- extended Preference-based AF
- extended Preference-based Constrained Argumentation Framework
- Multi-agent ePCAF

- Complexity of Verification and Credulous/Skeptical Acceptance

Introduction 00	Background	Frameworks	Computational Complexity	Conclusions and Future Work
extended Preference	e-based AF			
Outline	د			

- Motivation
- Contribution

- Argumentation Semantics
- AF with Preferences
- AF with Constraints

Frameworks

extended Preference-based AF

- extended Preference-based Constrained Argumentation Framework
- Multi-agent ePCAF

- Complexity of Verification and Credulous/Skeptical Acceptance

Introduction	Background 0000	Frameworks	Computational Complexity	Conclusions and Future Work
extended Preference	e-based AF			
	-			

- Most of AF semantics are 3-valued (arguments can be either *accepted*, *defeated*, or *undecided*)
- We introduce a form of preferences which are 3-valued
- The extended Preference-based AF (ePAF) is an extension of AF (and PAF under KTV criterion) where preferences are 3-valued

(Extended preferences)

ePAF Syntax

Let \mathcal{A} be a set of arguments, an (extended) preference relation, denoted as \succ , is a strict partial order (i.e. an irreflexive, asymmetric, and transitive relation) over $\mathcal{A}^{V} = \{a^{v} \mid a \in \mathcal{A} \land v \in \{\mathbf{f}, \mathbf{u}, \mathbf{t}\}\}$ of the form $a^{v_{1}} \succ b^{v_{2}}$.

An extended preference compares arguments' statuses in two extensions

Example

- red^t ≻ red^u means that we prefer menus containing red wine w.r.t. menus where red wine is undecided
- fish^t ≻ red^f states that we prefer menus containing fish w.r.t. menus where red is false (i.e. defeated)

Introduction 00	Background	Frameworks	Computational Complexity	Conclusions and Future Work
extended Preference	e-based AF			
ePAF S	Syntax			

- Most of AF semantics are 3-valued (arguments can be either *accepted*, *defeated*, or *undecided*)
- We introduce a form of preferences which are 3-valued
- The extended Preference-based AF (ePAF) is an extension of AF (and PAF under KTV criterion) where preferences are 3-valued

(Extended preferences)

Let \mathcal{A} be a set of arguments, an (extended) preference relation, denoted as \succ , is a strict partial order (i.e. an irreflexive, asymmetric, and transitive relation) over $\mathcal{A}^{V} = \{a^{v} \mid a \in \mathcal{A} \land v \in \{\mathbf{f}, \mathbf{u}, \mathbf{t}\}\}$ of the form $a^{v_{1}} \succ b^{v_{2}}$.

• An extended preference compares arguments' statuses in two extensions

Example

- red^t ≻ red^u means that we prefer menus containing red wine w.r.t. menus where red wine is undecided
- fish^t ≻ red^f states that we prefer menus containing fish w.r.t. menus where red is false (i.e. defeated)

Introduction	Background	Frameworks	Computational Complexity	Conclusions and Future Work
		00000000		
extended Preference-base	ed AF			

Semantics of ePAF

• An extended PAF (ePAF) is an AF $\langle {\cal A}, {\cal R} \rangle$ augmented with an extended preference relation \succ

(ePAF Semantics)

Given an ePAF $\Delta = \langle \mathcal{A}, \mathcal{R}, \succ \rangle$ and two distinct sets of arguments $E, F \subseteq \mathcal{A}$, we have that $E \sqsupseteq F$ if $\nexists a^{v_1} \succ b^{v_2}$ such that $a \in v_1(F) \setminus v_1(E)$, $b \in v_2(E) \setminus v_2(F)$ holds (where $v_1, v_2 \in \{\mathbf{f}, \mathbf{u}, \mathbf{t}\}$). Moreover, $E \sqsupset F$, if $E \sqsupseteq F$ and $F \gneqq E$.

• The best extensions are obtained as for PAF but using the above-defined criterion to compare extensions

Introduction	Background	Frameworks	Computational Complexity	Conclusions and Future Work
		000000000		
extended Preference	e-based Constrained Argun	nentation Framework		

Outline

- Motivation
- Contribution

- Argumentation Semantics
- AF with Preferences
- AF with Constraints

Frameworks

- extended Preference-based AF
- extended Preference-based Constrained Argumentation Framework
- Multi-agent ePCAF

- Complexity of Verification and Credulous/Skeptical Acceptance

 Introduction
 Background
 Frameworks
 Computational Complexity
 Conclusions and Future Work

 00
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Combining Preferences with Constraints

- We extend CAF with (extended) preferences to express several kinds of desiderata among extensions
- The resulting framework is called *extended Preference-based Constrained Argumentation Framework* (ePCAF)
- An ePCAF is a CAF $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$ augmented with an (extended) preference relation \succ

• The semantics of an ePCAF is given by the best extensions selected among those that satisfy the constraints

(Semantics)

Given an ePCAF $\Delta = \langle \mathcal{A}, \mathcal{R}, \mathcal{C}, \succ \rangle$, a σ -extension *E* for $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$ is a best σ -extension for Δ if there is no σ -extension *F* for $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$ such that $F \supseteq E$.

 Introduction
 Background
 Frameworks
 Computational Complexity
 Conclusions and Future Work

 00
 0000
 0000
 000
 000
 000
 000

 extended Preference-based Constrained Argumentation Framework
 Framework
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000<

Combining Preferences with Constraints

- We extend CAF with (extended) preferences to express several kinds of desiderata among extensions
- The resulting framework is called *extended Preference-based Constrained Argumentation Framework* (ePCAF)
- An ePCAF is a CAF $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$ augmented with an (extended) preference relation \succ
- The semantics of an ePCAF is given by the best extensions selected among those that satisfy the constraints

(Semantics)

Given an ePCAF $\Delta = \langle \mathcal{A}, \mathcal{R}, \mathcal{C}, \succ \rangle$, a σ -extension E for $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$ is a best σ -extension for Δ if there is no σ -extension F for $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$ such that $F \supseteq E$.

 Introduction
 Background
 Frameworks
 Computational Complexity
 Conclusions and Future Work

 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</

extended Preference-based Constrained Argumentation Framework

Combining Preferences with Constraints

 The semantics of an ePCAF is given by the best extensions selected among those that satisfy the constraints

Example

Consider the ePCAF $\Delta = \langle \mathcal{A}, \mathcal{R}, \mathcal{C}, \succ \rangle$ where:

- $\mathcal{C} = \{ \text{white} \Rightarrow \mathbf{f} \}$
- $\succ = \{ \texttt{fish}^t > \texttt{meat}^t \} \text{ and }$
- the set of the preferred extension of the underlying AF is $pr(\langle A, R \rangle) = \{E_1 = \{fish, white\}, E_2 = \{fish, red\}, E_3 = \{meat, red\}\}$
- $pr(\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle) = \{E_2, E_3\}$

As white must be false, there are only two preferred extensions satisfying the constraint: E_2 and E_3 . Then, the only best preferred extension is E_2

Introduction 00	Background 0000	Frameworks	Computational Complexity	Conclusions and Future Work
Multi-agent ePCAF				
Outline				

- Motivation
- Contribution

- Argumentation Semantics
- AF with Preferences
- AF with Constraints

Frameworks

- extended Preference-based AF
- extended Preference-based Constrained Argumentation Framework
- Multi-agent ePCAF

- Complexity of Verification and Credulous/Skeptical Acceptance

Introduction	Background	Frameworks	Computational Complexity	Conclusions and Future Work
Multi-agent ePCAF				

Dealing with Multiple Agents

- Multiple agents sharing the same AF and having different constraints and preferences (represented by different ePCAFs)
- A multi-agent ePCAF (mPCAF) is a set of ePCAFs $\{\langle \mathcal{A}, \mathcal{R}, \mathcal{C}_1, \succ_1 \rangle, \langle \mathcal{A}, \mathcal{R}, \mathcal{C}_2, \succ_2 \rangle, ..., \langle \mathcal{A}, \mathcal{R}, \mathcal{C}_n, \succ_n \rangle\}$, one for each agent
- Each agent *i* has ePCAF Δ_i = ⟨A, R, C_i, ≻_i⟩ with its set of best σ-extensions in σ(Δ_i)
- A set of arguments $S \subseteq A$ is said to be a *possible* (resp. *necessary*) best σ -extension of Δ iff $S \in \sigma(\Delta_i)$ for some (resp. every) $i \in [1, n]$
- Two variants of the verification problem for mPCAF: the *possible* (resp. *necessary*) *verification* problem, is the problem of deciding whether S is possible (resp. necessary) best *σ*-extension of Δ
- Two variants of the credulous (resp. skeptical) acceptance problem: a goal argument can be possibly/necessarily credulously (resp. skeptically) accepted

Introduction	Background	Frameworks	Computational Complexity	Conclusions and Future Work
Multi-agent ePCAF				

Dealing with Multiple Agents

- Multiple agents sharing the same AF and having different constraints and preferences (represented by different ePCAFs)
- A multi-agent ePCAF (mPCAF) is a set of ePCAFs $\{\langle \mathcal{A}, \mathcal{R}, \mathcal{C}_1, \succ_1 \rangle, \langle \mathcal{A}, \mathcal{R}, \mathcal{C}_2, \succ_2 \rangle, ..., \langle \mathcal{A}, \mathcal{R}, \mathcal{C}_n, \succ_n \rangle\}$, one for each agent
- Each agent *i* has ePCAF Δ_i = ⟨A, R, C_i, ≻_i⟩ with its set of best σ-extensions in σ(Δ_i)
- A set of arguments $S \subseteq A$ is said to be a *possible* (resp. *necessary*) best σ -extension of Δ iff $S \in \sigma(\Delta_i)$ for some (resp. every) $i \in [1, n]$
- Two variants of the verification problem for mPCAF: the *possible* (resp. *necessary*) *verification* problem, is the problem of deciding whether S is possible (resp. necessary) best *σ*-extension of Δ
- Two variants of the credulous (resp. skeptical) acceptance problem: a goal argument can be possibly/necessarily credulously (resp. skeptically) accepted

Introdu 00		Background 0000	Frameworks 000000000	Computational Complexity	Conclusions and Future Work
O	ıtline				
1	IntroductMotivaContri	ion ation bution			
2	BackgrouArgum	und rentation Sem	antics		

- AF with Preferences
- AF with Constraints

Frameworks

- extended Preference-based AF
- extended Preference-based Constrained Argumentation Framework
- Multi-agent ePCAF

Computational Complexity

Complexity of Verification and Credulous/Skeptical Acceptance

Conclusions and Future Work

Introduction 00	Background 0000	Frameworks	Computational Complexity	Conclusions and Future Work		
Complexity of Verification and Credulous/Skeptical Acceptance						
Outline	;					

- Motivation
- Contribution

- Argumentation Semantics
- AF with Preferences
- AF with Constraints

- extended Preference-based AF
- extended Preference-based Constrained Argumentation Framework
- Multi-agent ePCAF

Computational Complexity

- Complexity of Verification and Credulous/Skeptical Acceptance

Introduction 00	Background 0000	Frameworks	Computational Complexity ○○●	Conclusions and Future Work			
Complexity of Verification and Credulous/Skeptical Acceptance							
Comp	Complexity Results						

- *Verification* problem (*Ver* $_{\sigma}$): deciding whether a set *S* of arguments is a σ -extension of ePAF/ePCAF/mPCAF
- Credulous (resp. Skeptical) Acceptance problem (CA_{σ} and SA_{σ}): deciding whether a goal argument *g* belongs to any (resp. all) σ -extension of ePAF/ePCAF/mPCAF

		AF			CAF			PAF		ePAF	/ ePCAF /	mPCAF
σ	Ver_{σ}	CA_{σ}	SA_{σ}	Ver_{σ}	CA_{σ}	SA_{σ}	Ver_{σ_k}	CA_{σ_k}	SA_{σ_k}	Ver_{σ_k}	CA_{σ_k}	SA_{σ_k}
со	Р	NP-c	P	Р	NP-c	co <i>NP</i> -c	co <i>NP</i> -c	Σ ₂ ^P -C	Р	co <i>NP</i> -c	Σ ₂ ^P -C	П2 ^P -с
st	Р	NP-c	co <i>NP-</i> c	Р	NP-c	co <i>NP-</i> c	co <i>NP</i> -c	Σ ₂ ^P -c	П ₂ ^P -с	co <i>NP-</i> c	Σ ₂ ^P -c	П ₂ ^P -с
pr	co <i>NP</i> -c	NP-c	П ₂ ^P -с	co <i>NP</i> -c	Σ ₂ ^P -C	П ₂ ^P -с	П ₂ ^P -с	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P	П2 ^P -С	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P
SS	co <i>NP</i> -c	Σ ₂ ^P -C	П ₂ ^P -с	co <i>NP</i> -c	Σ ₂ ^P -c	П ₂ ^P -с	П ₂ ^P -с	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P	П ₂ ^P -с	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P

- The complexity bounds for ePAF do not increase w.r.t. those of PAF, except for SA_{CO} that becomes Π^P₂-complete
- ePCAF is more expressive than CAF, particularly if we consider Ver_{σ}
- ePCAF is more expressive than both CAF and PAF, though the complexity bounds do not increase w.r.t. that of ePAF
- In the multiple agents scenario, no increase in complexity w.r.t. eP(C)AF

Introduction 00	Background 0000	Frameworks	Computational Complexity ○○●	Conclusions and Future Work				
Complexity of Verif	Complexity of Verification and Credulous/Skeptical Acceptance							
Compl	Complexity Results							

- *Verification* problem (*Ver* $_{\sigma}$): deciding whether a set *S* of arguments is a σ -extension of ePAF/ePCAF/mPCAF
- Credulous (resp. Skeptical) Acceptance problem (CA_{σ} and SA_{σ}): deciding whether a goal argument *g* belongs to any (resp. all) σ -extension of ePAF/ePCAF/mPCAF

		AF			CAF			PAF		ePAF	/ ePCAF /	mPCAF
σ	Ver_{σ}	CA_{σ}	SA_{σ}	Ver_{σ}	$C\!A_{\sigma}$	SA_{σ}	Ver_{σ_k}	CA_{σ_k}	SA_{σ_k}	Ver_{σ_k}	CA_{σ_k}	SA_{σ_k}
co	Р	NP-c	Р	Р	NP-c	co <i>NP</i> -c	co <i>NP</i> -c	Σ ₂ ^P -c	Р	co <i>NP</i> -c	Σ ₂ ^P -C	П ₂ ^P -с
st	Р	NP-c	co <i>NP-</i> c	Р	NP-c	co <i>NP-</i> c	co <i>NP</i> -c	Σ ₂ ^P -c	П ₂ ^P -С	co <i>NP-</i> c	Σ ₂ ^P -c	П ₂ ^P -с
pr	co <i>NP</i> -c	NP-c	П ₂ ^P -с	co <i>NP</i> -c	Σ ₂ ^P -C	П ₂ ^P -с	П ₂ ^P -с	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P	П2 ^P -С	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P
SS	co <i>NP</i> -c	Σ ₂ ^P -C	П ₂ ^P -с	co <i>NP</i> -c	Σ ₂ ^P -c	П ₂ ^P -с	П ₂ ^P -с	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P	П ₂ ^P -с	Σ_2^P -h, Σ_3^P	Π_2^P -h, Π_3^P

- The complexity bounds for ePAF do not increase w.r.t. those of PAF, except for SA_{CO} that becomes Π^P₂-complete
- ePCAF is more expressive than CAF, particularly if we consider Ver_{σ}
- ePCAF is more expressive than both CAF and PAF, though the complexity bounds do not increase w.r.t. that of ePAF
- In the multiple agents scenario, no increase in complexity w.r.t. eP(C)AF

Introduction	Background 0000	Frameworks 000000000	Computational Complexity	Conclusions and Future Work ●OO
Out	line			
1 Ini • •	troduction Motivation Contribution			
2 Ba	ackground Argumentation S AF with Preferen AF with Constrain	emantics ces nts		
3 Fr • •	ameworks extended Prefere extended Prefere Multi-agent ePCA	nce-based AF nce-based Con AF	strained Argumentati	ion Framework
	omputational Com	nlexity		

• Complexity of Verification and Credulous/Skeptical Acceptance

5 Conclusions and Future Work

Conclusions and future work

- We have introduced novel frameworks extending PAF and CAF with (3-valued) preferences and constraints
- Extended preferences and (3-valued) constraints as well as our complexity results can carry over to other AF-based frameworks, such as AFN and ASAF, that can be rewritten in AF
- FW1: investigate other criteria to define the best extensions, e.g. (variants of) democratic and elitist approaches
- FW2: investigate other forms of constraints such as weak and epistemic constraints
- FW3: investigate preferences and constraints in other frameworks extending AF (e.g. incomplete and probabilistic AFs)

Conclusions and future work

- We have introduced novel frameworks extending PAF and CAF with (3-valued) preferences and constraints
- Extended preferences and (3-valued) constraints as well as our complexity results can carry over to other AF-based frameworks, such as AFN and ASAF, that can be rewritten in AF
- FW1: investigate other criteria to define the best extensions, e.g. (variants of) democratic and elitist approaches
- FW2: investigate other forms of constraints such as weak and epistemic constraints
- FW3: investigate preferences and constraints in other frameworks extending AF (e.g. incomplete and probabilistic AFs)

Introduction OO	Background	Frameworks 000000000	Computational Complexity	Conclusions and Future Work

Thank you for your attention!

... see you at the poster session!

NGCW/2023 MICHS	ces and Constraints in act Argumentation SREAD GREAD FRANCESCO PARKS, BREA TRUBTON MARKEN CHICK, PARKENCO PARKS, BREAT Marken & Chicken State Damming of Calaboa, Shaty , green, huwin; Lindhisym2Hilmen uniced &	 INVESTIGATION CONTRACTOR INVESTIGATION OF DESCRIPTION INVESTIGATION OF DESCRIPTION INVESTIGATION INVESTIGATION 				
A BOTRACT A REGUMENTATION As about Argument from transition (40) to a b_{12} (A.C., where A is not of approximate B_{12} (A.C., where A is a set of a spectra B_{12} (A.C., A is a set of all falls). In this sequencing data larger models are spectra and a set of the spectra of the spectra where makes are sequences and where adoptions and as	ARGUMENTATION SEMANTICS A semantic specific for criteria for identifying ensemble units of arguments, collid azimution. - A complete variants (i) is no advanticable or that contains all the arguments that its defeats. A complete variants in a and a live or - contained and a live or the contains of the arguments that its defeats. - contained and a live its manufactor (C). - ended (v) (ii) for attacks of the arguments for (L). - ended (v) (iii) an attacks of the arguments in (L).					
PREFERENCES AND CONSTRAINT forward proposition have been made to extend JZ = 0 on Professional JA (FIGN) to a AZ (, Q) on the evidencians stranding the professore or the held exclusions strat. J and without—we without the professore or the AC constraints of C(Q) is an AZ (, Q) and constraint dB ((Q)) is an AZ (, Q) and constraint dB ((Q)) is an AZ (, Q) and constraints dB ((Q)) is an AZ (, Q) and constr	≤ 110 AF with the aim of botter modeling the knowledge to be reput (approximate with a performance relation > that is a state listing > to some to obtain a performance relation = (or rela- tions on NV = interaction to define been terminates. generated with a set C of integrity constraining the is a re- set of the performance of the modeling of the state of the state of the performance of the modeling of the state of a of CAF, the restructions of the modeling of the state of the state of the state of CAF.	routed, articlically ever $A \{x_0, most \ge t(x_0),$ extensions of the underlying $A T_i$ and then or of propositional formular built from the at $= T_i$. Constrained some interpreted under ing the constraints are filtered out.				
$\begin{array}{l} \hline PLONDER I RAYMONDER I ANY MODEL FOR THE STATEMENT OF THE STATEM$	$\begin{array}{c} \mathbf{streeA}, \mathbf{sto}, st$	and wave is unableded. where the subsection of				
$\label{eq:constraints} \hline \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} \operatorname{even} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \right) \right) \right) \right) \right) \right) \\ \left(\operatorname{product}_{\mathcal{T}} \left(\operatorname{product}_{\mathcal{T}} \left(prod$	y_i /viewy r -voluminan of Δ . $(\Delta F - \mu D C \Delta F)$ $d_{ij} = \frac{\Delta f_{ij}}{2}$ $d_{ij} = \Delta f_$				