
 Preferred Database Repairs under

Aggregate Constraints

Sergio Flesca, Filippo Furfaro and Francesco Parisi

D.E.I.S.

 University of Calabria

{flesca, furfaro, fparisi}@deis.unical.it

International Conference on Scalable Uncertainty Management (SUM)

Oct 10-12, 2007, Washington DC Area

Inconsistent Numerical databases
• Data inconsistency can arise in several scenarios

– Data integration, reconciliation,

– errors in acquiring data (mistakes in transcription, OCR tools,

sensors, etc.)

 Receipts

 Year 2006
 cash sales 2200

 receivables 250

 total cash 2450

A cash budget portion

• The original data were consistent: 2200 + 250 = 2450, but a symbol

recognition error occurred during the digitizing phase

• In this context “traditional” forms of constraint do not suffice to guarantee

consistency

 Receipts

 Year 2006
 cash sales 2200

 receivables 650

 total cash 2450

A digitized cash budget

Aggregate Constraints

OCR tool

Balance sheet context

Repairing numerical data
• Several consistent versions can be obtained starting from the

inconsistent cash budget

 Receipts

 Year 2006
 cash sales 2200

 receivables 650

 total cash 2450

A digitized cash budget

 Receipts

 Year 2006
 cash sales X

 receivables Y

 total cash Z

X, Y, Z such that X+Y=Z

Repair

• Some repairs are more reasonable than others

• Card-minimal Repair:

– A “minimal way” for restoring consistency in databases

change the minimum number of original values

• Several consistent versions can be obtained starting from the

inconsistent cash budget

 Receipts

 Year 2006
 cash sales 2200

 receivables 650

 total cash 2450

A digitized cash budget

 Receipts

 Year 2006
 cash sales X=1800

 receivables Y=650

 total cash Z=2450

X, Y, Z such that X+Y=Z

Repair

• Some repairs are more reasonable than others

• Card-minimal Repair:

– A “minimal way” for restoring consistency in databases

Card-minimal Repairs

change the minimum number of original values

R1

• Several consistent versions can be obtained starting from the

inconsistent cash budget

 Receipts

 Year 2006
 cash sales 2200

 receivables 650

 total cash 2450

A digitized cash budget

 Receipts

 Year 2006
 cash sales X=2200

 receivables Y=250

 total cash Z=2450

X, Y, Z such that X+Y=Z

Repair

• Some repairs are more reasonable than others

• Card-minimal Repair:

– A “minimal way” for restoring consistency in databases

Card-minimal Repairs

change the minimum number of original values

R2

• Several consistent versions can be obtained starting from the

inconsistent cash budget

 Receipts

 Year 2006
 cash sales 2200

 receivables 650

 total cash 2450

A digitized cash budget

 Receipts

 Year 2006
 cash sales X=2200

 receivables Y=650

 total cash Z=2850

X, Y, Z such that X+Y=Z

Repair

• Some repairs are more reasonable than others

• Card-minimal Repair:

– A “minimal way” for restoring consistency in databases

Card-minimal Repairs

change the minimum number of original values

R3

• In general, there may be several card-minimal repairs for a

database violating a given set of aggregate constraints

Preferred Repairs

• Well-established information on the application context can be

exploited to choose the most reasonable repairs among those

having minimum cardinality

– We can exploit data regarding the preceding years

0

500

1000

1500

2000

2500

3000

2001 2002 2003 2004 2005

Cash Sales Receivables Total Cash

The value of cash

sales never was

less than 2000

The value of cash

sales for the year

2006 is not likely to be

less than 2000

This condition can be

interpreted as

weak constraint

• In general, there may be several card-minimal repairs for a

database violating a given set of aggregate constraints

• Well-established information on the application context can be

exploited to choose the most reasonable repairs among those

having minimum cardinality

– We can exploit data regarding the preceding years

0

500

1000

1500

2000

2500

3000

2001 2002 2003 2004 2005

Cash Sales Receivables Total Cash
The value of

receivables never was

greater than 400

Weak constraint:

It is likely that

receivables are less

than or equal to 400

Preferred Repairs

• In general, there may be several card-minimal repairs for a

database violating a given set of aggregate constraints

• Well-established information on the application context can be

exploited to choose the most reasonable repairs among those

having minimum cardinality

– We can exploit data regarding the preceding years

• In contrast with (strong) aggregate constraints, the satisfaction of

weak constraints is not mandatory

• Weak constraints can be exploited for defining a repairing

technique where inconsistent data are fixed in the “most likely” way

The preferred repairs are card-minimal repairs

satisfying as many weak constraints as possible

Preferred Repairs

• In general, there may be several card-minimal repairs for a

database violating a given set of aggregate constraints

• Well-established information on the application context can be

exploited to choose the most reasonable repairs among those

having minimum cardinality

– We can exploit data regarding the preceding years

0

500

1000

1500

2000

2500

3000

2001 2002 2003 2004 2005 2006

Cash Sales Receivables Total Cash
Card-Minimal Repair

R1

2 weak constraints

violated

Preferred Repairs

0

500

1000

1500

2000

2500

3000

2001 2002 2003 2004 2005 2006

Cash Sales Receivables Total Cash

• In general, there may be several card-minimal repairs for a

database violating a given set of aggregate constraints

• Well-established information on the application context can be

exploited to choose the most reasonable repairs among those

having minimum cardinality

– We can exploit data regarding the preceding years

no weak constraints

violated

R2 is preferred to R1

(R2 >R1)

Card-Minimal Repair

R2

Preferred Repairs

0

500

1000

1500

2000

2500

3000

2001 2002 2003 2004 2005 2006

Cash Sales Receivables Total Cash

• In general, there may be several card-minimal repairs for a

database violating a given set of aggregate constraints

• Well-established information on the application context can be

exploited to choose the most reasonable repairs among those

having minimum cardinality

– We can exploit data regarding the preceding years

1 weak constraint

violated

Card-Minimal Repair

R3

R2 >R3>R1

Preferred Repairs

Outline

• Aggregate constraints

• Repairing strategy

• Weak Aggregate Constraints

• Preferred Repairs

• Steady aggregate constraints

• Complexity results

• Computing preferred repairs

• Experimental results

• Conclusions

1. is a conjunction of atoms

2. is a constant

3. The aggregation formula is the linear combination of

aggregation functions

where:

Aggregate constraints

• can express constraints like those defined in the context

of balance-sheet data

with

Linear combination of attributes

Boolean formula on constants and attributes of R

Example of aggregate constraints

• CashBudget(Section,Subsection,Type,Value)

for each section, the sum

of all detail items must be

equal to the value of the

aggregate item

Aggregation function:

Aggregate constraint:

1)
Section Subsection Type Value

Receipts beginning cash drv 3000

Receipts cash sales det 2200

Receipts receivables det 650

Receipts total cash receipts aggr 2450

Disbursements payment of accounts det 1300

Disbursements capital expenditure det 100

Disbursements long-term financing det 600

Disbursements total disbursements aggr 1000

Balance net cash inflow drv 450

Balance ending cash balance drv 3450

• CashBudget(Section,Subsection,Type,Value)

Aggregation function:

Aggregate constraint:

the net cash inflow must be

equal to the difference

between total cash receipts

and total disbursements

2)
Section Subsection Type Value

Receipts beginning cash drv 3000

Receipts cash sales det 2200

Receipts receivables det 650

Receipts total cash receipts aggr 2450

Disbursements payment of accounts det 1300

Disbursements capital expenditure det 100

Disbursements long-term financing det 600

Disbursements total disbursements aggr 1000

Balance net cash inflow drv 450

Balance ending cash balance drv 3450

Example of aggregate constraints

• CashBudget(Section,Subsection,Type,Value)

Aggregation function:

Aggregate constraint:

the ending cash balance

must be equal to the sum of

the beginning cash and the

net cash inflow

3)
Section Subsection Type Value

Receipts beginning cash drv 3000

Receipts cash sales det 2200

Receipts receivables det 650

Receipts total cash receipts aggr 2450

Disbursements payment of accounts det 1300

Disbursements capital expenditure det 100

Disbursements long-term financing det 600

Disbursements total disbursements aggr 1000

Balance net cash inflow drv 450

Balance ending cash balance drv 3450

Example of aggregate constraints

Outline

• Aggregate constraints

• Repairing strategy

• Weak Aggregate Constraints

• Preferred Repairs

• Steady aggregate constraints

• Complexity results

• Computing preferred repairs

• Experimental results

• Conclusions

Adding a new tuple means that the OCR tool skipped a whole row when

acquiring ... It’s rather unrealistic!!!

Repairing strategy

• What is a reasonable strategy for repairing the acquired data?

Tuple deletion / insertion

 Receipts
 cash sales 2200

 receivables 650

 total cash 2450

The inconsistent cash budget

 Receipts cash sales 2200

 receivables 650

XXXXX -400

 total cash 2450

The repaired cash budget

2200 + 650 ≠ 2450

 650 -

 400 =

2450

2200 +

• What is a reasonable strategy for repairing the acquired data?

• The most natural approach is updating directly the numerical data

– Work at attribute-level, rather than tuple-level

• In our context, we can reasonably assume that inconsistencies are

due to symbol recognition errors

• Thus, trying to re-construct the actual data values (without

changing the number of tuples) is well founded

 Receipts
 cash sales 2200

 receivables 650

 total cash 2450

The inconsistent cash budget

2200 + 650 ≠ 2450

 Receipts
 cash sales 2200

 receivables 250

 total cash 2450

A repaired cash budget

 250 =

2450

2200 +

Repairing strategy

Repairing strategy

• (Minimal) Repair

– A “minimal way” for restoring consistency in databases

 preserve as much information as possible

CARD-MINIMAL SEMANTICS

• A repair R is card-minimal for D iff there is no repair R’ for D

consisting of fewer updates than R
R

Only two updates do not

suffice to repair D!

– It means assuming that the minimum number of errors occurred

• In the balance-sheet context: the most probable case is that the

acquiring system made the minimum number of errors

• for each section, the sum of all detail items must be equal to the

value of the aggregate item

Two examples of card-minimal repair

satisfied

Section Subsection Type Value

Receipts beginning cash drv 3000

Receipts cash sales det 2200

Receipts receivables det 650

Receipts total cash receipts aggr 2450

Disbursements payment of accounts det 1300

Disbursements capital expenditure det 100

Disbursements long-term financing det 600

Disbursements total disbursements aggr 1000

Balance net cash inflow drv 450

Balance ending cash balance drv 3450

R2

2000

 250

1800

2000

R1

Constraint 1)

• the net cash inflow must be equal to the difference between

total cash receipts and total disbursements

Two examples of card-minimal repair

R2

2000

 250

1800

2000

R1

satisfied Constraint 2)

Section Subsection Type Value

Receipts beginning cash drv 3000

Receipts cash sales det 2200

Receipts receivables det 650

Receipts total cash receipts aggr 2450

Disbursements payment of accounts det 1300

Disbursements capital expenditure det 100

Disbursements long-term financing det 600

Disbursements total disbursements aggr 1000

Balance net cash inflow drv 450

Balance ending cash balance drv 3450

• the ending cash balance must be equal to the sum of the

beginning cash and the net cash inflow

Section Subsection Type Value

Receipts beginning cash drv 3000

Receipts cash sales det 2200

Receipts receivables det 650

Receipts total cash receipts aggr 2450

Disbursements payment of accounts det 1300

Disbursements capital expenditure det 100

Disbursements long-term financing det 600

Disbursements total disbursements aggr 1000

Balance net cash inflow drv 450

Balance ending cash balance drv 3450

R2

2000

 250

1800

2000

R1

satisfied Constraint 3)

Two examples of card-minimal repair

Outline

• Aggregate constraints

• Repairing strategy

• Weak Aggregate Constraints

• Preferred Repairs

• Steady aggregate constraints

• Complexity results

• Computing preferred repairs

• Experimental results

• Conclusions

Weak aggregate constraints

• Aggregate constraints with a “weak” semantics

• In contrast with the “strong” semantics of aggregate constraints, weak

aggregate constraints express conditions which reasonably hold in the

actual data, although satisfying them is not mandatory

• The condition “it is likely that cash sales are greater than or equal to 2000”

can be expressed by

• Whereas, the condition “it is likely that receivables are less than or equal to

400” can be expressed by

where:

Outline

• Aggregate constraints

• Repairing strategy

• Weak Aggregate Constraints

• Preferred Repairs

• Steady aggregate constraints

• Complexity results

• Computing preferred repairs

• Experimental results

• Conclusions

Preferred Repairs

• Card-minimal repairs can be ordered according the number of conditions

expressed by the set of weak constraints which are satisfied in the repaired

database

• A card-minimal repair violating n ground weak constraints is preferred to

any other card-minimal repair violating m>n ground weak constraints

R2

2000

 250

1800

2000

R1 Section Subsection Type Value

Receipts beginning cash drv 3000

Receipts cash sales det 2200

Receipts receivables det 650

Receipts total cash receipts aggr 2450

Disbursements payment of accounts det 1300

Disbursements capital expenditure det 100

Disbursements long-term financing det 600

Disbursements total disbursements aggr 1000

Balance net cash inflow drv 450

Balance ending cash balance drv 3450

weak constraints:

R2 is

preferred

to R1

Outline

• Aggregate constraints

• Repairing strategy

• Weak Aggregate Constraints

• Preferred Repairs

• Steady aggregate constraints

• Complexity results

• Computing preferred repairs

• Experimental results

• Conclusions

An aggregate constraint is an SAC if:
1) no attributes in the WHERE clause are measure attributes

Steady aggregate constraints (SACs)

• A restricted but expressive class of aggregate constraints
– Computing a preferred repair for a database D w.r.t. a set of steady aggregate

constraint AC and a set of steady weak aggregate constraint W can be accomplished

by solving an instance of ILP problem

Attributes whose values

can be changed by a

repair

Steady aggregate constraints (SACs)

• CashBudget(Section,Subsection,Type,Value)

where:

• A restricted but expressive class of aggregate constraints
– Computing a preferred repair for a database D w.r.t. a set of steady aggregate

constraint AC and a set of steady weak aggregate constraint W can be accomplished

by solving an instance of ILP problem

An aggregate constraint is an SAC if:
1) no attributes in the WHERE clause are measure attributes

An aggregate constraint is an SAC if:
1) no attributes in the WHERE clause are measure attributes

2) no attributes corresponding to variables in the WHERE clause are

measure attributes

where:

• CashBudget(Section,Subsection,Type,Value)

Steady aggregate constraints (SACs)

• A restricted but expressive class of aggregate constraints
– Computing a preferred repair for a database D w.r.t. a set of steady aggregate

constraint AC and a set of steady weak aggregate constraint W can be accomplished

by solving an instance of ILP problem

An aggregate constraint is an SAC if:
1) no attributes in the WHERE clause are measure attributes

2) no attributes corresponding to variables in the WHERE clause are

measure attributes

3) no attributes corresponding to variables shared by two atoms are

measure attributes

• CashBudget(Section,Subsection,Type,Value)

where:

Steady aggregate constraints (SACs)

• A restricted but expressive class of aggregate constraints
– Computing a preferred repair for a database D w.r.t. a set of steady aggregate

constraint AC and a set of steady weak aggregate constraint W can be accomplished

by solving an instance of ILP problem

Outline

• Aggregate constraints

• Repairing strategy

• Weak Aggregate Constraints

• Preferred Repairs

• Steady aggregate constraints

• Complexity results

• Computing preferred repairs

• Experimental results

• Conclusions

Complexity Results

• Given a database D, a set of aggregate constraints AC and a

set of weak aggregate constraints W

1) Deciding whether there is a preferred repair for D w.r.t. AC

and W violating more than k ground weak constraints is NP-

complete

• The problem is NP-hard even in the case that both AC and W

consist of steady constraints only

2) Given a repair R for D w.r.t. AC, deciding whether R is a

preferred repair for D w.r.t. AC and W is coNP-complete

• The problem is coNP-hard even in the case that both AC and W

consist of steady constraints only

• Steady constraints do not affect the complexity of the preferred-repair

existence problem and of the preferred-repair checking problem

Outline

• Aggregate constraints

• Repairing strategy

• Weak Aggregate Constraints

• Preferred Repairs

• Steady aggregate constraints

• Complexity results

• Computing preferred repairs

• Experimental results

• Conclusions

Computing Preferred Repairs

• Under SACs a preferred repair can be computed solving

an ILP problem instance
1. Strong SACs are translated into a system S of linear inequalities

z1
z2
z3
z4
z5
z6
z7

z2+ z3= z4

z5+ z6 + z7 = z8

z8
z9
z10

Section Subsection Type Value

Receipts beginning cash drv 3000

Receipts cash sales det 2200

Receipts receivables det 650

Receipts total cash receipts aggr 2450

Disbursements payment of accounts det 1300

Disbursements capital expenditure det 100

Disbursements long-term financing det 600

Disbursements total disbursements aggr 1000

Balance net cash inflow drv 450

Balance ending cash balance drv 3450

Computing Preferred Repairs

• Under SACs a preferred repair can be computed solving

an ILP problem instance
1. Strong SACs are translated into a system S of linear inequalities

– Each solution s of S corresponds to a repair R(s)

– In general, R(s) is a non-minimal and non-preferred repair

2. Further linear inequalities are added in order to decide whether a

solution s of S corresponds to R(s) is a preferred repair

Computing Preferred Repairs

• Under SACs a preferred repair can be computed solving

an ILP problem instance

2. Further linear inequalities are added in order to decide whether a

solution s of S corresponds to R(s) is a preferred repair

for each database value vi we

define an integer variable yi

and a binary variable δi

Computing Preferred Repairs

• Under SACs a preferred repair can be computed solving

an ILP problem instance

2. Further linear inequalities are added in order to decide whether a

solution s of S corresponds to R(s) is a preferred repair

yi≠0 database value vi

updated by R(s)

Computing Preferred Repairs

• Under SACs a preferred repair can be computed solving

an ILP problem instance

2. Further linear inequalities are added in order to decide whether a

solution s of S corresponds to R(s) is a preferred repair

yi≠0 database value vi

updated by R(s)

yi≠0 δi=1

Computing Preferred Repairs

• Under SACs a preferred repair can be computed solving

an ILP problem instance

2. Further linear inequalities are added in order to decide whether a

solution s of S corresponds to R(s) is a preferred repair

yi≠0 database value vi

updated by R(s)

yi≠0 δi=1

If a system of equalities has a

solution, it has also one where each

variable takes a value in [-M,M]

Computing Preferred Repairs

• Under SACs a preferred repair can be computed solving

an ILP problem instance

2. Further linear inequalities are added in order to decide whether a

solution s of S corresponds to R(s) is a preferred repair

yi≠0 database value vi

updated by R(s)

yi≠0 δi=1

minimizing the sum of values assigned

to the binary variables δi means

searching for card-minimal repairs

Computing Preferred Repairs

• Under SACs a preferred repair can be computed solving

an ILP problem instance

2. Further linear inequalities are added in order to decide whether a

solution s of S corresponds to R(s) is a preferred repair

for each ground weak constraint

ω we define a variable σω and

a binary variable μω

Section Subsection Type Value

… … … …

Receipts cash sales det 2200

… … … …

z2

σω = 2000 - z2

ω =

σω < 0 means constraint ω violated

Computing Preferred Repairs

• Under SACs a preferred repair can be computed solving

an ILP problem instance

2. Further linear inequalities are added in order to decide whether a

solution s of S corresponds to R(s) is a preferred repair

σω < 0 μω =1

for each ground constraint ω

we define a variable σω and a

binary variable μω

σω < 0 means constraint ω violated

Computing Preferred Repairs

• Under SACs a preferred repair can be computed solving

an ILP problem instance

2. Further linear inequalities are added in order to decide whether a

solution s of S corresponds to R(s) is a preferred repair

σω < 0 μω =1

for each ground constraint ω

we define a variable σω and a

binary variable μω

minimizing the sum of values assigned to

the binary variables μω means searching

for card-minimal repairs violating as few

weak constraints as possible

σω < 0 means constraint ω violated

Computing Preferred Repairs

• Under SACs a preferred repair can be computed solving

an ILP problem instance

every optimal solution of this problem

corresponds to an M-bounded preferred

repair and vice versa

Outline

• Aggregate constraints

• Repairing strategy

• Weak Aggregate Constraints

• Preferred Repairs

• Steady aggregate constraints

• Complexity results

• Computing preferred repairs

• Experimental results

• Conclusions

 Experimental Results

• Application context: balance-sheet data

– the number of item occurring in a balance-sheet is unlikely to be greater than 400

– the percentage of erroneous items is less than 5% of the acquired data

• Time employed for computing a preferred repair

0

4

8

12

16

20

24

0 4 8 12 16 20 24 28

percentage of errors in the database

ti
m

e
 (

s
e

c
)

1,5 sec

112 tuples 256 tuples 378 tuples

• The technique can be effectively employed in the balance-sheet context

 Experimental Results

• The prototype can be used in a semi-automatic system for fixing data

acquisition errors

compute a

preferred repair

validation w.r.t.

original data

accepted?

no

yes

fix 1 wrongly re-

constructed data

inconsistent

acquired data Impact of using weak constraints

percentage of

errors in the DB

weak

constraints

without

with

Average number of iteration for

re-construct the original data

 Conclusions

• The proposed approach exploits a transformation of the problem of

computing a preferred repair into an instance of ILP problem

– standard techniques addressing ILP problem can be re-used for computing a

preferred repair

• A framework for computing preferred repairs in numerical data

violating a given set of strong and weak aggregate constraints has

been proposed

• The prototype can be used in a semi-automatic system for fixing data
acquisition errors

– Experimental results prove the effectiveness in the balance-sheet context

 Thank you!

 ...any questions?

