Introduction	SPOT databases	Repairs	Consistent Answers	Experiments	Other semantics	Conclusions and future work

Repairs and Consistent Answers for Inconsistent Probabilistic Spatio-Temporal Databases

Francesco Parisi¹ John Grant²

¹Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria, Italy, email: fparisi@dimes.unical.it ²Department of Computer Science and UMIACS, University of Maryland, College Park, USA, email: grant@cs.umd.edu

8th International Conference on Scalable Uncertainty Management St. Anne's College, Oxford, UK, September 15-17, 2014

Introduction ••••••	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Motivation						

Tracking moving objects (1/2)

 Tracking moving objects is fundamental in several application contexts (e.g. environment protection, product traceability, traffic monitoring, mobile tourist guides, analysis of animal behavior, etc.)

http://www.merl.com/publications/TR2008-010

http://www.edimax.com/au/

http://iris.usc.edu/people/medioni/curren t_research.html

http://www.i3b.org/content/wildlife-behavior

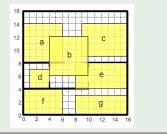

http://www.science20.com/news_articles/german_researc h_center_artificial_intelligence_smart_eye_tracking_glass

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Motivation						

Tracking moving objects (2/2)

• Location estimation techniques have limited accuracy and precision

- limitations of technologies used (e.g. GPS, Cellular networks, WiFi, Bluetooth, RFID, etc.)
- limitations of the estimation methods (e.g., proximity to antennas, triangulation, signal strength sample map, dead reckoning, etc.)

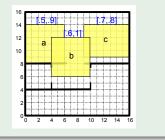


object inside a region at a time with (uncertain) probability

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Motivation						
SP01	F framew	vork				

- SPOT : a declarative framework for the representation and processing of probabilistic spatio-temporal data with uncertain probabilities [Parker, Subrahmanian, Grant. TKDE '07]
- A SPOT database is a set of atoms *loc(id, r, t)*[*l*, *u*]
- *loc(id, r, t)*[ℓ, u] means that "object *id* is/was/will be inside region r at time t with probability in the interval [ℓ, u]".

 $\begin{array}{l} A_1 = loc(id_1, a, 3)[.5, .9] \\ A_2 = loc(id_1, b, 3)[.6, 1] \\ A_3 = loc(id_1, c, 3)[.7, .8] \end{array}$


Introduction	SPOT databases	Repairs	Consistent Answers	Experiments	Other semantics	Conclusions and future work
000000						
Motivation						

Inconsistency in probabilistic spatio-temporal data

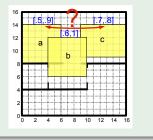
- Recognizing process getting SPOT atoms not error-free
- Data coming from different sensors may be inconsistent (i.e., entailing that an object is in two places at the same time)

Example

$$\begin{array}{l} A_1 = loc(id_1, a, 3)[.5, .9] \\ A_2 = loc(id_1, b, 3)[.6, 1] \\ A_3 = loc(id_1, c, 3)[.7, .8] \end{array}$$

• Can we extract reliable information from inconsistent probabilistic spatio-temporal databases?

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Motivation						

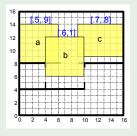

Inconsistency in probabilistic spatio-temporal data

- Recognizing process getting SPOT atoms not error-free
- Data coming from different sensors may be inconsistent (i.e., entailing that an object is in two places at the same time)

Example

 $\begin{array}{l} A_1 = loc(id_1, a, 3)[.5, .9] \\ A_2 = loc(id_1, b, 3)[.6, 1] \\ A_3 = loc(id_1, c, 3)[.7, .8] \end{array}$

object id_1 cannot be at the same time with probability greater than .5 in region *a* and with probability greater than .7 in region *c* (disjoint from *a*)

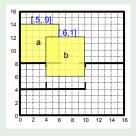


• Can we extract reliable information from inconsistent probabilistic spatio-temporal databases?

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Contribution						
Repai	irs					

- Two strategies for restoring consistency of a SPOT database *D*:
 - S-repairs are maximal consistent subsets of D
 - PU-repairs "minimally" update the probability bounds of the atoms in D

$$D = \{A_1, A_2, A_3\}, \text{ where:} \\ A_1 = loc(id_1, a, 3)[.5, .9] \\ A_2 = loc(id_1, b, 3)[.6, 1] \\ A_3 = loc(id_1, c, 3)[.7, .8] \end{cases}$$

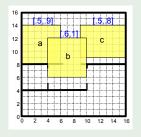


• PTIME algorithms for computing S- and PU-repairs

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Contribution						
Repai	irs					

- Two strategies for restoring consistency of a SPOT database *D*:
 - S-repairs are maximal consistent subsets of D
 - PU-repairs "minimally" update the probability bounds of the atoms in D

 $D' = \{A_1, A_2\}$ is an S-repair for D



• PTIME algorithms for computing S- and PU-repairs

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Contribution						
Repai	rs					

- Two strategies for restoring consistency of a SPOT database *D*:
 - S-repairs are maximal consistent subsets of D
 - PU-repairs "minimally" update the probability bounds of the atoms in D

 $D' = \{A_1, A_2\}$ is an *S*-repair for *D* $D'' = \{A_1, A_2, A'_3\}$ with $A'_3 = loc(id_1, c, 3)[.5, .8]$ is a *PU*-repair for *D*

• PTIME algorithms for computing S- and PU-repairs

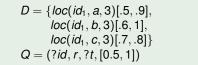
Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Contribution						
Cons	istent An	iswers	5			

 Selection query (?id, r, ?t, [ℓ, u]): find all objects id and times t such that id is inside region r at time t with a probability in the interval [ℓ, u]

• An S-consistent (resp. PU-consistent) answer to a selection query is an answer that can be obtained by every S-repair (resp. PU-repair)

Example

$$D = \{loc(id_1, a, 3)[.5, .9], \\ loc(id_1, b, 3)[.6, 1], \\ loc(id_1, c, 3)[.7, .8]\} \\ Q = (?id, r, ?t, [0, 5, 1])$$

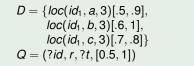

 $(id_1, 3)$ is a PU-consistent answer to Q, but not an S-consistent answer

• Deciding whether $\langle id, t \rangle$ is a consistent answer is

- coNP-complete for S-repair semantics
- PTIME for PU-repair semantics
- Experimental evaluation of algorithms for computing *PU*-repairs and *PU*-consistent answers.

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Contribution						
Cone	ictont Δn	ICIMOR				

- Selection query (?id, r, ?t, [ℓ, u]): find all objects id and times t such that id is inside region r at time t with a probability in the interval [ℓ, u]
- An *S*-consistent (resp. *PU*-consistent) answer to a selection query is an answer that can be obtained by every *S*-repair (resp. *PU*-repair)


 $(id_1,3)$ is a PU-consistent answer to Q, but not an S-consistent answer


- Deciding whether $\langle id, t \rangle$ is a consistent answer is
 - coNP-complete for S-repair semantics
 - PTIME for PU-repair semantics

• Experimental evaluation of algorithms for computing *PU*-repairs and *PU*-consistent answers.

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Contribution						
Cone	ictont Δn	ICIMOR				

- Selection query (?id, r, ?t, [ℓ, u]): find all objects id and times t such that id is inside region r at time t with a probability in the interval [ℓ, u]
- An S-consistent (resp. PU-consistent) answer to a selection query is an answer that can be obtained by every S-repair (resp. PU-repair)

 $(id_1,3)$ is a PU-consistent answer to Q, but not an S-consistent answer

- Deciding whether $\langle id, t \rangle$ is a consistent answer is
 - coNP-complete for S-repair semantics
 - PTIME for PU-repair semantics
- Experimental evaluation of algorithms for computing *PU*-repairs and *PU*-consistent answers.

Introduction	SPOT databases	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O

Outline

- Motivation
- Contribution
- SPOT databases
 - Syntax
 - Semantics

3 Repairs

- Repairing strategies
- Checking and Computing Repairs
- 4 Consistent Answers
 - S- and PU-consistent selection query answers
 - Complexity of S- and PU-CQA
- 5 Experiments
- Other semantics
- Conclusions and future work

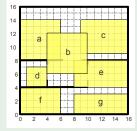
Introduction 000000	SPOT databases ●OOOOO	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Syntax						
SPOT	atom					

- Notation:
 - ID is the set of objects identifiers
 - Space is a grid of $N \times N$ points
 - T is the set of time points
- An object can be in only one location at a time
- A single location may contain more than one object

Definition (SPOT atom)

A SPOT atom is of the form $loc(id, r, t)[\ell, u]$, where

- *id* ∈ *ID* is an object id
- $r \subseteq Space$ is a region in the space
- $t \in T$ is a time point,
- $[\ell, u] \subseteq [0, 1]$ is a probability interval


Introduction 000000	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Syntax						
SPO	Γ databa	se				

Definition (SPOT database)

A SPOT database is a finite set of SPOT atoms

Example

$$D = \{loc(id_1, d, 1)[.9, 1] \\ loc(id_1, b, 3)[.6, 1] \\ loc(id_1, c, 3)[.7, .8] \\ loc(id_2, b, 1)[.5, .9] \\ loc(id_2, e, 2)[.2, .5] \\ loc(id_3, e, 1)[.6, .9] \}$$

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Semantics						
SPO	Г interpre	etatior	I			

Definition (Interpretation)

A SPOT *interpretation* is a function $I : ID \times Space \times T \rightarrow [0, 1]$ such that for each $id \in ID$ and $t \in T$, $\sum_{p \in Space} I(id, p, t) = 1$

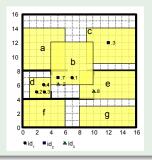
= 0.7 0.3 0.9 = 0.1 0.60.4

• For *id* and *t*, $I^{id,t}(p) = I(id, p, t)$ is a PDF over Space

Example

$l(id_1, (3, 6), 1) = 0.4$	$l(id_1, (7, 5), 2) = 0.5$	$l(id_1, (10, 10), 3)$
$l(id_1, (3, 5), 1) = 0.3$	$I(id_1, (4, 2), 2) = 0.5$	$l(id_1, (7, 5), 3) =$
$l(id_1, (2, 5), 1) = 0.2$	$I(id_2, (9, 7), 2) = 0.3$	$I(id_2, (8,7), 3) =$
$l(id_1, (7,7), 1) = 0.1$	$l(id_2, (12, 13), 2) = 0.7$	$l(id_2, (11, 15), 3)$
$I(id_2, (5,7), 1) = 0.7$	$I(id_3, (5, 5), 2) = 0.5$	$l(id_3, (5, 3), 3) =$
$l(id_2, (12, 12), 1) = 0.3$	$I(id_3, (6, 5), 2) = 0.5$	$l(id_3, (5, 6), 3) =$
$l(id_3, (10, 5), 1) = 0.8$		
$l(id_3, (5, 6), 1) = 0.2$		
l(id, p, t) = 0 for all triplets (id	<i>t</i> , <i>p</i> , <i>t</i>) not mentioned above	

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Semantics						
SPO	Г interpre	etatior	I			

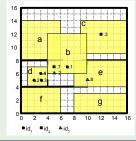

Definition (Interpretation)

A SPOT *interpretation* is a function $I : ID \times Space \times T \rightarrow [0, 1]$ such that for each $id \in ID$ and $t \in T$, $\sum_{p \in Space} I(id, p, t) = 1$

• For *id* and *t*, $I^{id,t}(p) = I(id, p, t)$ is a PDF over *Space*

Example (Time point 1)

$$\begin{split} &l(id_1,(3,6),1)=0.4\\ &l(id_1,(3,5),1)=0.3\\ &l(id_1,(2,5),1)=0.2\\ &l(id_1,(7,7),1)=0.1\\ &l(id_2,(5,7),1)=0.7\\ &l(id_2,(12,12),1)=0.3\\ &l(id_3,(10,5),1)=0.8\\ &l(id_3,(5,6),1)=0.2\\ &l(id,p,1)=0 \text{ for all triplets } (id,p,1)\\ &\text{ not mentioned above} \end{split}$$


Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics 00	Conclusions and future work O
Semantics						
SPOT	[model					

Definition (Satisfaction)

A SPOT interpretation *I* satisfies SPOT atom $loc(id, r, t)[\ell, u]$ (denoted as $I \models loc(id, r, t)[\ell, u]$) iff $\sum_{p \in r} I(id, p, t) \in [\ell, u]$

Example (Time point 1)

$$\begin{split} &I(id_1, (3, 6), 1) = 0.4 \\ &I(id_1, (3, 5), 1) = 0.3 \\ &I(id_1, (2, 5), 1) = 0.2 \\ &I(id_1, (7, 7), 1) = 0.1 \\ &I(id_2, (5, 7), 1) = 0.7 \\ &I(id_2, (12, 12), 1) = 0.3 \\ &I(id_3, (10, 5), 1) = 0.8 \\ &I(id_3, (5, 6), 1) = 0.2 \end{split}$$

 $D = \{ loc(id_1, d, 1)[.9, 1] \\ loc(id_1, b, 3)[.6, 1] \\ loc(id_1, c, 3)[.7, .8] \\ loc(id_2, b, 1)[.5, .9] \\ loc(id_2, e, 2)[.2, .5] \\ loc(id_3, e, 1)[.6, .9] \}$

Definition (SPOT model)

An interpretation I is a model for a database D iff I satisfies every atom in D

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics 00	Conclusions and future work O
Semantics						
SPOT	[model					

Definition (Satisfaction)

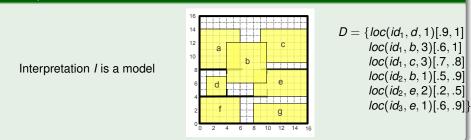
A SPOT interpretation *I* satisfies SPOT atom $loc(id, r, t)[\ell, u]$ (denoted as $I \models loc(id, r, t)[\ell, u]$) iff $\sum_{p \in r} I(id, p, t) \in [\ell, u]$

Example (Time point 1)

$$\begin{split} &I(id_1, (3, 6), 1) = 0.4 \\ &I(id_1, (3, 5), 1) = 0.3 \\ &I(id_1, (2, 5), 1) = 0.2 \\ &I(id_1, (7, 7), 1) = 0.1 \\ &I(id_2, (5, 7), 1) = 0.7 \\ &I(id_2, (12, 12), 1) = 0.3 \\ &I(id_3, (10, 5), 1) = 0.8 \\ &I(id_3, (5, 6), 1) = 0.2 \end{split}$$

 $D = \{ loc(id_1, d, 1)[.9, 1] \\ loc(id_1, b, 3)[.6, 1] \\ loc(id_1, c, 3)[.7, .8] \\ loc(id_2, b, 1)[.5, .9] \\ loc(id_2, e, 2)[.2, .5] \\ loc(id_3, e, 1)[.6, .9] \}$

Definition (SPOT model)

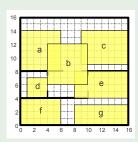

An interpretation I is a model for a database D iff I satisfies every atom in D

Introduction	SPOT databases ○○○○●○	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Semantics						
Cons	istencv					

Definition (Consistency)

A SPOT database is consistent iff it there is a model for it

Example


It can be checked in PTIME [Parker, Subrahmanian, Grant. TKDE '07]

Introduction	SPOT databases	Repairs	Consistent Answers	Experiments	Other semantics	Conclusions and future work
	00000					
Semantics						

Example of Inconsistent Database

Example

 $\begin{array}{l} at_1 = loc(id_1, d, 1)[.9, 1] \\ at_2 = loc(id_1, a, 3)[.5, .9] \\ at_3 = loc(id_1, b, 3)[.6, 1] \\ at_4 = loc(id_1, c, 3)[.7, .8] \\ at_5 = loc(id_2, b, 1)[.5, .9] \\ at_6 = loc(id_2, e, 2)[.3, .5] \\ at_7 = loc(id_2, f, 2)[.5, .7] \\ at_8 = loc(id_2, g, 2)[.9, 1] \\ at_9 = loc(id_3, c, 1)[.5, .8] \\ at_{10} = loc(id_3, e, 1)[.6, .9] \end{array}$

There is an inconsistency for object id_1 at time 3, for object id_2 at time 2, and for object id_3 at time 1

Introduction	SPOT databases	Repairs	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O

Outline

- Motivation
- Contribution

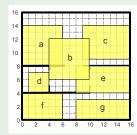
2 SPOT databases

- Syntax
- Semantics

Repairs

- Repairing strategies
- Checking and Computing Repairs
- Consistent Answers
 - S- and PU-consistent selection query answers
 - Complexity of S- and PU-CQA
- 5 Experiments
- Other semantics
- Conclusions and future work

Introduction 000000	SPOT databases	Repairs •00000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Repairing strate	egies					
S-rep	airs					


Minimally modify the original database in order to restore consistency

Definition (S-repair)

An S-repair for a SPOT database D is a maximal consistent subset of D

Example

 $\begin{array}{l} at_1 = loc(id_1, d, 1)[.9, 1] \\ at_2 = loc(id_1, a, 3)[.5, .9] \\ at_3 = loc(id_1, b, 3)[.6, 1] \\ at_4 = loc(id_1, c, 3)[.7, .8] \\ at_5 = loc(id_2, b, 1)[.5, .9] \\ at_6 = loc(id_2, e, 2)[.3, .5] \\ at_7 = loc(id_2, f, 2)[.5, .7] \\ at_8 = loc(id_2, g, 2)[.9, 1] \\ at_9 = loc(id_3, e, 1)[.5, .8] \\ at_{10} = loc(id_3, e, 1)[.6, .9] \end{array}$

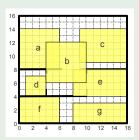
Each S-repairs consists of -at₁

-either *at*₂ and *at*₃ or *at*₃ and *at*₄ -*at*₅

-either at_6 and at_7 or at_8 -either at_9 or at_{10}

e.g. $\{at_1, at_2, at_3, at_5, at_8, at_9\}$

Introduction 000000	SPOT databases	Repairs O●OOOO	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Repairing strate	egies					
<i>PU</i> -re	epairs					


 A probability-interval updated atom for a = loc(id, r, t)[ℓ, u] is a' = loc(id, r, t)[ℓ', u'] where [ℓ', u'] ⊇ [ℓ, u]

Definition (PU-repair)

A *PU*-repair for a SPOT database *D* is a consistent SPOT database *D'* consisting of a probability-interval update atom *a'* for each $a \in D$ and s.t. $\sum_{a \in D} (\ell - \ell') + (u' - u)$ is minimum.

Example

 $\begin{array}{l} at_1 = loc(id_1, d, 1)[.9, 1] \\ at_2 = loc(id_1, a, 3)[.5, .9] \\ at_3 = loc(id_1, b, 3)[.6, 1] \\ at_4 = loc(id_1, c, 3)[.7, .8] \\ at_5 = loc(id_2, b, 1)[.5, .9] \\ at_6 = loc(id_2, e, 2)[.3, .5] \\ at_7 = loc(id_2, f, 2)[.5, .7] \\ at_8 = loc(id_2, g, 2)[.9, 1] \\ at_9 = loc(id_3, e, 1)[.5, .8] \\ at_{10} = loc(id_3, e, 1)[.6, .9] \end{array}$

$$\begin{array}{l} at_1' = at_1 \\ at_2' = loc(id_1, a, 3)[.3, .9] \\ at_3' = at_3 \\ at_4' = at_4 \\ at_5' = at_5 \\ at_6' = loc(id_2, e, 2)[.1, .5] \\ at_7' = loc(id_2, f, 2)[.1, .7] \\ at_8' = loc(id_2, g, 2)[.8, 1] \\ at_9' = loc(id_3, e, 1)[.45, .8] \\ at_{10}' = loc(id_3, e, 1)[.55, .9] \end{array}$$

Introduction 000000	SPOT databases	Repairs 00●000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Repairing strate	gies					
		-				

Properties of S- and PU-repairs

- There are exponentially many S-repairs for a SPOT database
- There are infinitely many PU-repairs for a SPOT database
- An S-repair and a PU-repair for a SPOT database always exist
- A repair for a SPOT database can be obtained by looking at one $\langle id, t \rangle$ pair at a time

Given a SPOT database D, $D_{id,t} = \{loc(id', r', t')[\ell', u'] \in D \mid id' = id \land t' = t\}$ be the set of atoms referring to $\langle id, t \rangle$

Proposition (Repair modularity)

A SPOT database D' is an S-repair (resp. PU-repair) for D, iff $D' = \bigcup_{id \in ID, t \in T} D'_{id,t}$, where $D'_{id,t}$ is an S-repair (resp. PU-repair) for $D_{id,t}$.

Introduction 000000	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Checking and C	Computing Repairs					

maximal Subset semantics

Theorem (Complexity of checking S-repairs)

Let D, D' be SPOT DBs. Deciding whether D' is an S-repair for D is in PTIME.

• Proof Hint: $\forall a \in D \setminus D'$ check that $D' \cup \{a\}$ is not consistent.

Corollary (Complexity of computing S-repairs)

An S-repair for SPOT database can be computed in PTIME.

- An S-repair for D can be computed as the union of S-repairs for D_{id,t}
- 1) $D'_{id,t} = \emptyset$
- 2) scan $D_{id,t}$ according to any total ordering, and for each $a \in D_{id,t}$
- 2) if $D'_{id,t} \cup \{a\}$ is consistent, then $D'_{id,t} = D'_{id,t} \cup \{a\}$

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Checking and C	computing Repairs					

maximal Subset semantics

Theorem (Complexity of checking S-repairs)

Let D, D' be SPOT DBs. Deciding whether D' is an S-repair for D is in PTIME.

• Proof Hint: $\forall a \in D \setminus D'$ check that $D' \cup \{a\}$ is not consistent.

Corollary (Complexity of computing S-repairs)

An S-repair for SPOT database can be computed in PTIME.

- An S-repair for D can be computed as the union of S-repairs for D_{id,t}
- 1) $D'_{id,t} = \emptyset$
- 2) scan $D_{id,t}$ according to any total ordering, and for each $a \in D_{id,t}$
- 2) if $D'_{id,t} \cup \{a\}$ is consistent, then $D'_{id,t} = D'_{id,t} \cup \{a\}$

Introduction	SPOT databases	Repairs	Consistent Answers	Experiments	Other semantics	Conclusions and future work
		000000				
Checking and Co	omputing Repairs					

 Linear programming problem PULP(D, id, t) whose optimal solutions encode PU-repairs for D_{id,t}

Definition (PULP(D, id, t)))

$$\begin{array}{ll} \textit{minimize } \sum_{a_i \in D_{id,t}} \textit{low}_i + up_i \textit{ subject to:} \\ \left\{ \begin{array}{ll} 1 & \forall a_i = \textit{loc}(\textit{id}, r_i, t) [\ell_i, u_i] \in D_{id,t} \\ & \ell_i - \textit{low}_i \leq \sum_{p \in r_i} v_p \leq u_i + up_i \\ & 0 \leq \textit{low}_i \leq \ell_i \\ & 0 \leq up_i \leq 1 - u_i \\ 2) & \sum_{p \in \textit{Space}} v_p = 1 \\ & 3) & \forall p \in \textit{Space} \quad v_p \geq 0 \end{array} \right.$$

- v_p represents the probability that *id* is at point $p \in Space$ at time *t*
- *low_i* and *up_i* represent the probability-interval update of atom *a_i*

Introduction	SPOT databases	Repairs	Consistent Answers	Experiments	Other semantics	Conclusions and future work
		000000				
Checking and C	Computing Repairs					

• Let σ be a solution of PULP(D, id, t). Let $D_{id,t}(\sigma)$ be the SPOT database obtained from $D_{id,t}$ by replacing each atom $a_i = loc(id, r_i, t)[\ell_i, u_i] \in D_{id,t}$ with the probability-interval updated atom $a'_i = loc(id, r_i, t)[\ell_i - \sigma[low_i], u_i + \sigma[up_i]]$

Theorem (Relationship between PULP solutions and PU-repairs)

For each optimal solution σ of PULP(D, id, t), $D_{id,t}(\sigma)$ is a PU-repair for $D_{id,t}$. Moreover, every optimal solution σ for PULP(D, id, t) one-to-one corresponds to a model for PU-repair $D_{id,t}(\sigma)$ for $D_{id,t}$, and vice versa.

Corollary (Complexity of checking PU-repairs)

Deciding whether D' is a PU-repair for SPOT DB D is in PTIME.

Corollary (Complexity of computing PU-repairs) A PU-repair for SPOT database D can be computed in PTIM

Introduction	SPOT databases	Repairs	Consistent Answers	Experiments	Other semantics	Conclusions and future work
		000000				
Checking and C	Computing Repairs					

• Let σ be a solution of PULP(D, id, t). Let $D_{id,t}(\sigma)$ be the SPOT database obtained from $D_{id,t}$ by replacing each atom $a_i = loc(id, r_i, t)[\ell_i, u_i] \in D_{id,t}$ with the probability-interval updated atom $a'_i = loc(id, r_i, t)[\ell_i - \sigma[low_i], u_i + \sigma[up_i]]$

Theorem (Relationship between PULP solutions and PU-repairs)

For each optimal solution σ of PULP(D, id, t), $D_{id,t}(\sigma)$ is a PU-repair for $D_{id,t}$. Moreover, every optimal solution σ for PULP(D, id, t) one-to-one corresponds to a model for PU-repair $D_{id,t}(\sigma)$ for $D_{id,t}$, and vice versa.

Corollary (Complexity of checking PU-repairs)

Deciding whether D' is a PU-repair for SPOT DB D is in PTIME.

Corollary (Complexity of computing PU-repairs)

A PU-repair for SPOT database D can be computed in PTIME.

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O

Outline

- Motivation
- Contribution
- 2 SPOT databases
 - Syntax
 - Semantics

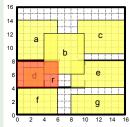
3 Repairs

- Repairing strategies
- Checking and Computing Repairs
- Consistent Answers
 - S- and PU-consistent selection query answers
 - Complexity of S- and PU-CQA

Experiments

- Other semantics
- Conclusions and future work

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O	
S- and PU-cons	S- and PU-consistent selection query answers						
Selec	tion que	ries					


A selection query asks to find all objects *id* and times *t* such that *id* is
inside a given region *r* at time *t* with a probability in a given interval [*l*, *u*]

Definition (Selection Query Answers)

(id, t) is an answer to selection query $(?id, r, ?t, [\ell, u])$ w.r.t. SPOT database *D* iff for every model *M* for *D*, $M \models loc(id, r, t)[\ell, u]$.

Example

$$D = \{loc(id_1, d, 1)[.9, 1] \\ loc(id_1, b, 3)[.6, 1] \\ loc(id_1, c, 3)[.7, .8] \\ loc(id_2, b, 1)[.5, .9] \\ loc(id_2, e, 2)[.2, .5] \\ loc(id_3, e, 1)[.6, .9] \}$$

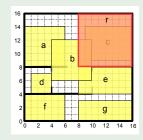
$$Q = (?id, r, ?t, [.75, 1])$$

Answer: $\langle id_1, 1 \rangle$

Who and when was in r with probability greater than .75?

Introduction	SPOT databases	Repairs	Consistent Answers	Experiments	Other semantics	Conclusions and future work
			00000			
S- and PU-consi	istent selection query ar	nswers				

S- and PU-consistent queries


• X stands for either S or PU

Definition (X-Consistent Selection Query Answers)

Given a SPOT database *D* and a selection query $Q = (?id, r, ?t, [\ell, u]), \langle id, t \rangle$ is an *X*-consistent answer to *Q* w.r.t. *D* iff for each X-repair *D'* for *D*, $\langle id, t \rangle$ is an answer to *Q* w.r.t. *D'*.

Example

$$\begin{array}{l} at_1 = loc(id_1, d, 1)[.9, 1] \\ at_2 = loc(id_1, a, 3)[.5, .9] \\ at_3 = loc(id_1, b, 3)[.6, 1] \\ at_4 = loc(id_1, c, 3)[.7, .8] \\ at_5 = loc(id_2, b, 1)[.5, .9] \\ at_6 = loc(id_2, e, 2)[.3, .5] \\ at_7 = loc(id_2, f, 2)[.5, .7] \\ at_8 = loc(id_2, g, 2)[.9, 1] \\ at_9 = loc(id_3, e, 1)[.5, .8] \\ at_{10} = loc(id_3, e, 1)[.6, .9] \end{array}$$

$$Q = (?id, r, ?t, [0.5, 1])$$

 $\langle id_1, 3 \rangle$ is a *PU*-consistent answer to *Q*

The set of *S*-consistent answers is empty

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O
Complexity of S	- and PU-CQA					

maximal Subset semantics

Theorem (Complexity S-CQA)

Deciding whether $\langle id, t \rangle$ is an S-consistent answer to selection query Q w.r.t. SPOT database D is coNP-complete.

- Membership: Use that S-repair checking, and checking whether (*id*, *t*) is not an answer to *Q*, is in PTIME
- Hardness: Reduction from SUBSET SUM

Example

Set $S = \{2, 4, 5\}$	$Space = \{p_1, p_2, p_3, p_4\}$	$D = \{at_1 = loc(id, \{p_1\}, 0)[0, 0]\}$
Constant $C = 7$	$ID = \{id\}$	$at'_1 = loc(id, \{p_1\}, 0)[\frac{2}{10}, \frac{2}{7}]$
	T = 0	$at_2 = loc(id, \{p_2\}, 0)[0, 0]$
		$at'_{2} = loc(id, \{p_{2}\}, 0)[\frac{4}{10}, \frac{4}{7}]$
	$Q = (?id, \{p_4\}, ?t, [\frac{1}{7}, 1])$	$at_3 = loc(id, \{p_3\}, 0)[0, 0]$
		$at'_3 = loc(id, \{p_3\}, 0)[rac{5}{10}, rac{5}{7}]\}$

- (id, 0) is not an S-CQA to Q w.r.t. D iff there is $S' \subseteq S$ s.t. $\sum_{s_i \in S'} s_i = C$
- $R = \{at'_1, at_2, at'_3\}$ is a repair for D s.t. (id, 0) is not an answer to Q w.r.t. R
- $R = \{at'_1, at_2, at'_3\}$ corresponds to subset $\{2, 5\}$ s.t. 2 + 5 = 7

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments	Other semantics	Conclusions and future work
Complexity of S- a		000000				

- PTIME algorithm PU-CQAs
- 1) Compute the minimum cost o^* of *PU*-repairs for $D_{id,t}$, by *PULP*(D, id, t)
- 2) Use o* to construct and solve two additional LP problems (defined below)
- Decide whether (*id*, *t*) is a PU-consistent answer by using the optimal values of these LP problems

Definition (PU- $CQA^{\ell}(D, Q, id, t)$ (resp. PU- $CQA^{u}(D, Q, id, t)$))

Let o^* be the optimal value of PULP(D, id, t), and $Q = (?id, r, ?t, [\ell, u])$. $PU-CQA^{\ell}(D, Q, id, t)$ (resp. $PU-CQA^{u}(D, Q, id, t)$) is as follows: *minimize* (resp., *maximize*) $\sum_{p \in r} v_p$ *subject to:*

$$\begin{array}{ll} (\begin{array}{ccc} 1) & \forall a_i = loc(id, r_i, t)[\ell_i, u_i] \in D_{id,t} \\ & \ell_i - low_i \leq \sum_{p \in r_i} v_p \leq u_i + up_i \\ & 0 \leq low_i \leq \ell_i \\ & 0 \leq up_i \leq 1 - u_i \\ 2) & \sum_{p \in Space} v_p = 1 \\ & 3) & \forall p \in Space \quad v_p \geq 0 \\ & 4) \sum_{a_i \in D_{id,t}} low_i + up_i = o^* \end{array} \end{array}$$
 (in)equalities of PULP
 plus equality 4)

Introduction	SPOT databases	Repairs	Consistent Answers	Experiments	Other semantics	Conclusions and future work			
			00000						
Complexity of S- and PU-CQA									

Lemma (Relationship between solutions of $PU-CQA^{\ell/u}$ and PU-repairs)

Every optimal solution σ for PU-CQA^{ℓ}(D, Q, id, t) (resp., PU-CQA^u(D, Q, id, t)) one-to-one corresponds to a model for PU-repair $D_{id,t}(\sigma)$ such that the probability that id is in the query region r at time t is minimum (resp., maximum), and vice versa.

Theorem (Exploiting *PU-CQA^l*/*PU-CQA^u* to compute PU-CQAa)

Let $D_{id,t}$ be a SPOT database, and $Q = (?id, r, ?t, [\ell, u])$. Let ℓ^* and u^* be the optimal values returned by PU- $CQA^{\ell}(D, Q, id, t)$ and PU- $CQA^{u}(D, Q, id, t)$, respectively. $\langle id, t \rangle$ is a PU-CQA to Q w.r.t. $D_{id,t}$ iff $\ell \leq \ell^*$ and $u^* \leq u$

• $\langle id, t \rangle$ is a *PU*-CQA to *Q* w.r.t. *D* iff $\langle id, t \rangle$ is a *PU*-CQA *Q* w.r.t. $D_{id,t}$

Theorem (Complexity of PU-CQA)

Deciding whether (id, t) is a PU-CQA to Q w.r.t. SPOT DB D is in PTIME

Introduction	SPOT databases	Repairs	Consistent Answers	Experiments	Other semantics	Conclusions and future work
			00000			
Complexity of S-	and PU-CQA					

Probability-interval Update semantics

Lemma (Relationship between solutions of $PU-CQA^{\ell/u}$ and PU-repairs)

Every optimal solution σ for PU-CQA^{ℓ}(D, Q, id, t) (resp., PU-CQA^u(D, Q, id, t)) one-to-one corresponds to a model for PU-repair $D_{id,t}(\sigma)$ such that the probability that id is in the query region r at time t is minimum (resp., maximum), and vice versa.

Theorem (Exploiting *PU-CQA^l*/*PU-CQA^u* to compute PU-CQAa)

Let $D_{id,t}$ be a SPOT database, and $Q = (?id, r, ?t, [\ell, u])$. Let ℓ^* and u^* be the optimal values returned by PU- $CQA^{\ell}(D, Q, id, t)$ and PU- $CQA^{u}(D, Q, id, t)$, respectively. $\langle id, t \rangle$ is a PU-CQA to Q w.r.t. $D_{id,t}$ iff $\ell \leq \ell^*$ and $u^* \leq u$

• $\langle id, t \rangle$ is a PU-CQA to Q w.r.t. D iff $\langle id, t \rangle$ is a PU-CQA Q w.r.t. $D_{id,t}$

Theorem (Complexity of PU-CQA)

Deciding whether (id, t) is a PU-CQA to Q w.r.t. SPOT DB D is in PTIME

Introduction 000000	SPOT databases	Repairs 000000	Consistent Answers	Experiments	Other semantics	Conclusions and future work O
Outlin	ie					

Introduction

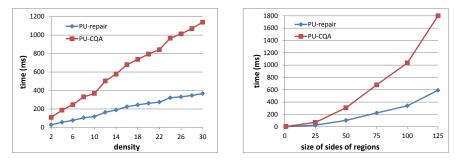
- Motivation
- Contribution

2 SPOT databases

- Syntax
- Semantics

3 Repairs

- Repairing strategies
- Checking and Computing Repairs
- Consistent Answers
 - S- and PU-consistent selection query answers
 - Complexity of S- and PU-CQA


Experiments

- Other semantics
- Conclusions and future work

Experimental evaluation for PU semantics

- the *density* is the average cardinality of D_{id,t} (id ∈ ID, t ∈ T) (i.e., the average number of times that an object was detected at a time point)
- ω is the average size of one side of the atom's rectangles (i.e., ω² is the average number of points in the detection's regions)

Repair and CQA time vs. the density $(\omega = 75, |Space| = 1000 \times 1000).$

Repair and CQA time vs. ω (d = 16, $|Space| = 1000 \times 1000$).

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O

Outline

Introduction

- Motivation
- Contribution

2 SPOT databases

- Syntax
- Semantics

3 Repairs

- Repairing strategies
- Checking and Computing Repairs
- 4 Consistent Answers
 - S- and PU-consistent selection query answers
 - Complexity of S- and PU-CQA

Experiments

Other semantics

Conclusions and future work

Introduction 000000	SPOT databases	Consistent Answers	Experiments O	Other semantics ●O	Conclusions and future work O

Other types of consistent answers

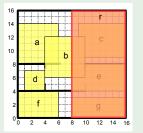
- We interpreted selection queries under a cautious semantics: (*id*, *t*) is an answer to query Q = (?*id*, *r*, ?*t*, [ℓ, *u*]) w.r.t. D iff for each model M for D, M ⊨ loc(*id*, *r*, *t*)[ℓ, *u*]
- Optimistic semantics: just ensure that *there exists* a model *M* for *D* s.t.
 M ⊨ *loc(id, r, t)*[ℓ, *u*].
- Let us denote the type of consistent answers introduced so far as *S-consistent universal cautious answers*.
- Given a SPOT database *D* and a selection query *Q*, we say that $\langle id, t \rangle$ is an *X*-consistent
 - existential cautious answer to Q w.r.t. D iff there exists $D' \in Rep_X(D)$, such that $\langle id, t \rangle$ is a cautious answer to Q w.r.t. D'.
 - universal optimistic answer to Q w.r.t. D iff for each $D' \in Rep_X(D)$, $\langle id, t \rangle$ is an optimistic answer to Q w.r.t. D'.
 - existential optimistic answer to Q w.r.t. D iff there exists $D' \in Rep_X(D)$, such that $\langle id, t \rangle$ is an optimistic answer to Q w.r.t. D'.

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics • O	Conclusions and future work O

Other types of consistent answers

- We interpreted selection queries under a cautious semantics: (*id*, *t*) is an answer to query Q = (?*id*, *r*, ?*t*, [ℓ, *u*]) w.r.t. D iff for each model M for D, M ⊨ loc(*id*, *r*, *t*)[ℓ, *u*]
- Optimistic semantics: just ensure that *there exists* a model *M* for *D* s.t. $M \models loc(id, r, t)[\ell, u]$.
- Let us denote the type of consistent answers introduced so far as *S*-consistent universal cautious answers.
- Given a SPOT database *D* and a selection query *Q*, we say that (*id*, *t*) is an *X*-consistent
 - existential cautious answer to Q w.r.t. D iff there exists $D' \in Rep_X(D)$, such that $\langle id, t \rangle$ is a cautious answer to Q w.r.t. D'.
 - universal optimistic answer to Q w.r.t. D iff for each $D' \in Rep_X(D)$, $\langle id, t \rangle$ is an optimistic answer to Q w.r.t. D'.
 - *existential optimistic answer* to Q w.r.t. D iff there exists $D' \in Rep_X(D)$, such that $\langle id, t \rangle$ is an optimistic answer to Q w.r.t. D'.

Introduction 000000	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O


Example

Example

 $\begin{array}{l} at_1 = loc(id_1, d, 1)[.9, 1] \\ at_2 = loc(id_1, a, 3)[.5, .9] \\ at_3 = loc(id_1, b, 3)[.6, 1] \\ at_4 = loc(id_1, c, 3)[.7, .8] \\ at_5 = loc(id_2, b, 1)[.5, .9] \\ at_6 = loc(id_2, e, 2)[.3, .5] \\ at_7 = loc(id_2, f, 2)[.5, .7] \end{array}$

 $\begin{array}{l} at_7 = loc(\mathit{id}_2, \mathit{f}, 2)[.5, .7] \\ at_8 = loc(\mathit{id}_2, \mathit{g}, 2)[.9, 1] \\ at_9 = loc(\mathit{id}_3, \mathit{c}, 1)[.5, .8] \\ at_{10} = loc(\mathit{id}_3, \mathit{e}, 1)[.6, .9] \end{array}$

$$Q = (?id, r, ?t, [0.6, 1])$$

Answers:

S-consistent universal cautious: \emptyset S-consistent existential cautious: $\{(id_3, 1), (id_2, 2), (id_1, 3)\}$ S-consistent universal optimistic: $\{(id_3, 1), (id_2, 1)\}$ S-consistent existential optimistic: $\{(id_3, 1), (id_2, 1), (id_2, 2), (id_1, 3)\}$ PU-consistent existential cautious: $\{(id_3, 1)\}$ PU-consistent universal optimistic: $\{(id_3, 1), (id_2, 2), (id_1, 3), (id_2, 1)\}$ PU-consistent existential optimistic: $\{(id_3, 1), (id_2, 2), (id_1, 3), (id_2, 1)\}$ PU-consistent existential optimistic: $\{(id_3, 1), (id_2, 1), (id_2, 2), (id_1, 3), (id_2, 1)\}$

Introduction 000000	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work

Outline

Introduction

- Motivation
- Contribution

2 SPOT databases

- Syntax
- Semantics

3 Repairs

- Repairing strategies
- Checking and Computing Repairs
- 4 Consistent Answers
 - S- and PU-consistent selection query answers
 - Complexity of S- and PU-CQA
- 5 Experiments
 - Other semantics
 - Conclusions and future work

Introduction 000000	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work

Conclusions and future work

- All the previous works on probabilistic spatio-temporal DBs assume that the database is consistent
- We introduced database repairs and consistent selection query answers for SPOT DBs
- We shown that some cases can be solved in PTIME

	S semantics	PU semantics
Repair Checking	PTIME	PTIME
Consistent Answer	coNP-complete	PTIME

- We experimentally shown the feasibility of our approach
- Interesting directions for future work are:
 - Investigation of the complexity of different types of repairs (id/region/time update)
 - Complexity of checking different types of query answers
 - Repairs and consistent answers in the presence of the spatio-temporal integrity constraints (that we'll present tomorrow morning)

Introduction	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work

Conclusions and future work

- All the previous works on probabilistic spatio-temporal DBs assume that the database is consistent
- We introduced database repairs and consistent selection query answers for SPOT DBs
- We shown that some cases can be solved in PTIME

	S semantics	PU semantics
Repair Checking	PTIME	PTIME
Consistent Answer	coNP-complete	PTIME

- We experimentally shown the feasibility of our approach
- Interesting directions for future work are:
 - Investigation of the complexity of different types of repairs (id/region/time update)
 - Complexity of checking different types of query answers
 - Repairs and consistent answers in the presence of the spatio-temporal integrity constraints (that we'll present tomorrow morning)

Introduction 000000	SPOT databases	Repairs 000000	Consistent Answers	Experiments O	Other semantics	Conclusions and future work O

Thank you!

... any question?

Appendix

References

Selected References

Parker, A., Subrahmanian, V.S., Grant, J.

A logical formulation of probabilistic spatial databases. *IEEE TKDE*, pp. 1541–1556, 2007.