

### Preferred Database Repairs under Aggregate Constraints

#### Sergio Flesca, Filippo Furfaro and Francesco Parisi

D.E.I.S. University of Calabria

{flesca, furfaro, fparisi}@deis.unical.it

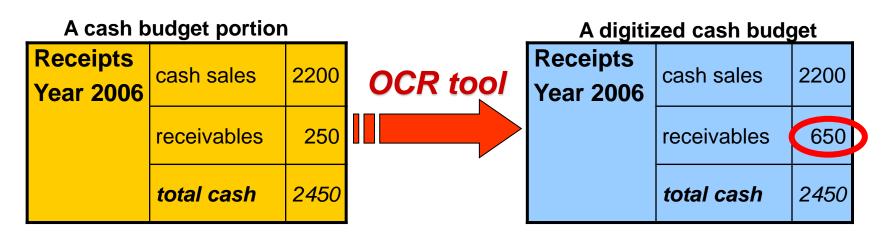
International Conference on Scalable Uncertainty Management (SUM) Oct 10-12, 2007, Washington DC Area



# Inconsistent Numerical databases

- Data inconsistency can arise in several scenarios
  - Data integration, reconciliation,
  - errors in acquiring data (mistakes in transcription, OCR tools, sensors, etc.)

Balance sheet context

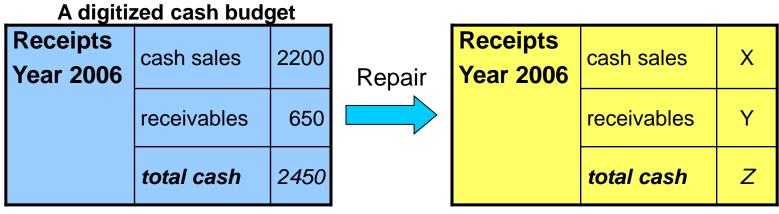


- The original data were consistent: 2200 + 250 = 2450, but a symbol recognition error occurred during the digitizing phase
- In this context "traditional" forms of constraint do not suffice to guarantee consistency
   Aggregate Constraints



# Repairing numerical data

• Several consistent versions can be obtained starting from the inconsistent cash budget



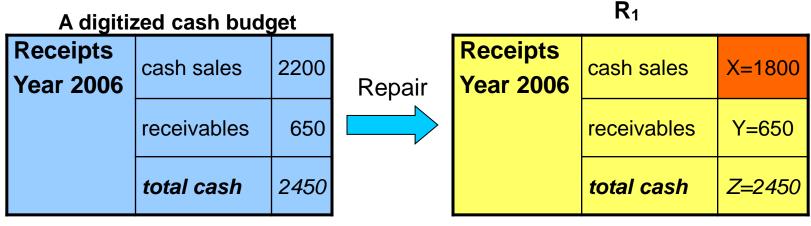
X, Y, Z such that X+Y=Z

- Some repairs are more reasonable than others
- Card-minimal Repair:
  - A "minimal way" for restoring consistency in databases



# **Card-minimal Repairs**

• Several consistent versions can be obtained starting from the inconsistent cash budget



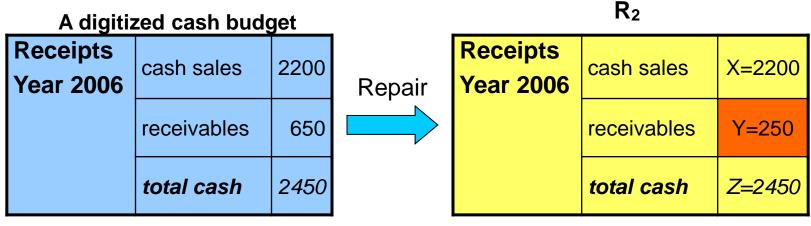
X, Y, Z such that X+Y=Z

- Some repairs are more reasonable than others
- Card-minimal Repair:
  - A "minimal way" for restoring consistency in databases



# **Card-minimal Repairs**

• Several consistent versions can be obtained starting from the inconsistent cash budget



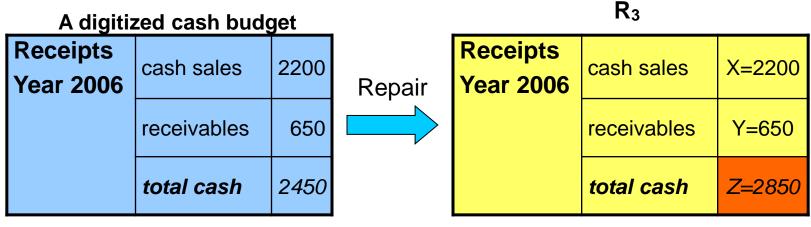
X, Y, Z such that X+Y=Z

- Some repairs are more reasonable than others
- Card-minimal Repair:
  - A "minimal way" for restoring consistency in databases



# **Card-minimal Repairs**

• Several consistent versions can be obtained starting from the inconsistent cash budget

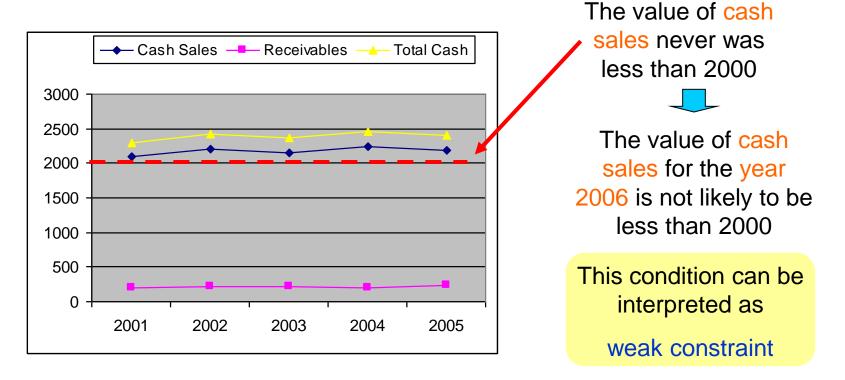


X, Y, Z such that X+Y=Z

- Some repairs are more reasonable than others
- Card-minimal Repair:
  - A "minimal way" for restoring consistency in databases

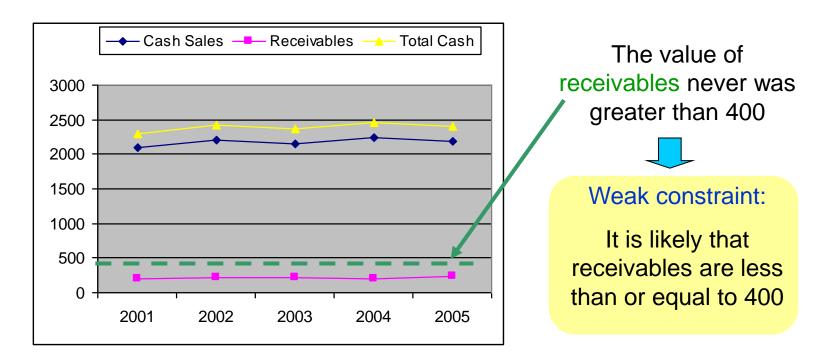


- In general, there may be several card-minimal repairs for a database violating a given set of aggregate constraints
- Well-established information on the application context can be exploited to choose the most reasonable repairs among those having minimum cardinality
  - We can exploit data regarding the preceding years





- In general, there may be several card-minimal repairs for a database violating a given set of aggregate constraints
- Well-established information on the application context can be exploited to choose the most reasonable repairs among those having minimum cardinality
  - We can exploit data regarding the preceding years



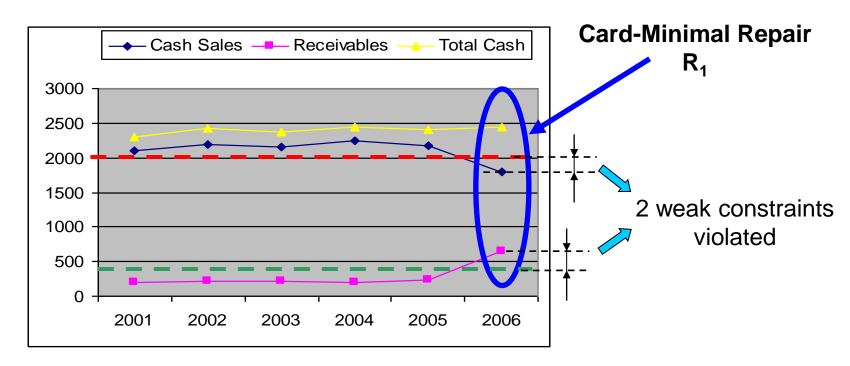


- In general, there may be several card-minimal repairs for a database violating a given set of aggregate constraints
- Well-established information on the application context can be exploited to choose the most reasonable repairs among those having minimum cardinality
  - We can exploit data regarding the preceding years
- In contrast with (strong) aggregate constraints, the satisfaction of weak constraints is not mandatory
- Weak constraints can be exploited for defining a repairing technique where inconsistent data are fixed in the "most likely" way

The preferred repairs are card-minimal repairs satisfying as many weak constraints as possible

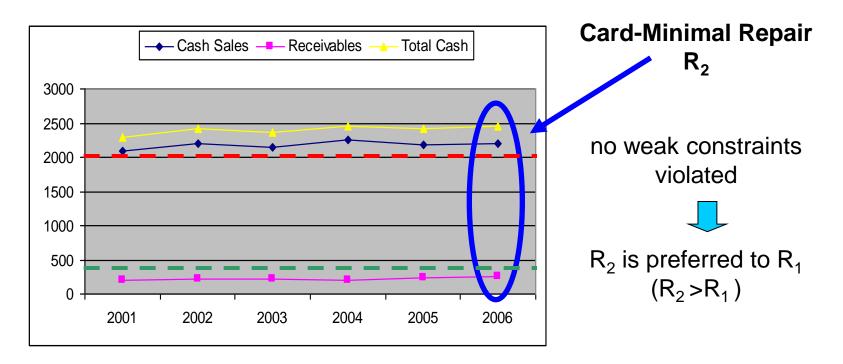


- In general, there may be several card-minimal repairs for a database violating a given set of aggregate constraints
- Well-established information on the application context can be exploited to choose the most reasonable repairs among those having minimum cardinality
  - We can exploit data regarding the preceding years



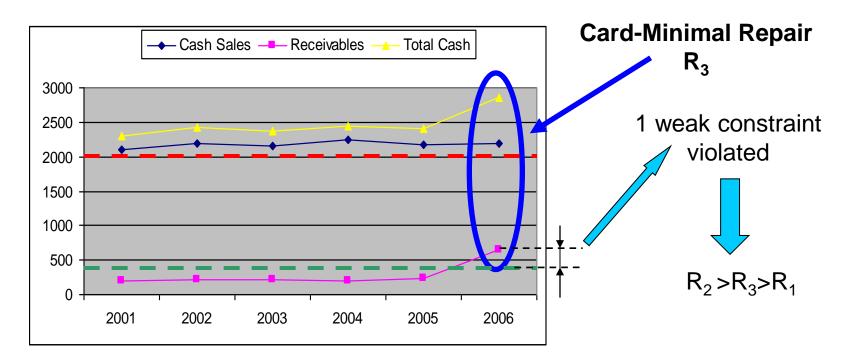


- In general, there may be several card-minimal repairs for a database violating a given set of aggregate constraints
- Well-established information on the application context can be exploited to choose the most reasonable repairs among those having minimum cardinality
  - We can exploit data regarding the preceding years





- In general, there may be several card-minimal repairs for a database violating a given set of aggregate constraints
- Well-established information on the application context can be exploited to choose the most reasonable repairs among those having minimum cardinality
  - We can exploit data regarding the preceding years





## Outline

- Aggregate constraints
- Repairing strategy
- Weak Aggregate Constraints
- Preferred Repairs
- Steady aggregate constraints
- Complexity results
- Computing preferred repairs
- Experimental results
- Conclusions

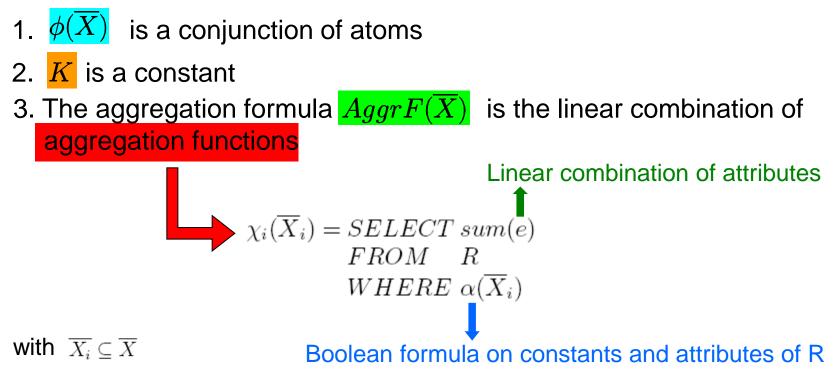


### Aggregate constraints

 can express constraints like those defined in the context of balance-sheet data

$$\forall \overline{X} \ \left( \phi(\overline{X}) \implies AggrF(\overline{X}) \le K \right)$$

where:





### Example of aggregate constraints

CashBudget(Section,Subsection,Type,Value)

| Section       | Subsection          | Туре | Value |
|---------------|---------------------|------|-------|
| Receipts      | beginning cash      | drv  | 3000  |
| Receipts      | cash sales          | det  | 2200  |
| Receipts      | receivables         | det  | 650   |
| Receipts      | total cash receipts | aggr | 2450  |
| Disbursements | payment of accounts | det  | 1300  |
| Disbursements | capital expenditure | det  | 100   |
| Disbursements | long-term financing | det  | 600   |
| Disbursements | total disbursements | aggr | 1000  |
| Balance       | net cash inflow     | drv  | 450   |
| Balance       | ending cash balance | drv  | 3450  |

1) for each section, the sum of all detail items must be equal to the value of the aggregate item

#### Aggregation function:

$$\begin{split} \chi_1(s,t) = & SELECT \ sum(Value) \\ & FROM \ CashBudget \\ & WHERE \ Section = s \\ & AND \ Type = t \end{split}$$

#### Aggregate constraint:

 $CashBudget(s, -, -, -) \implies \chi_1(s, det) - \chi_1(s, aggr) = 0$ 



### Example of aggregate constraints

CashBudget(Section,Subsection,Type,Value)

| Section       | Subsection          | Туре | Value |
|---------------|---------------------|------|-------|
| Receipts      | beginning cash      | drv  | 3000  |
| Receipts      | cash sales          | det  | 2200  |
| Receipts      | receivables         | det  | 650   |
| Receipts      | total cash receipts | aggr | 2450  |
| Disbursements | payment of accounts | det  | 1300  |
| Disbursements | capital expenditure | det  | 100   |
| Disbursements | long-term financing | det  | 600   |
| Disbursements | total disbursements | aggr | 1000  |
| Balance       | net cash inflow     | drv  | 450   |
| Balance       | ending cash balance | drv  | 3450  |

2) the net cash inflow must be equal to the difference between total cash receipts and total disbursements

#### Aggregation function:

 $\begin{aligned} \chi_2(ss) &= SELECT \ sum(Value) \\ FROM \ CashBudget \\ WHERE \ Subsection = ss \end{aligned}$ 

#### Aggregate constraint:

 $\chi_2(net\ cash\ inflow) - [\chi_2(total\ cash\ receipts) - \chi_2(total\ disbursements)] = 0$ 



### Example of aggregate constraints

CashBudget(Section,Subsection,Type,Value)

| Section       | Subsection          | Туре | Value |
|---------------|---------------------|------|-------|
| Receipts      | beginning cash      | drv  | 3000  |
| Receipts      | cash sales          | det  | 2200  |
| Receipts      | receivables         | det  | 650   |
| Receipts      | total cash receipts | aggr | 2450  |
| Disbursements | payment of accounts | det  | 1300  |
| Disbursements | capital expenditure | det  | 100   |
| Disbursements | long-term financing | det  | 600   |
| Disbursements | total disbursements | aggr | 1000  |
| Balance       | net cash inflow     | drv  | 450   |
| Balance       | ending cash balance | drv  | 3450  |

3) the ending cash balance must be equal to the sum of the beginning cash and the net cash inflow

#### Aggregation function:

 $\chi_2(ss) = SELECT \ sum(Value) \\ FROM \ CashBudget \\ WHERE \ Subsection = ss$ 

#### Aggregate constraint:

 $\chi_2(ending \ cash \ balance) - [\chi_2(beginning \ cash) + \chi_2(net \ cash \ balance)] = 0$ 



## Outline

- Aggregate constraints
- Repairing strategy
- Weak Aggregate Constraints
- Preferred Repairs
- Steady aggregate constraints
- Complexity results
- Computing preferred repairs
- Experimental results
- Conclusions



### **Repairing strategy**

**Tuple deletion / Insertion** 

• What is a reasonable strategy for repairing the acquired data?

The inconsistent cash budget

|          | total cash  | 2450 |
|----------|-------------|------|
|          | receivables | 650  |
| Receipts | cash sales  | 2200 |

**2200 + 650 ≠ 2450** 

The repaired cash budget

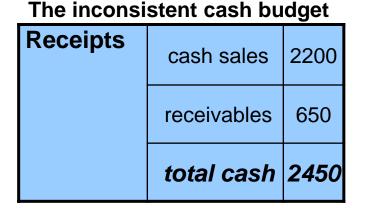
| Receipts | cash sales  | 2200 | 2200           |
|----------|-------------|------|----------------|
|          | receivables | 650  | 650 -<br>400 : |
|          | XXXXX       | -400 | 2450           |
|          | total cash  | 2450 |                |

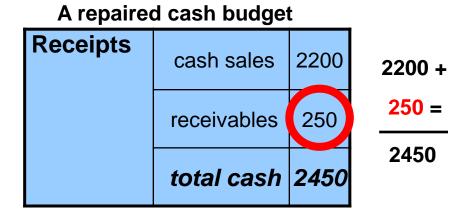
Adding a new tuple means that the OCR tool skipped a whole row when acquiring ... *It's rather unrealistic*!!!



## Repairing strategy

- What is a reasonable strategy for repairing the acquired data?
- The most natural approach is updating directly the numerical data
  - Work at attribute-level, rather than tuple-level





#### 2200 + 650 ≠ 2450

- In our context, we can reasonably assume that inconsistencies are due to symbol recognition errors
- Thus, trying to re-construct the actual data values (without changing the number of tuples) is well founded



# Repairing strategy

- (Minimal) Repair
  - A "minimal way" for restoring consistency in databases

preserve as much information as possible

#### **CARD-MINIMAL SEMANTICS**

A repair R is *card*-minimal for D iff there is no repair R' for D consisting of fewer updates than R

Only two updates do not suffice to repair D!

- It means assuming that the minimum number of errors occurred
  - In the balance-sheet context: the most probable case is that the acquiring system made the minimum number of errors



### Two examples of card-minimal repair

| Section       | Subsection          | Туре | Value | $R_1$ $R_2$ |
|---------------|---------------------|------|-------|-------------|
| Receipts      | beginning cash      | drv  | 3000  |             |
| Receipts      | cash sales          | det  | 2200  | 1800        |
| Receipts      | receivables         | det  | 650   | 250         |
| Receipts      | total cash receipts | aggr | 2450  |             |
| Disbursements | payment of accounts | det  | 1300  |             |
| Disbursements | capital expenditure | det  | 100   |             |
| Disbursements | long-term financing | det  | 600   |             |
| Disbursements | total disbursements | aggr | 1000  | 2000        |
| Balance       | net cash inflow     | drv  | 450   |             |
| Balance       | ending cash balance | drv  | 3450  |             |



for each section, the sum of all detail items must be equal to the value of the aggregate item



### Two examples of card-minimal repair

| Section       | Subsection          | Туре | Value | $R_1$ $R_2$ |
|---------------|---------------------|------|-------|-------------|
| Receipts      | beginning cash      | drv  | 3000  |             |
| Receipts      | cash sales          | det  | 2200  | 1800        |
| Receipts      | receivables         | det  | 650   | 250         |
| Receipts      | total cash receipts | aggr | 2450  |             |
| Disbursements | payment of accounts | det  | 1300  |             |
| Disbursements | capital expenditure | det  | 100   |             |
| Disbursements | long-term financing | det  | 600   |             |
| Disbursements | total disbursements | aggr | 1000  | 2000 - 2000 |
| Balance       | net cash inflow     | drv  | 450   |             |
| Balance       | ending cash balance | drv  | 3450  |             |



 the net cash inflow must be equal to the difference between total cash receipts and total disbursements



### Two examples of card-minimal repair

| Section       | Subsection          | Туре | Value | R <sub>1</sub> | F  |
|---------------|---------------------|------|-------|----------------|----|
| Receipts      | beginning cash      | drv  | 3000  |                |    |
| Receipts      | cash sales          | det  | 2200  | 1800           |    |
| Receipts      | receivables         | det  | 650   |                | 25 |
| Receipts      | total cash receipts | aggr | 2450  |                |    |
| Disbursements | payment of accounts | det  | 1300  |                |    |
| Disbursements | capital expenditure | det  | 100   |                |    |
| Disbursements | long-term financing | det  | 600   |                |    |
| Disbursements | total disbursements | aggr | 1000  | 2000           | 00 |
| Balance       | net cash inflow     | drv  | 450   |                |    |
| Balance       | ending cash balance | drv  | 3450  |                |    |



the ending cash balance must be equal to the sum of the beginning cash and the net cash inflow



## Outline

- Aggregate constraints
- Repairing strategy
- Weak Aggregate Constraints
- Preferred Repairs
- Steady aggregate constraints
- Complexity results
- Computing preferred repairs
- Experimental results
- Conclusions



# Weak aggregate constraints

- Aggregate constraints with a "weak" semantics
- In contrast with the "strong" semantics of aggregate constraints, weak aggregate constraints express conditions which reasonably hold in the actual data, although satisfying them is not mandatory
- The condition *"it is likely that cash sales are greater than or equal to 2000"* can be expressed by

 $\chi_2(\text{`cash sales'}) \ge 2000$ 

• Whereas, the condition *"it is likely that receivables are less than or equal to 400"* can be expressed by

 $\chi_2(\text{`receivables'}) \le 400$ 

where: 
$$\chi_2(ss) = SELECT \ sum(Value)$$
  
 $FROM \ CashBudget$   
 $WHERE \ Subsection = ss$ 

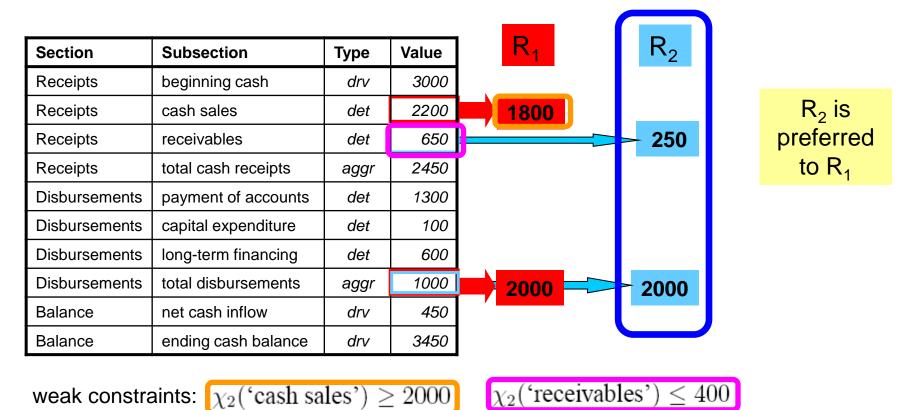


## Outline

- Aggregate constraints
- Repairing strategy
- Weak Aggregate Constraints
- Preferred Repairs
- Steady aggregate constraints
- Complexity results
- Computing preferred repairs
- Experimental results
- Conclusions



- Card-minimal repairs can be ordered according the number of conditions expressed by the set of weak constraints which are satisfied in the repaired database
- A card-minimal repair violating *n* ground weak constraints is preferred to any other card-minimal repair violating *m>n* ground weak constraints





## Outline

- Aggregate constraints
- Repairing strategy
- Weak Aggregate Constraints
- Preferred Repairs
- Steady aggregate constraints
- Complexity results
- Computing preferred repairs
- Experimental results
- Conclusions



- A restricted but expressive class of aggregate constraints
  - Computing a preferred repair for a database D w.r.t. a set of steady aggregate constraint AC and a set of steady weak aggregate constraint W can be accomplished by solving an instance of ILP problem
  - An aggregate constraint is an SAC if:
    - 1) no attributes in the WHERE clause are measure attributes



- A restricted but expressive class of aggregate constraints
  - Computing a preferred repair for a database D w.r.t. a set of steady aggregate constraint AC and a set of steady weak aggregate constraint W can be accomplished by solving an instance of ILP problem

### An aggregate constraint is an SAC if:

1) no attributes in the WHERE clause are measure attributes

Attributes whose values can be changed by a repair

• CashBudget(Section,Subsection,Type,Value)

 $CashBudget(s, ss, t, v) \implies \chi_1(s, det) - \chi_1(s, aggr) = 0$ 

where:  $\chi_1(s,t) = SELECT \ sum(Value)$   $FROM \ CashBudget$   $WHERE \ Section = s$  $AND \ Type = t$ 



- A restricted but expressive class of aggregate constraints
  - Computing a preferred repair for a database D w.r.t. a set of steady aggregate constraint AC and a set of steady weak aggregate constraint W can be accomplished by solving an instance of ILP problem
  - An aggregate constraint is an SAC if:
    - 1) no attributes in the WHERE clause are measure attributes
    - 2) no attributes corresponding to variables in the WHERE clause are measure attributes

CashBudget(Section,Subsection,Type,Value)

 $CashBudget(s, ss, t, v) \implies \chi_1(s, det) - \chi_1(s, aggr) = 0$ 

where:  $\chi_1(s,t) = SELECT \ sum(Value)$   $FROM \ CashBudget$   $WHERE \ Section = s$  $AND \ Type = t$ 



- A restricted but expressive class of aggregate constraints
  - Computing a preferred repair for a database D w.r.t. a set of steady aggregate constraint AC and a set of steady weak aggregate constraint W can be accomplished by solving an instance of ILP problem
  - An aggregate constraint is an SAC if:
    - 1) no attributes in the WHERE clause are measure attributes
    - 2) no attributes corresponding to variables in the WHERE clause are measure attributes
    - no attributes corresponding to variables shared by two atoms are measure attributes
    - CashBudget(Section,Subsection,Type,Value)

$$\begin{split} CashBudget(s,ss,t,v) \implies \chi_1(s,det) - \chi_1(s,aggr) = 0 \\ \text{where:} \ \chi_1(s,t) = & SELECT \ sum(Value) \\ & FROM \ CashBudget \end{split}$$

WHERE Section = sAND Type = t



## Outline

- Aggregate constraints
- Repairing strategy
- Weak Aggregate Constraints
- Preferred Repairs
- Steady aggregate constraints
- Complexity results
- Computing preferred repairs
- Experimental results
- Conclusions



## **Complexity Results**

- Given a database D, a set of aggregate constraints AC and a set of weak aggregate constraints W
- Deciding whether there is a preferred repair for D w.r.t. AC and W violating more than k ground weak constraints is NPcomplete
  - The problem is NP-hard even in the case that both AC and W consist of steady constraints only
- 2) Given a repair R for D w.r.t. AC, deciding whether R is a preferred repair for D w.r.t. AC and W is coNP-complete
  - The problem is coNP-hard even in the case that both AC and W consist of steady constraints only
- Steady constraints do not affect the complexity of the preferred-repair existence problem and of the preferred-repair checking problem



## Outline

- Aggregate constraints
- Repairing strategy
- Weak Aggregate Constraints
- Preferred Repairs
- Steady aggregate constraints
- Complexity results
- Computing preferred repairs
- Experimental results
- Conclusions



- Under SACs a preferred repair can be computed solving an ILP problem instance
  - 1. Strong SACs are translated into a system S of linear inequalities

| Section       | Subsection          | Туре | Value |                              |                                              |
|---------------|---------------------|------|-------|------------------------------|----------------------------------------------|
| Receipts      | beginning cash      | drv  | 3000  | →Z <sub>1</sub>              |                                              |
| Receipts      | cash sales          | det  | 2200  | $\rightarrow$ Z <sub>2</sub> | $Z_2 + Z_3 = Z_4$<br>$Z_5 + Z_6 + Z_7 = Z_8$ |
| Receipts      | receivables         | det  | 650   | →Z <sub>3</sub>              | $7_{1} + 7_{2} + 7_{3} = 7_{2}$              |
| Receipts      | total cash receipts | aggr | 2450  | $\rightarrow$ Z <sub>4</sub> |                                              |
| Disbursements | payment of accounts | det  | 1300  | $Z_5$                        | -74                                          |
| Disbursements | capital expenditure | det  | 100   | Z <sub>6</sub>               |                                              |
| Disbursements | long-term financing | det  | 600   | Z <sub>7</sub>               |                                              |
| Disbursements | total disbursements | aggr | 1000  | →Z <sub>8</sub>              |                                              |
| Balance       | net cash inflow     | drv  | 450   | $\rightarrow Z_9$            |                                              |
| Balance       | ending cash balance | drv  | 3450  | →Z <sub>10</sub>             |                                              |

 $CashBudget(s, \_, \_, \_) \implies \chi_1(s, det) - \chi_1(s, aggr) = 0$ 



- Under SACs a preferred repair can be computed solving an ILP problem instance
  - 1. Strong SACs are translated into a system S of linear inequalities
    - Each solution s of S corresponds to a repair R(s)
    - In general, R(s) is a non-minimal and non-preferred repair
  - 2. Further linear inequalities are added in order to decide whether a solution s of S corresponds to R(s) is a preferred repair



- Under SACs a preferred repair can be computed solving an ILP problem instance
  - 2. Further linear inequalities are added in order to decide whether a solution s of S corresponds to R(s) is a preferred repair

$$\min \left( \sum_{i \in \mathcal{I}_{\mathcal{AC}}} N \cdot \delta_{i} + \sum_{\omega \in gr(\mathcal{W})} \mu_{\omega} \right)$$
$$\begin{pmatrix} \mathbf{A} \times \mathbf{Z} \leq \mathbf{B} \\ y_{i} = z_{i} - v_{i} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ y_{i} \leq M \cdot \delta_{i} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ -M \cdot \delta_{i} \leq y_{i} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ \sigma_{\omega} = K_{\omega} - Q(\omega) & \forall \omega \in gr(\mathcal{W}) \\ -M \cdot \mu_{\omega} \leq \sigma_{\omega} & \forall \omega \in gr(\mathcal{W}) \\ \delta_{i} \in \{0, 1\} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ \mu_{\omega} \in \{0, 1\} & \forall \omega \in gr(\mathcal{W}) \end{cases}$$

for each database value  $v_i$  we define an integer variable  $y_i$  and a binary variable  $\delta_i$ 



- Under SACs a preferred repair can be computed solving an ILP problem instance
  - 2. Further linear inequalities are added in order to decide whether a solution s of S corresponds to R(s) is a preferred repair

$$\min\left(\sum_{i\in\mathcal{I}_{\mathcal{AC}}}N\cdot\delta_{i}+\sum_{\omega\in gr(\mathcal{W})}\mu_{\omega}\right)$$

$$\begin{cases}
\mathbf{A}\times\mathbf{Z}\leq\mathbf{B} \\
y_{i}=z_{i}-v_{i} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\
y_{i}\leq M\cdot\delta_{i} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\
-M\cdot\delta_{i}\leq y_{i} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\
\sigma_{\omega}=K_{\omega}-Q(\omega) & \forall \omega\in gr(\mathcal{W}) \\
-M\cdot\mu_{\omega}\leq\sigma_{\omega} & \forall \omega\in gr(\mathcal{W}) \\
\delta_{i}\in\{0,1\} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\
\mu_{\omega}\in\{0,1\} & \forall \omega\in gr(\mathcal{W})
\end{cases}$$



- Under SACs a preferred repair can be computed solving an ILP problem instance
  - 2. Further linear inequalities are added in order to decide whether a solution s of S corresponds to R(s) is a preferred repair

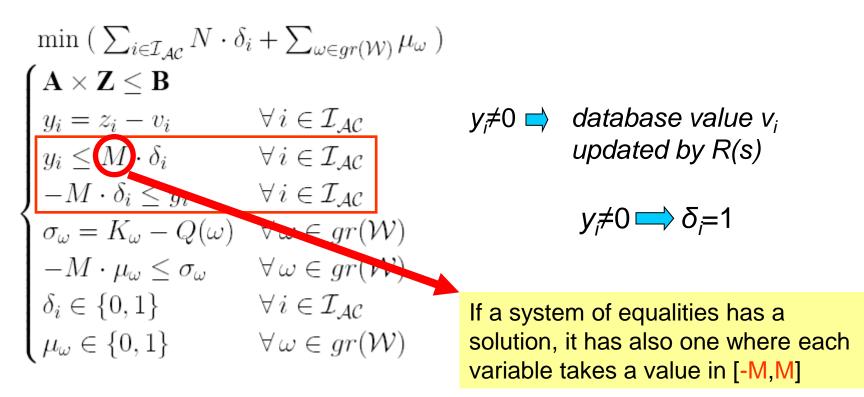
$$\min\left(\sum_{i\in\mathcal{I}_{\mathcal{AC}}}N\cdot\delta_{i}+\sum_{\omega\in gr(\mathcal{W})}\mu_{\omega}\right)$$

$$\begin{cases}
\mathbf{A}\times\mathbf{Z}\leq\mathbf{B} \\
y_{i}=z_{i}-v_{i} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\
y_{i}\leq M\cdot\delta_{i} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\
-M\cdot\delta_{i}\leq y_{i} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\
\sigma_{\omega}=K_{\omega}-Q(\omega) & \forall \omega\in gr(\mathcal{W}) \\
-M\cdot\mu_{\omega}\leq\sigma_{\omega} & \forall \omega\in gr(\mathcal{W}) \\
\delta_{i}\in\{0,1\} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\
\mu_{\omega}\in\{0,1\} & \forall \omega\in gr(\mathcal{W})
\end{cases}$$

$$y_{i}\neq 0 \Longrightarrow \delta_{i}=1$$



- Under SACs a preferred repair can be computed solving an ILP problem instance
  - 2. Further linear inequalities are added in order to decide whether a solution s of S corresponds to R(s) is a preferred repair





- Under SACs a preferred repair can be computed solving an ILP problem instance
  - 2. Further linear inequalities are added in order to decide whether a solution s of S corresponds to R(s) is a preferred repair

min (  $\sum_{i \in \mathcal{I}_{\mathcal{AC}}} N \cdot \delta_i + \sum_{\omega \in gr(\mathcal{W})} \mu_{\omega}$  )  $\mathbf{A} \times \mathbf{Z} \leq \mathbf{B}$  $\begin{cases} \mathbf{A} \times \mathbf{Z} \leq \mathbf{B} \\ y_i = z_i - v_i & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ y_i \leq M \cdot \delta_i & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ -M \cdot \delta_i \leq y_i & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ \sigma_{\omega} = K_{\omega} - Q(\omega) & \forall \omega \in gr(\mathcal{W}) \\ -M \cdot \mu_{\omega} \leq \sigma_{\omega} & \forall \omega \in gr(\mathcal{W}) \\ \delta_i \in \{0, 1\} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ \mu_{\omega} \in \{0, 1\} & \forall \omega \in gr(\mathcal{W}) \end{cases}$ 

 $y_i \neq 0 \Rightarrow database value v_i$ updated by R(s)

$$y_i \neq 0 \Longrightarrow \delta_i = 1$$

minimizing the sum of values assigned to the binary variables  $\delta_i$  means searching for card-minimal repairs



- Under SACs a preferred repair can be computed solving an ILP problem instance
  - 2. Further linear inequalities are added in order to decide whether a solution s of S corresponds to R(s) is a preferred repair

$$\min \left( \sum_{i \in \mathcal{I}_{\mathcal{AC}}} N \cdot \delta_{i} + \sum_{\omega \in gr(\mathcal{W})} \mu_{\omega} \right)$$

$$\left\{ \begin{array}{ll} \mathbf{A} \times \mathbf{Z} \leq \mathbf{B} \\ y_{i} = z_{i} - v_{i} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ y_{i} \leq M \cdot \delta_{i} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ -M \cdot \delta_{i} \leq y_{i} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ \sigma_{\omega} = K_{\omega} - Q(\omega) & \forall \omega \in gr(\mathcal{W}) \\ -M \cdot \mu_{\omega} \leq \sigma_{\omega} & \forall \omega \in gr(\mathcal{W}) \\ \delta_{i} \in \{0, 1\} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ \mu_{\omega} \in \{0, 1\} & \forall \omega \in gr(\mathcal{W}) \\ \end{array} \right.$$

for each ground weak constraint  $\omega$  we define a variable  $\sigma_{\omega}$  and a binary variable  $\mu_{\omega}$ 

 $\sigma_{\omega}$  < 0 means constraint  $\omega$  violated

| $\omega = \chi_2(\text{`cash sales'})$ | $) \ge 2000$ |
|----------------------------------------|--------------|
|----------------------------------------|--------------|

| Section  | Subsection | Туре | Value |                              |
|----------|------------|------|-------|------------------------------|
|          |            |      |       |                              |
| Receipts | cash sales | det  | 2200  | $\rightarrow$ Z <sub>2</sub> |
|          |            |      |       |                              |

 $\sigma_{\omega}$  = 2000 -  $z_2$ 



- Under SACs a preferred repair can be computed solving an ILP problem instance
  - 2. Further linear inequalities are added in order to decide whether a solution s of S corresponds to R(s) is a preferred repair

$$\min \left( \sum_{i \in \mathcal{I}_{\mathcal{AC}}} N \cdot \delta_{i} + \sum_{\omega \in gr(\mathcal{W})} \mu_{\omega} \right)$$

$$\left\{ \begin{array}{ll} \mathbf{A} \times \mathbf{Z} \leq \mathbf{B} \\ y_{i} = z_{i} - v_{i} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ y_{i} \leq M \cdot \delta_{i} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ -M \cdot \delta_{i} \leq y_{i} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ \sigma_{\omega} = K_{\omega} - Q(\omega) & \forall \omega \in gr(\mathcal{W}) \\ \hline -M \cdot \mu_{\omega} \leq \sigma_{\omega} & \forall \omega \in gr(\mathcal{W}) \\ \hline \delta_{i} \in \{0, 1\} & \forall i \in \mathcal{I}_{\mathcal{AC}} \\ \mu_{\omega} \in \{0, 1\} & \forall \omega \in gr(\mathcal{W}) \end{array} \right\}$$

for each ground constraint  $\omega$ we define a variable  $\sigma_{\omega}$  and a binary variable  $\mu_{\omega}$ 

 $\sigma_{\omega}$  < 0 means constraint  $\omega$  violated

$$\sigma_{\omega} < 0 \implies \mu_{\omega} = 1$$



- Under SACs a preferred repair can be computed solving an ILP problem instance
  - 2. Further linear inequalities are added in order to decide whether a solution s of S corresponds to R(s) is a preferred repair

$$\min\left(\sum_{i\in\mathcal{I}_{\mathcal{AC}}}N\cdot\delta_{i}+\sum_{\omega\in gr(\mathcal{W})}\mu_{\omega}\right)$$
  

$$\left\{ \begin{aligned} \mathbf{A}\times\mathbf{Z}\leq\mathbf{B} \\ y_{i}&=z_{i}-v_{i} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\ y_{i}&\leq M\cdot\delta_{i} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\ -M\cdot\delta_{i}&\leq y_{i} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\ \sigma_{\omega}&=K_{\omega}-Q(\omega) & \forall \omega\in gr(\mathcal{W}) \\ -M\cdot\mu_{\omega}&\leq \sigma_{\omega} & \forall \omega\in gr(\mathcal{W}) \\ \delta_{i}\in\{0,1\} & \forall i\in\mathcal{I}_{\mathcal{AC}} \\ \mu_{\omega}\in\{0,1\} & \forall \omega\in gr(\mathcal{W}) \end{aligned} \right.$$

for each ground constraint  $\omega$ we define a variable  $\sigma_{\omega}$  and a binary variable  $\mu_{\omega}$ 

 $\sigma_{\omega}$  < 0 means constraint  $\omega$  violated

$$\sigma_{\omega} < 0 \implies \mu_{\omega} = 1$$

minimizing the sum of values assigned to the binary variables  $\mu_{\omega}$  means searching for card-minimal repairs violating as few weak constraints as possible



 Under SACs a preferred repair can be computed solving an ILP problem instance

$$\min \left( \sum_{i \in \mathcal{I}_{\mathcal{AC}}} N \cdot \delta_{i} + \sum_{\omega \in gr(\mathcal{W})} \mu_{\omega} \right)$$

$$\left( \mathbf{A} \times \mathbf{Z} \leq \mathbf{B} \right)$$

$$y_{i} = z_{i} - v_{i} \qquad \forall i \in \mathcal{I}_{\mathcal{AC}}$$

$$y_{i} \leq M \cdot \delta_{i} \qquad \forall i \in \mathcal{I}_{\mathcal{AC}}$$

$$-M \cdot \delta_{i} \leq y_{i} \qquad \forall i \in \mathcal{I}_{\mathcal{AC}}$$

$$\sigma_{\omega} = K_{\omega} - Q(\omega) \qquad \forall \omega \in gr(\mathcal{W})$$

$$-M \cdot \mu_{\omega} \leq \sigma_{\omega} \qquad \forall \omega \in gr(\mathcal{W})$$

$$\delta_{i} \in \{0, 1\} \qquad \forall i \in \mathcal{I}_{\mathcal{AC}}$$

$$\mu_{\omega} \in \{0, 1\} \qquad \forall \omega \in gr(\mathcal{W})$$

every optimal solution of this problem corresponds to an M-bounded preferred repair and vice versa



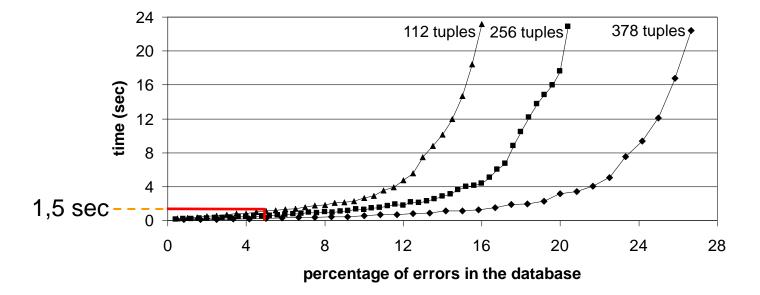
#### Outline

- Aggregate constraints
- Repairing strategy
- Weak Aggregate Constraints
- Preferred Repairs
- Steady aggregate constraints
- Complexity results
- Computing preferred repairs
- Experimental results
- Conclusions



#### **Experimental Results**

- Application context: balance-sheet data
  - the number of item occurring in a balance-sheet is unlikely to be greater than 400
  - the percentage of erroneous items is less than 5% of the acquired data
- Time employed for computing a *preferred* repair

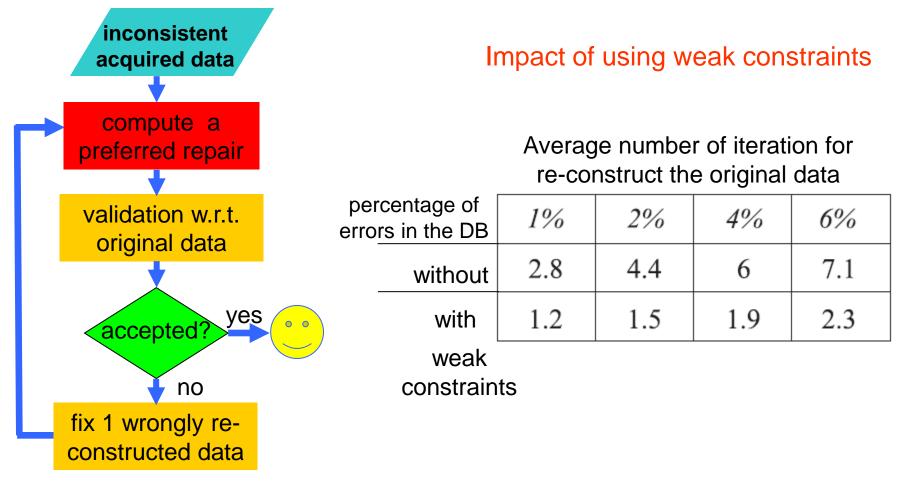


• The technique can be effectively employed in the balance-sheet context



#### **Experimental Results**

• The prototype can be used in a semi-automatic system for fixing data acquisition errors





#### Conclusions

- A framework for computing preferred repairs in numerical data violating a given set of strong and weak aggregate constraints has been proposed
- The proposed approach exploits a transformation of the problem of computing a preferred repair into an instance of ILP problem
  - standard techniques addressing ILP problem can be re-used for computing a preferred repair
- The prototype can be used in a semi-automatic system for fixing data acquisition errors
  - Experimental results prove the effectiveness in the balance-sheet context

UNIVERSITÀDELLA CALABRIA



#### Thank you!

...any questions?