
Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

On Scaling the Enumeration of the Preferred
Extensions of Abstract Argumentation Frameworks

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi

{g.alfano, greco, fparisi}@dimes.unical.it
Department of Informatics, Modeling, Electronics and System Engineering

University of Calabria
Italy

34th Annual ACM Symposium on Applied Computing
April 8-12, 2019

Limassol, Cyprus



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Motivation

Argumentation in AI

A general way for representing arguments and relationships (rebuttals)
between them
It allows representing dialogues, making decisions, and handling
inconsistency and uncertainty

Abstract Argumentation Framework (AF) [Dung 1995]: arguments are
abstract entities (no attention is paid to their internal structure) that may attack
and/or be attacked by other arguments

Example (a simple AF)

a = Our friends will have great fun at our party on Saturday
b = Saturday will rain (according to the weather forecasting

service 1)
c = Saturday will be sunny (according to the weather

forecasting service 2)

b

a

c



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Motivation

Computing preferred extensions is hard

Several semantics have been proposed to identify “reasonable” sets of
arguments, called extensions
We focus on the preferred semantics, whose extensions are maximal
sets of “acceptable” arguments

Example (a simple AF)

a = Our friends will have great fun at our party on Saturday
b = Saturday will rain (according to the weather forecasting

service 1)
c = Saturday will be sunny (according to the weather

forecasting service 2)

The preferred extensions are {a, c} and {b} corresponding
to the two “possible worlds”

b

a

c

However, enumerating preferred extensions (i.e., solving the ICCMA 1

EE-pr problem) is computationally intractable

1http://argumentationcompetition.org

http://argumentationcompetition.org


Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Contributions

Pruned AF & Algorithm (1/2)

We show that the set of preferred extensions can be computed by looking
only at a small part of the AF, called the Pruned AF
The Pruned AF is obtained by “pruning” arguments whose status is
entailed by the ideal extension of the input AF

Example (From the input AF to the Pruned AF)

Input AF Ideal extension Pruned AF

gf

dc

ba

e

gf

dc

ba

e gf



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Contributions

Pruned AF & Algorithm (2/2)

We compute the preferred extensions of the Pruned AF, and
then combine them with the ideal extension of the input AF to get the set
of extensions of the input AF

Example (From the extensions of the Pruned AF to those of the input AF)

Pruned AF Extensions of the Pruned AF Extensions of the initial AF

gf

gf ⇒

gf ⇒

gf

dc

ba

e

gf

dc

ba

e



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Contributions

Pruned AF , Algorithm & Experiments

We propose an approach for scaling up the computation of the EE-pr
problem, i.e, the problem of enumerating the preferred extensions of an AF

We formally defined the Pruned AF, a smaller AF for local computation of
the preferred extensions—it uses information provided by the ideal
extension

We introduce an efficient algorithm for computing all the preferred
extensions, by focusing only on the Pruned AFs and incorporating
state-of-the-art AF solvers

We provide a thorough experimental analysis showing the effectiveness
of our approach: two orders of magnitude faster than the solver that won
the ICCMA’17 competition for the computational task EE-pr



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Outline

1 Introduction
Motivation
Contributions

2 Enumerating Preferred Extensions
Semantics of Abstract Argumentation Frameworks
Pruned AF
Algorithm

3 Implementation and Experiments

4 Conclusions and future work



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Semantics of Abstract Argumentation Frameworks

Basic concepts: conflict-freeness and admissibility

An (abstract) argumentation framework (AF ) is a pair 〈A,Σ〉, where A is a
set of arguments and Σ ⊆ A× A is a set of attacks.

A set S ⊆ A is conflict-free if there are no a,b ∈ S such that a attacks b

S defends a iff ∀b ∈ A that attacks a there is c ∈ S that attacks b

S is admissible if it is conflict-free and it defends all its arguments.

Example (Admissible sets)

A = {a, b, . . . , g}
Σ = {(a, b), (b, a), (b, b), . . . }
{a, d} is conflict-free

{a, d} defends a since it attacks b (the attacker of a)

{a, d} defends d (d has no attacker)

{a, d} is admissible
gf

dc

ba

e



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Semantics of Abstract Argumentation Frameworks

Basic concepts: conflict-freeness and admissibility

An (abstract) argumentation framework (AF ) is a pair 〈A,Σ〉, where A is a
set of arguments and Σ ⊆ A× A is a set of attacks.

A set S ⊆ A is conflict-free if there are no a,b ∈ S such that a attacks b

S defends a iff ∀b ∈ A that attacks a there is c ∈ S that attacks b

S is admissible if it is conflict-free and it defends all its arguments.

Example (Admissible sets)

A = {a, b, . . . , g}
Σ = {(a, b), (b, a), (b, b), . . . }
{a, d} is conflict-free

{a, d} defends a since it attacks b (the attacker of a)

{a, d} defends d (d has no attacker)

{a, d} is admissible
gf

dc

ba

e



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Semantics of Abstract Argumentation Frameworks

Preferred, grounded, and ideal semantics

A semantics identifies “reasonable” sets of arguments, called extensions
A complete extension is an admissible set that contains all the arguments
that it defends

A complete extension S is said to be:
preferred iff it is maximal (w.r.t. ⊆)
grounded iff it is minimal (w.r.t. ⊆)
ideal iff it is contained in every preferred extension and it is maximal

Example (Preferred, ideal, and grounded semantics)

Complete extensions:
{d}, {a, d}, {d , f}, {d , g}, {a, d , f}, {a, d , g}
The set of preferred extensions is
Epr(A0) = {{a, d , f}, {a, d , g}}
The grounded extension Egr = {d}
The ideal extension is Eid = {a, d}

gf

dc

ba

e

For every preferred extension E ∈ Epr(A), it holds that Egr ⊆ Eid ⊆ E



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Semantics of Abstract Argumentation Frameworks

Preferred, grounded, and ideal semantics

A semantics identifies “reasonable” sets of arguments, called extensions
A complete extension is an admissible set that contains all the arguments
that it defends

A complete extension S is said to be:
preferred iff it is maximal (w.r.t. ⊆)
grounded iff it is minimal (w.r.t. ⊆)
ideal iff it is contained in every preferred extension and it is maximal

Example (Preferred, ideal, and grounded semantics)

Complete extensions:
{d}, {a, d}, {d , f}, {d , g}, {a, d , f}, {a, d , g}
The set of preferred extensions is
Epr(A0) = {{a, d , f}, {a, d , g}}
The grounded extension Egr = {d}
The ideal extension is Eid = {a, d}

gf

dc

ba

e

gf

dc

ba

e

For every preferred extension E ∈ Epr(A), it holds that Egr ⊆ Eid ⊆ E



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Semantics of Abstract Argumentation Frameworks

Preferred, grounded, and ideal semantics

A semantics identifies “reasonable” sets of arguments, called extensions
A complete extension is an admissible set that contains all the arguments
that it defends

A complete extension S is said to be:
preferred iff it is maximal (w.r.t. ⊆)
grounded iff it is minimal (w.r.t. ⊆)
ideal iff it is contained in every preferred extension and it is maximal

Example (Preferred, ideal, and grounded semantics)

Complete extensions:
{d}, {a, d}, {d , f}, {d , g}, {a, d , f}, {a, d , g}
The set of preferred extensions is
Epr(A0) = {{a, d , f}, {a, d , g}}
The grounded extension Egr = {d}
The ideal extension is Eid = {a, d}

gf

dc

ba

e

For every preferred extension E ∈ Epr(A), it holds that Egr ⊆ Eid ⊆ E



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Semantics of Abstract Argumentation Frameworks

Preferred, grounded, and ideal semantics

A semantics identifies “reasonable” sets of arguments, called extensions
A complete extension is an admissible set that contains all the arguments
that it defends

A complete extension S is said to be:
preferred iff it is maximal (w.r.t. ⊆)
grounded iff it is minimal (w.r.t. ⊆)
ideal iff it is contained in every preferred extension and it is maximal

Example (Preferred, ideal, and grounded semantics)

Complete extensions:
{d}, {a, d}, {d , f}, {d , g}, {a, d , f}, {a, d , g}
The set of preferred extensions is
Epr(A0) = {{a, d , f}, {a, d , g}}
The grounded extension Egr = {d}
The ideal extension is Eid = {a, d}

gf

dc

ba

e

For every preferred extension E ∈ Epr(A), it holds that Egr ⊆ Eid ⊆ E



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Pruned AF

Definition of Pruned AF

The Pruned AF for A, denoted as Pruned(A), is obtained by removing from
A:

all the arguments belonging to the ideal extension Eid of A
all the arguments in E+

id , i.e., attacked by some argument in the ideal
extension
all the attacks towards or from the arguments in Eid ∪ E+

id

Example (From the input AF to the Pruned AF)

Input AF Ideal extension Pruned AF

gf

dc

ba

e

gf

dc

ba

e gf



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Pruned AF

How to use the Pruned AF

Every preferred extension E of an AF A one-to-one corresponds to a
preferred extension of the AF Pruned(A)

A preferred extension of the whole AF can be obtained by joining a
preferred extension of the Pruned AF with the ideal extension of A

Theorem (Obtaining the preferred extensions by using the Pruned-AF)

Let A = 〈A,Σ〉 be an AF, Eid the ideal extension for A, and
Pruned(A) = 〈Ap,Σp〉 the Pruned AF for A.
Then, E ∈ Epr(A) iff E = Eid ∪ Ep where Ep ∈ Epr(Pruned(A)).

Example

In our example, set of preferred extensions of the Pruned AF is
Epr(Pruned(A)) = {{f}, {g}}.
We obtain that the preferred extension of the whole AF as
Epr(A) = {{a,d , f}, {a,d ,g}} = {{f} ∪ Eid , {g} ∪ Eid},
where Eid = {a,d}.



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Pruned AF

How to use the Pruned AF

Every preferred extension E of an AF A one-to-one corresponds to a
preferred extension of the AF Pruned(A)
A preferred extension of the whole AF can be obtained by joining a
preferred extension of the Pruned AF with the ideal extension of A

Example (From the extensions of the Pruned AF to those of the input AF)

Ideal extension Extensions of the Pruned AF Extensions of the initial AF

gf

dc

ba

e ×
gf ⇒

gf ⇒

gf

dc

ba

e

gf

dc

ba

e



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Algorithm

Algorithm for computing the set of preferred extensions
Algorithm ScaleEE(A, k )
Input: AF A = 〈A,Σ〉,

A percentage value k . // k is used to decide if the Pruned AF should be used or not
Output: Set Epr(A) of preferred extensions of A.
begin
1: Egr = GR-Solver(A) // Compute the grounded extension
2: if |Egr | ≥ k · |A| then
3: // If the grounded extension if “sufficiently large” then so is the ideal extension;

thus compute the ideal extension and use it for pruning
4: Eid = ID-Solver(A) // compute the ideal extension
5: Ap = Pruned(A) // compute the Pruned AF (using Eid )
6: Epr(Ap) = PR-Solver(Ap) // compute the preferred extensions of the Pruned AF
7: Epr(A) = {E | E = Eid ∪ Ep , where Ep ∈ Epr(Ap)} // getting the output
8: else
9: Epr(A) = PR-Solver(A) // Otherwise, directly compute the preferred extensions

10: return Epr(A)
end.

Theorem

Given an AF A, if GR-Solver, ID-Solver, and PR-Solver are sound and
complete, then ScaleEE computes the set of preferred extensions of A.



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Outline

1 Introduction
Motivation
Contributions

2 Enumerating Preferred Extensions
Semantics of Abstract Argumentation Frameworks
Pruned AF
Algorithm

3 Implementation and Experiments

4 Conclusions and future work



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Experimental validation

Competitor and external solvers used

We compared ScaleEE with ArgSemSAT [Cerutti et al. 2017]

It is the winner the last ICCMA competition for the task EE-pr (i.e.,
computing all the preferred extensions of a given AF)

We used the following external solvers:
GR-Solver: CoQuiAAS [Lagniez et al. 2015], the winner of ICCMA’17 track
for computing the grounded extension

ID-Solver: pyglaf [Alviano 2017], the winner of ICCMA’17 track for
computing the ideal extension

PR-Solver: ArgSemSAT for the direct computation when the Pruned AF is
not used



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Experimental validation

Datasets

We used benchmark AFs from the EE-pr track of ICCMA’17.
AFs in the datasets named A1, A2, and A3 having more than one
preferred extension
Some statistics below

Dataset
A1 A2 A3

Number of AFs 23 25 43
Min number of arguments 12 61 40
Max number of arguments 528 1.200 5.700
Min number of attacks 18 97 72
Max number of attacks 3.300 184.000 690.000
Average degree 4 21 22
Average density 0.04 0.05 0.04



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Experimental validation

Improvement (i.e., run time of ArgSemSAT over that of ScaleEE) (1/2)
Dataset A1 Dataset A2 Dataset A3

k = 0%

10−1

100

101

102

103

104

10 100 600
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning

10−1

100

101

102

103

104

60 100 500 1000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning

10−1

100

101

102

103

104

40 100 1000 6000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning

k = 5%

10−1

100

101

102

103

104

10 100 600
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

60 100 500 1000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

40 100 1000 6000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

Triangular points (green): |Egr | ≥ k · |A|, i.e., the Pruned AF is computed.
Squared points (red): |Egr | 6≥ k · |A|, the Pruned AF is not computed.



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Experimental validation

Improvement (i.e., run time of ArgSemSAT over that of ScaleEE) (2/2)
Dataset A1 Dataset A2 Dataset A3

k = 10%

10−1

100

101

102

103

104

10 100 600
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

60 100 500 1000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

40 100 1000 6000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

k = 20%

10−1

100

101

102

103

104

10 100 600
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

60 100 500 1000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

40 100 1000 6000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

Triangular points (green): |Egr | ≥ k · |A|, i.e., the Pruned AF is computed.
Squared points (red): |Egr | 6≥ k · |A|, the Pruned AF is not computed.



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Experimental validation

Results (1/2)

ScaleEE is at least 10, 200, and 380 times faster than ArgSemSAT over
the datasets A1, A2, and A3. Detailed improvements for different values
of k : Dataset

Percentage k A1 A2 A3
0% 13.43 299 637.28
5% 13.51 286 637.35
10% 13.57 281 572
20% 13.52 205 384
Average degree 4 21 22

The larger the average degree of the AFs, the bigger the (average)
improvement obtained.
For the datasets A2 and A3, the amount of time required decreases from
dozens of minutes (direct computation) to a few seconds (our algorithm).
The average improvement remains high for k = 0%, that is, when
computing both the ideal extension and the Pruned AF irrespectively of
the size of the grounded extension.



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Experimental validation

Results (2/2)

However, the number of AFs for which the improvement is too lower than
1 decreases if k > 0%.

Thus, using k greater than zero allows us to reduce the overhead due to
the computation of the ideal extension and the Pruned AF.

Using too high values of k deteriorates performances on average
because the Pruned AF is not built even when it would be helpful.

All in all, the best trade-off between paying the cost of computing the
ideal extension along with the Pruned AF and risking to have the
overhead of the computation of the ideal extension is choosing k greater
than zero but no more than 10%.



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Outline

1 Introduction
Motivation
Contributions

2 Enumerating Preferred Extensions
Semantics of Abstract Argumentation Frameworks
Pruned AF
Algorithm

3 Implementation and Experiments

4 Conclusions and future work



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Conclusions and future work

Conclusions and Future Work

We introduced a technique for efficiently enumerating the preferred
extensions of abstract argumentation frameworks.

Our approach is modular with respect to the external solvers used

We have experimentally investigated the behaviour of our technique

We analysed the conditions under which computing the ideal extension
(which is costly) is convenient for building the Pruned AF and then
computing the preferred extensions using the Pruned AF.

It is worth paying the cost of computing the ideal extension if is not
empty—this can be easily checked by looking at the size of the grounded
extension

The computation of the preferred extensions over the Pruned AF yields
significant improvements over the direct computation.

Future work #1: applying the technique to other argumentation semantics

Future work #2: considering dynamics, i.e., updates



Introduction Enumerating Preferred Extensions Implementation and Experiments Conclusions and future work

Thank you!

... questions?



Appendix

References

Selected References

Phan Minh Dung.
On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games.
Artif. Intell., 77(2):321–358, 1995.

Federico Cerutti, Massimiliano Giacomin, Mauro Vallati.
ArgSemSAT: Solving Argumentation Problems Using SAT.
Proceedings of International Conference on Computational Models of
Argument (COMMA), 455–456, 2014

Mario Alviano.
The Pyglaf Argumentation Reasoner.
Proceedings of International Conference on Logic Programming (ICLP),
2:1–2:3, 2017.

Jean-Marie Lagniez, Emmanuel Lonca, and Jean-Guy Mailly.
CoQuiAAS: A constraint-based quick abstract argumentation solver.
Proceeding of IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), 928–935, 2015.


	Introduction
	Motivation
	Contributions

	Enumerating Preferred Extensions
	Semantics of Abstract Argumentation Frameworks
	Pruned AF
	Algorithm

	Implementation and Experiments
	Conclusions and future work
	References


