Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O

Integrity Constraints for Probabilistic Spatio-Temporal Knowledgebases

Francesco Parisi¹ John Grant²

¹Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria, Italy, email: fparisi@dimes.unical.it ²Department of Computer Science and UMIACS, University of Maryland, College Park, USA, email: grant@cs.umd.edu

8th International Conference on Scalable Uncertainty Management St. Anne's College, Oxford, UK, September 15-17, 2014

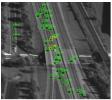
Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000	0000000000	000000	00	
Motivation				

Tracking moving objects (1/2)

 Tracking moving objects is fundamental in several application contexts (e.g. environment protection, product traceability, traffic monitoring, mobile tourist guides, analysis of animal behavior, etc.)

http://www.merl.com/publications/TR2008-010

http://www.edimax.com/au/



http://iris.usc.edu/people/medioni/curren t_research.html

http://www.i3b.org/content/wildlife-behavior

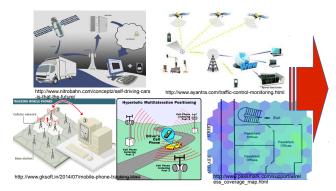
http://www.science20.com/news_articles/german_researc h_center_artificial_intelligence_smart_eye_tracking_glass

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000	0000000000	000000	00	
Motivation				

Tracking moving objects (2/2)

Location estimation techniques have limited accuracy and precision

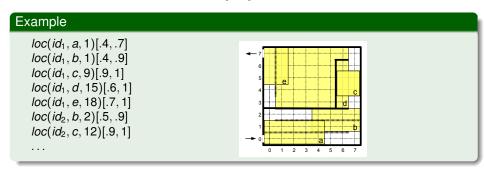
- limitations of technologies used (e.g. GPS, Cellular networks, WiFi, Bluetooth, RFID, etc.)
- limitations of the estimation methods (e.g., proximity to antennas, triangulation, signal strength sample map, dead reckoning, etc.)



object inside a region at a time with (uncertain) probability

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Motivation				
SPOT	framework			

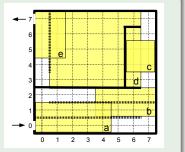
- SPOT : a declarative framework for the representation and processing of probabilistic spatio-temporal data with uncertain probabilities [Parker, Subrahmanian, Grant. TKDE '07]
- A SPOT database is a set of atoms *loc(id, r, t)*[*l*, *u*]
- loc(id, r, t)[ℓ, u] means that "object id is/was/will be inside region r at time t with probability in the interval [ℓ, u]".



Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O	
Motivation					

- Limits of SPOT DBs
 - Not general enough to represent additional knowledge concerning constraints on the movements of objects

- There cannot be two distinct objects in region c at any time point between 1 and 20
- No object can reach region e starting from region a in less than 10 time points
- Object id can go away from region c only if it stayed there for at least 2 time points



Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Motivation				
Limita		<u> </u>		

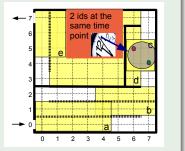
 Not general enough to represent additional knowledge concerning constraints on the movements of objects

Example

 There cannot be two distinct objects in region c at any time point between 1 and 20

05

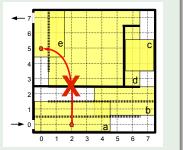
- No object can reach region e starting from region a in less than 10 time points
- Object id can go away from region c only if it stayed there for at least 2 time points



Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Motivation				
Limits of	of SPOT DB	S		

 Not general enough to represent additional knowledge concerning constraints on the movements of objects

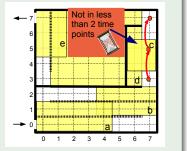
- There cannot be two distinct objects in region c at any time point between 1 and 20
- No object can reach region e starting from region a in less than 10 time points
- Object id can go away from region c only if it stayed there for at least 2 time points



Motivation				
Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O

- Limits of SPOT DBs
 - Not general enough to represent additional knowledge concerning constraints on the movements of objects

- There cannot be two distinct objects in region c at any time point between 1 and 20
- No object can reach region e starting from region a in less than 10 time points
- Object id can go away from region c only if it stayed there for at least 2 time points



Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000	0000000000	000000	00	
Contribution				

Probabilistic spatio-temporal KBs

- A probabilistic spatio-temporal (PST) knowledgebase (KB) consists of
- 1) atomic statements, such as those representable in the SPOT framework
- 2) *spatio-temporal denial formulas*, a general class of formulas expressing constraints on moving objects
- Formal semantics, in terms of worlds, interpretations, and models
- Complexity of checking consistency of PST KBs
 - NP-complete in general
 - Mixed-binary linear programming algorithm providing sufficient conditions for checking consistency
 - A tractable case
- Using consistency checking for answering queries in PST KBs

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000	0000000000	000000	00	
Contribution				

Probabilistic spatio-temporal KBs

- A probabilistic spatio-temporal (PST) knowledgebase (KB) consists of
- 1) atomic statements, such as those representable in the SPOT framework
- 2) *spatio-temporal denial formulas*, a general class of formulas expressing constraints on moving objects
- Formal semantics, in terms of worlds, interpretations, and models
- Complexity of checking consistency of PST KBs
 - NP-complete in general
 - Mixed-binary linear programming algorithm providing sufficient conditions for checking consistency
 - A tractable case
- Using consistency checking for answering queries in PST KBs

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O

Outline

Introduction

- Motivation
- Contribution

The PST Framework

- Syntax
- Semantics

3 Checking Consistency

- Computational Complexity
- Sufficient Condition for Checking Consistency
- A Tractable Case

Query Answering

Conclusions and future work

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				
PST ato	oms			

Notation: *ID* is the set of objects identifiers, *Space* is a grid of *N* × *N* points, *T* is a time interval

Definition (st-atom)

A spatio-temporal atom (st-atom) is of the form loc(X, Y, Z), where:

- X is a variable ranging over ID, or a constant $id \in ID$;
- *Y* is a variable ranging over $\mathcal{P}(Space)$, or a constant $r \subseteq Space$
- Z is a variable ranging over T, or a constant $t \in T$.

Definition (PST atom – SPOT atom in the previous framework)

A PST *atom* is a ground st-atom loc(id, r, t) annotated with a probability interval $[\ell, u] \subseteq [0, 1]$ – denoted as $loc(id, r, t)[\ell, u]$.

 loc(id, r, t)[ℓ, u] says that object id is/was/will be inside region r at time t with probability in the interval [ℓ, u]

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				
PST ato	oms			

Notation: *ID* is the set of objects identifiers, *Space* is a grid of *N* × *N* points, *T* is a time interval

Definition (st-atom)

A spatio-temporal atom (st-atom) is of the form loc(X, Y, Z), where:

- X is a variable ranging over ID, or a constant $id \in ID$;
- *Y* is a variable ranging over $\mathcal{P}(Space)$, or a constant $r \subseteq Space$
- Z is a variable ranging over T, or a constant $t \in T$.

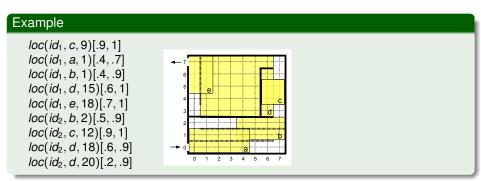
Definition (PST atom – SPOT atom in the previous framework)

A PST *atom* is a ground st-atom *loc*(*id*, *r*, *t*) annotated with a probability interval $[\ell, u] \subseteq [0, 1]$ – denoted as *loc*(*id*, *r*, *t*) $[\ell, u]$.

loc(id, r, t)[ℓ, u] says that object id is/was/will be inside region r at time t with probability in the interval [ℓ, u]

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				
Examp	ole			

A set of PST atoms (i.e., a SPOT database)

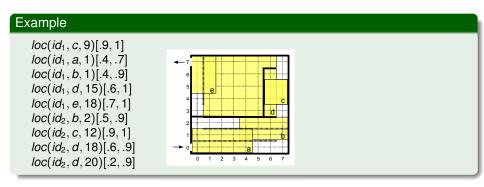


• To get PST KBs we add integrity constraints in the form of *spatio-temporal denial* formulas (*std* formulas for short)

Such formulas are expressive enough to capture a large set of constraints

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				
Examp	ole			
_				

• A set of PST atoms (i.e., a SPOT database)



- To get PST KBs we add integrity constraints in the form of *spatio-temporal denial* formulas (*std* formulas for short)
- Such formulas are expressive enough to capture a large set of constraints

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				

Definition (Std- formula)

$$\forall \mathbf{X}, \mathbf{Y}, \mathbf{Z} \neg \big[\big(\bigwedge_{i=1}^{k} loc(X_{i}, Y_{i}, Z_{i}) \big) \land \alpha(\mathbf{X}) \land \beta(\mathbf{Y}) \land \gamma(\mathbf{Z}) \big]$$

- X, Y, and Z are sets whose variables range over ID, $\mathcal{P}(Space)$, and T
- *loc*(X_i, Y_i, Z_i) are st-atoms such that X_i (resp., Y_i, Z_i) occurs in X (resp, Y, Z) each variable in X, Y, and Z occurs in at least one st-atom
- α(X) is a conjunction of built-in predicates of the form X_i ◊ X_j, where X_i and X_j are variables in X or ids in *ID*, and ◊ ∈ {=, ≠}
- β(Y) is a conjunction of built-in predicates Y_i ◊ Y_j, where Y_i and Y_j are variables in Y or regions, and ◊ ∈ {=, ≠, ⊆, ⊃, ov, nov} (ov stands for "overlaps" and nov stands for "does not overlap")

• $\gamma(\mathbf{Z})$ is a conjunction of built-in predicates of the form $Z_i \diamond Z_j$, where each Z_i and Z_j is a time point in T or a variable in \mathbf{Z} that may be followed by +n where n is a positive integer, and $\diamond \in \{=, \neq, <, \geq\}$.

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000	0000000000	000000	00	
Syntax				

Definition (Std- formula)

$$\forall \mathbf{X}, \mathbf{Y}, \mathbf{Z} \neg \big[\big(\bigwedge_{i=1}^{k} loc(X_{i}, Y_{i}, Z_{i}) \big) \land \alpha(\mathbf{X}) \land \beta(\mathbf{Y}) \land \gamma(\mathbf{Z}) \big]$$

- X, Y, and Z are sets whose variables range over ID, $\mathcal{P}(Space)$, and T
- *loc*(X_i, Y_i, Z_i) are st-atoms such that X_i (resp., Y_i, Z_i) occurs in X (resp, Y, Z) each variable in X, Y, and Z occurs in at least one st-atom
- α(X) is a conjunction of built-in predicates of the form X_i ◊ X_j, where X_i and X_j are variables in X or ids in *ID*, and ◊ ∈ {=, ≠}
- β(Y) is a conjunction of built-in predicates Y_i ◊ Y_j, where Y_i and Y_j are variables in Y or regions, and ◊ ∈ {=, ≠, ⊆, ⊃, ov, nov} (ov stands for "overlaps" and nov stands for "does not overlap")
- $\gamma(\mathbf{Z})$ is a conjunction of built-in predicates of the form $Z_i \diamond Z_j$, where each Z_i and Z_j is a time point in T or a variable in \mathbf{Z} that may be followed by +n where n is a positive integer, and $\diamond \in \{=, \neq, <, \geq\}$.

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000	0000000000	000000	00	
Syntax				

Definition (Std- formula)

$$\forall \mathbf{X}, \mathbf{Y}, \mathbf{Z} \neg \big[\big(\bigwedge_{i=1}^{k} loc(X_{i}, Y_{i}, Z_{i}) \big) \land \alpha(\mathbf{X}) \land \beta(\mathbf{Y}) \land \gamma(\mathbf{Z}) \big]$$

- X, Y, and Z are sets whose variables range over ID, $\mathcal{P}(Space)$, and T
- *loc*(X_i, Y_i, Z_i) are st-atoms such that X_i (resp., Y_i, Z_i) occurs in X (resp, Y, Z) each variable in X, Y, and Z occurs in at least one st-atom
- α(X) is a conjunction of built-in predicates of the form X_i ◊ X_j, where X_i and X_j are variables in X or ids in *ID*, and ◊ ∈ {=, ≠}
- β(Y) is a conjunction of built-in predicates Y_i ◊ Y_j, where Y_i and Y_j are variables in Y or regions, and ◊ ∈ {=, ≠, ⊆, ⊃, ov, nov} (ov stands for "overlaps" and nov stands for "does not overlap")

γ(Z) is a conjunction of built-in predicates of the form Z_i ◊ Z_j, where each Z_i and Z_j is a time point in T or a variable in Z that may be followed by +n where n is a positive integer, and ◊ ∈ {=, ≠, <, ≥}.

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000	0000000000	000000	00	
Syntax				

Definition (Std- formula)

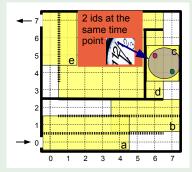
$$\forall \mathbf{X}, \mathbf{Y}, \mathbf{Z} \neg \big[\big(\bigwedge_{i=1}^{k} loc(X_{i}, Y_{i}, Z_{i}) \big) \land \alpha(\mathbf{X}) \land \beta(\mathbf{Y}) \land \gamma(\mathbf{Z}) \big]$$

- X, Y, and Z are sets whose variables range over ID, $\mathcal{P}(Space)$, and T
- *loc*(X_i, Y_i, Z_i) are st-atoms such that X_i (resp., Y_i, Z_i) occurs in X (resp, Y, Z) each variable in X, Y, and Z occurs in at least one st-atom
- α(X) is a conjunction of built-in predicates of the form X_i ◊ X_j, where X_i and X_j are variables in X or ids in *ID*, and ◊ ∈ {=, ≠}
- β(Y) is a conjunction of built-in predicates Y_i ◊ Y_j, where Y_i and Y_j are variables in Y or regions, and ◊ ∈ {=, ≠, ⊆, ⊃, ov, nov} (ov stands for "overlaps" and nov stands for "does not overlap")
- γ(Z) is a conjunction of built-in predicates of the form Z_i ◊ Z_j, where each Z_i and Z_j is a time point in T or a variable in Z that may be followed by +n where n is a positive integer, and ◊ ∈ {=, ≠, <, ≥}.

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				

Examples of spatio-temporal denial formulas

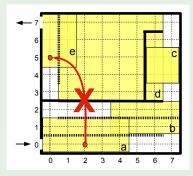
- 1) There cannot be two distinct objects in region c at any time point between 1 and 20:
 - $f_1 = \forall X_1, X_2, Z_1 \neg [\textit{loc}(X_1, c, Z_1) \land \textit{loc}(X_2, c, Z_1) \land X_1 \neq X_2 \land Z_1 \ge 1 \land 20 \ge Z_1]$



Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				

Examples of spatio-temporal denial formulas

- 2) No object can reach region e starting from region a in less than 10 time points:
 - $\textit{f}_{2} = \forall \textit{X}_{1}, \textit{Z}_{1}, \textit{Z}_{2} \neg [\textit{loc}(\textit{X}_{1}, \textit{a}, \textit{Z}_{1}) \land \textit{loc}(\textit{X}_{1}, \textit{e}, \textit{Z}_{2}) \land \textit{Z}_{1} < \textit{Z}_{2} \land \textit{Z}_{2} < \textit{Z}_{1} + 10]$



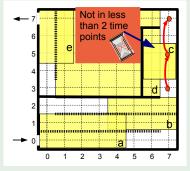
Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				

Examples of spatio-temporal denial formulas

Example

3) Object id can go away from region c only if it stayed there for at least 2 time points:

 $\begin{array}{l} f_3 = \forall \, Y_1, \, Y_2, \, Z_1, \, Z_2, \, Z_3 \, \neg [\textit{loc}(\textit{id}, \, Y_1, \, Z_1) \land \textit{loc}(\textit{id}, \, c, \, Z_2) \land \textit{loc}(\textit{id}, \, Y_2, \, Z_3) \land \\ Y_1 \textit{nov} \, c \land \, Y_2 \textit{nov} \, c \land \, Z_2 = Z_1 + 1 \land Z_2 < Z_3 \land Z_2 + 2 \geq Z_3] \end{array}$



Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				

PST knowledgebases

Definition (PST KB)

A PST KB \mathcal{K} is a pair $\langle \mathcal{A}, \mathcal{F} \rangle$, where \mathcal{A} is a finite set of PST atoms and \mathcal{F} is finite set of std-formulas.

Example

 $\mathcal{A} = \{ loc(id_1, c, 9) [.9, 1] \}$ $loc(id_1, a, 1)[.4, .7]$ $loc(id_1, b, 1)[.4, .9]$ $loc(id_1, d, 15)[.6, 1]$ $loc(id_1, e, 18)[.7, 1]$ $loc(id_2, b, 2)[.5, .9]$ $loc(id_2, c, 12)[.9, 1]$ $loc(id_2, d, 18)[.6, .9]$ $loc(id_2, d, 20)[.2, .9]$ $\mathcal{F} = \{f_1 = \forall X_1, X_2, Z_1 \neg [loc(X_1, c, Z_1) \land loc(X_2, c, Z_1) \land X_1 \neq X_2 \land Z_1 \ge 1 \land 20 \ge Z_1]$ $f_2 = \forall X_1, Z_1, Z_2 \neg [loc(X_1, a, Z_1) \land loc(X_1, e, Z_2) \land Z_1 < Z_2 \land Z_2 < Z_1 + 10]$ $f_3 = \forall Y_1, Y_2, Z_1, Z_2, Z_3 \neg [loc(id, Y_1, Z_1) \land loc(id, c, Z_2) \land loc(id, Y_2, Z_3) \land$ $Y_1 \text{ nov } c \land Y_2 \text{ nov } c \land Z_2 = Z_1 + 1 \land Z_2 < Z_3 \land Z_2 + 2 > Z_3$

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
World				

 A world specifies a possible trajectory for each object *id* ∈ *ID* (i.e., says where in *Space* object *id* was/is/will be at each time *t* ∈ *T*)

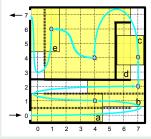
Definition (World)

A world *w* is a function, $w : ID \times T \rightarrow Space$

Example

World w_1 describes possible trajectories for id_1 and id_2 during the time interval [0, 20]:

$$w_1(id_1, t) = (4, 1) \text{ for } t \in [0, 5] w_1(id_1, t) = (7, 2) \text{ for } t \in [6, 7] w_1(id_1, t) = (7, 4) \text{ for } t \in [8, 10] w_1(id_1, t) = (4, 4) \text{ for } t \in [11, 16] w_1(id_1, t) = (1, 6) \text{ for } t \in [17, 20]$$



Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
World				

 A world specifies a possible trajectory for each object *id* ∈ *ID* (i.e., says where in *Space* object *id* was/is/will be at each time *t* ∈ *T*)

Definition (World)

A world *w* is a function, $w : ID \times T \rightarrow Space$

Example

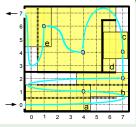
World w_1 describes possible trajectories for id_1 and id_2 during the time interval [0, 20]:

$w_1(id_1, t) = (4, 1) \text{ for } t \in [0, 5]$ $w_1(id_1, t) = (7, 2) \text{ for } t \in [6, 7]$ $w_1(id_1, t) = (7, 4) \text{ for } t \in [8, 10]$ $w_1(id_1, t) = (4, 4) \text{ for } t \in [11, 16]$ $w_1(id_1, t) = (1, 6) \text{ for } t \in [17, 20]$	
$w_1(id_2, t) = (6, 1)$ for $t \in [0, 11]$ $w_1(id_2, t) = (7, 5)$ for $t \in [12, 15]$ $w_1(id_2, t) = (7, 7)$ for $t \in [16, 16]$ $w_1(id_2, t) = (4, 5)$ for $t \in [17, 20]$	$ \begin{array}{c} 2 \\ \hline \\ 0 \\ \hline \hline \\ 0 \\ \hline \\ 0 \\ \hline \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline 0 \\ \hline \\ 0 \\ \hline \hline 0 \\ \hline $

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Satisfa	action			

- World *w* satisfies a ground st-atom *a* = *loc*(*id*, *r*, *t*) (denoted as *w* ⊨ *a*) iff w(*id*, *t*) ∈ *r*
- *w* satisfies a conjunction of ground st-atoms (i.e., a *ground* std-formula) iff *w* satisfies every st-atom in the conjunction

Example

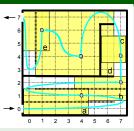


• $w_1 \models loc(id_1, b, 0)$, as $w_1(id_1, 0) = (4, 1)$ belongs to region b

• $w_1 \models \neg [loc(id_1, b, 0) \land loc(id_1, e, 15)]$ as $w_1 \not\models loc(id_1, e, 15)$, since $w_1(id_1, 15) = (4, 4) \notin e$

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Satisfa	action			

- World *w* satisfies a ground st-atom *a* = *loc*(*id*, *r*, *t*) (denoted as *w* ⊨ *a*) iff w(*id*, *t*) ∈ *r*
- *w* satisfies a conjunction of ground st-atoms (i.e., a *ground* std-formula) iff *w* satisfies every st-atom in the conjunction



• $w_1 \models loc(id_1, b, 0)$, as $w_1(id_1, 0) = (4, 1)$ belongs to region b

• $w_1 \models \neg [loc(id_1, b, 0) \land loc(id_1, e, 15)]$ as $w_1 \not\models loc(id_1, e, 15)$, since $w_1(id_1, 15) = (4, 4) \notin e$

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Groun	d std-formula	as		

- Given an std-formula *f*, ⊖_{*f*} denotes the set of all substitutions of variables in X, Y, and Z with constants in *ID*, S, and T, respectively, where S is the set of all sets of *Space* that contain a single point
- The *ground* std-formula $\theta(f)$ resulting from applying $\theta \in \Theta_f$ to f is:

 $\theta(f) = \neg \left[\left(\bigwedge_{i=1}^{k} loc(\theta(X_{i}), \theta(Y_{i}), \theta(Z_{i})) \right) \land \alpha(\theta(\mathbf{X})) \land \beta(\theta(\mathbf{Y})) \land \gamma(\theta(\mathbf{Z})) \right]$

- $f_1 = \forall X_1, X_2, Z_1 \neg [loc(X_1, c, Z_1) \land loc(X_2, c, Z_1) \land X_1 \neq X_2 \land Z_1 \ge 1 \land 20 \ge Z_1]$
- $\theta = \{X_1/id_1, X_2/id_2, Z_1/6\}$, where $id_1, id_2 \in ID$ and time point 6 is in T
- $\theta(f_1) = \neg [loc(id_1, c, 6) \land loc(id_2, c, 6)]$ $(id_1 \neq id_2 \land 6 \ge 1 \land 6 \le 20$, evaluating to *true*, is not reported in $\theta(f_1)$)
- World *w* satisfies an std-formula *f* (denoted as *w* ⊨ *f*) iff for each substitution θ ∈ Θ_f, *w* ⊨ θ(*f*)

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Groun	d std-formula	as		

- Given an std-formula *f*, ⊖_{*f*} denotes the set of all substitutions of variables in X, Y, and Z with constants in *ID*, S, and T, respectively, where S is the set of all sets of *Space* that contain a single point
- The *ground* std-formula $\theta(f)$ resulting from applying $\theta \in \Theta_f$ to f is:

 $\theta(f) = \neg \left[\left(\bigwedge_{i=1}^{k} loc(\theta(X_{i}), \theta(Y_{i}), \theta(Z_{i})) \right) \land \alpha(\theta(\mathbf{X})) \land \beta(\theta(\mathbf{Y})) \land \gamma(\theta(\mathbf{Z})) \right]$

- $f_1 = \forall X_1, X_2, Z_1 \neg [loc(X_1, c, Z_1) \land loc(X_2, c, Z_1) \land X_1 \neq X_2 \land Z_1 \ge 1 \land 20 \ge Z_1]$
- $\theta = \{X_1/id_1, X_2/id_2, Z_1/6\}$, where $id_1, id_2 \in ID$ and time point 6 is in T
- $\theta(f_1) = \neg [loc(id_1, c, 6) \land loc(id_2, c, 6)]$ $(id_1 \neq id_2 \land 6 \ge 1 \land 6 \le 20$, evaluating to *true*, is not reported in $\theta(f_1)$)
- World *w* satisfies an std-formula *f* (denoted as *w* ⊨ *f*) iff for each substitution θ ∈ Θ_f, *w* ⊨ θ(*f*)

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Groun	d std-formula	as		

- Given an std-formula *f*, ⊖_{*f*} denotes the set of all substitutions of variables in X, Y, and Z with constants in *ID*, S, and T, respectively, where S is the set of all sets of *Space* that contain a single point
- The *ground* std-formula $\theta(f)$ resulting from applying $\theta \in \Theta_f$ to f is:

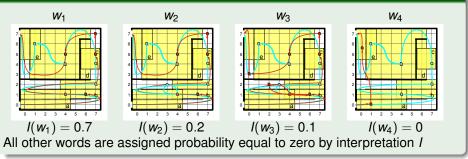
 $\theta(f) = \neg \left[\left(\bigwedge_{i=1}^{k} loc(\theta(X_{i}), \theta(Y_{i}), \theta(Z_{i})) \right) \land \alpha(\theta(\mathbf{X})) \land \beta(\theta(\mathbf{Y})) \land \gamma(\theta(\mathbf{Z})) \right]$

- $f_1 = \forall X_1, X_2, Z_1 \neg [loc(X_1, c, Z_1) \land loc(X_2, c, Z_1) \land X_1 \neq X_2 \land Z_1 \ge 1 \land 20 \ge Z_1]$
- $\theta = \{X_1/id_1, X_2/id_2, Z_1/6\}$, where $id_1, id_2 \in ID$ and time point 6 is in T
- $\theta(f_1) = \neg [loc(id_1, c, 6) \land loc(id_2, c, 6)]$ $(id_1 \neq id_2 \land 6 \ge 1 \land 6 \le 20$, evaluating to *true*, is not reported in $\theta(f_1)$)
- World *w* satisfies an std-formula *f* (denoted as *w* ⊨ *f*) iff for each substitution θ ∈ Θ_f, *w* ⊨ θ(*f*)

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Interpr	retations			

- An interpretation *I* for a PST KB K is a probability distribution function (PDF) over the set W(K) of all worlds of K
- *I*(*w*) is the probability that *w* describes the actual trajectories of all the objects

Example (Interpretation *I*)



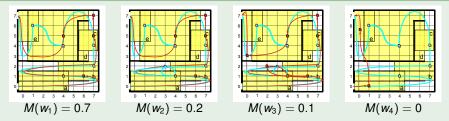
• Only the interpretations that are compatible with the information in ${\cal K}$ (PST atoms + std-formulas) are models

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Models				

Definition (Model)

A model *M* for a PST KB $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ is an interpretation for \mathcal{K} such that: (i) $\forall loc(id, r, t)[\ell, u] \in \mathcal{A}, \qquad \sum_{\substack{w \mid w \models loc(id, r, t)}} M(w) \in [\ell, u];$ (ii) $\forall f \in \mathcal{F}, \qquad \sum_{\substack{w \mid w \not\models f}} M(w) = 0.$

Example (Model M)



• For atom $loc(id_1, c, 9)[.9, 1]$, $\sum_{w|w|=loc(id_1, c, 9)} M(w) = M(w_1) + M(w_2) + M(w_3) = 1 \in [.9, .1]$

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Models				

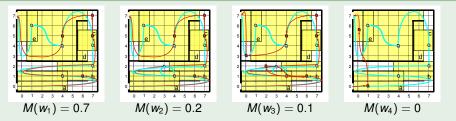
Definition (Model)

A model *M* for a PST KB $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ is an interpretation for \mathcal{K} such that:

(i)
$$\forall loc(id, r, t)[\ell, u] \in \mathcal{A}, \qquad \sum_{\substack{w \mid w \models loc(id, r, t)}} M(w) \in [\ell, u];$$

(ii) $\forall f \in \mathcal{F}, \qquad \sum_{\substack{w \mid w \models f}} M(w) = 0.$

Example (Model M)



M(w₄) = 0 since w₄ violates the constraint "no object can reach region *e* starting from region *a* in less than 10 time points"

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Consis	tency			

Definition (Model)

A model *M* for a PST KB $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ is an interpretation for \mathcal{K} such that: (i) $\forall loc(id, r, t)[\ell, u] \in \mathcal{A}, \qquad \sum \qquad M(w) \in [\ell, u];$

$$w \mid w \models loc(id, r, t)$$

(ii)
$$\forall f \in \mathcal{F}, \sum_{w \mid w \not\models f} M(w) = 0.$$

Definition (Consistency)

PST KB $\ensuremath{\mathcal{K}}$ is consistent iff there is a model for it.

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O

Outline

Introduction

- Motivation
- Contribution

The PST Framework

- Syntax
- Semantics

Ohecking Consistency

- Computational Complexity
- Sufficient Condition for Checking Consistency
- A Tractable Case

Query Answering

Conclusions and future work

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Computational Complexity				
Compl	exitv			

Theorem

Deciding whether PST KB $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ is consistent is NP-complete.

 Membership: deciding whether K is consistent corresponds to checking the feasibility of

$$LP(\mathcal{K}) := \begin{cases} (1) \quad \forall \ loc(id, r, t)[\ell, u] \in \mathcal{A}, \\ (a) \quad \ell \leq \sum V_i \\ (b) \quad \sum V_i \leq u \\ (2) \quad \forall f \in \mathcal{F}, \sum V_i = 0 \\ (3) \quad \sum V_i \in \mathcal{W}(\mathcal{K}) \\ (4) \quad \forall w_i \in \mathcal{W}(\mathcal{K}), \ v_i \geq 0 \end{cases}$$

v_i represents probability *M*(*w_i*) assigned to *w_i* ∈ *W*(*K*) by *M* ∈ **M**(*K*)
Exponential number of variables *v_i* (|*W*(*K*)| = |*Space*|^{|*ID*|·|*T*|})

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Computational Cor	nplexity			
Compl	exity			

Theorem

Deciding whether PST KB $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ is consistent is NP-complete.

 Membership: deciding whether K is consistent corresponds to checking the feasibility of

$$LP(\mathcal{K}) := \begin{cases} (1) \quad \forall \ loc(id, r, t)[\ell, u] \in \mathcal{A}, \\ (a) \quad \ell \leq \sum_{\substack{W_i \mid W_i \models loc(id, r, t) \\ W_i \mid W_i \models loc(id, r, t) \\ (b) \quad \sum_{\substack{W_i \mid W_i \models loc(id, r, t) \\ W_i \mid W_i \models V_i \neq f \\ (3) \quad \sum_{\substack{W_i \mid W_i \in \mathcal{W}(\mathcal{K}) \\ W_i \in \mathcal{W}(\mathcal{K}), \ v_i \geq 0 \\ \end{cases}} \end{cases}$$

v_i represents probability *M*(*w_i*) assigned to *w_i* ∈ *W*(*K*) by *M* ∈ **M**(*K*)
Exponential number of variables *v_i* (|*W*(*K*)| = |*Space*|^{|*ID*|·|*T*|})

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Computational Con	nplexity			
Compl	exity			

Theorem

Deciding whether PST KB $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ is consistent is NP-complete.

 Membership: deciding whether K is consistent corresponds to checking the feasibility of

$$LP(\mathcal{K}) := \begin{cases} (1) \quad \forall \ loc(id, r, t)[\ell, u] \in \mathcal{A}, \\ (a) \quad \ell \leq \sum_{\substack{W_i \mid W_i \models loc(id, r, t) \\ W_i \mid W_i \models loc(id, r, t) \\ (b) \quad & V_i \leq u \\ (2) \quad \forall f \in \mathcal{F}, \sum_{\substack{W_i \mid W_i \not\models f \\ W_i \mid W_i \in \mathcal{W}(\mathcal{K}) \\ (3) \quad & \sum_{\substack{W_i \mid W_i \in \mathcal{W}(\mathcal{K}) \\ W_i \in \mathcal{W}(\mathcal{K}), \ v_i \geq 0 \\ \end{cases}} \end{cases}$$

• v_i represents probability $M(w_i)$ assigned to $w_i \in W(\mathcal{K})$ by $M \in \mathbf{M}(\mathcal{K})$

• Exponential number of variables $v_i (|W(\mathcal{K})| = |Space|^{|ID| \cdot |T|})$

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Computational Com	nplexity			
Membe	ership in NP			

- It can be shown that LP(𝔅) is feasible iff there is a solution for LP(𝔅) consisting of at most 2 · |𝔅| + |𝔅| + 1 non-zero variables (it follows from a well-known result on the size of solutions of linear programming problems [Papadimitriou, Steiglitz '82])
- Guess an assignment s' consisting of $2 \cdot |\mathcal{A}| + |\mathcal{F}| + 1$ pairs $\langle v_i, \text{value of } v_i \rangle$,
- Check in polynomial time whether s' is a solution of LP*(K), obtained from LP(K) by keeping in it only the variables in s'
- If s' is a solution of $LP^*(\mathcal{K})$, then $LP(\mathcal{K})$ is feasible

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Computational Con	nplexity			
Membe	ership in NP			

- It can be shown that LP(𝔅) is feasible iff there is a solution for LP(𝔅) consisting of at most 2 · |𝔅| + |𝔅| + 1 non-zero variables (it follows from a well-known result on the size of solutions of linear programming problems [Papadimitriou, Steiglitz '82])
- Guess an assignment s' consisting of $2 \cdot |\mathcal{A}| + |\mathcal{F}| + 1$ pairs $\langle v_i, \text{value of } v_i \rangle$,
- Check in polynomial time whether s' is a solution of LP*(K), obtained from LP(K) by keeping in it only the variables in s'
- If s' is a solution of $LP^*(\mathcal{K})$, then $LP(\mathcal{K})$ is feasible

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Computational Cor	mplexity			
NP-ha	rdness			

- Reduction from Hamiltonian path problem
- Consider a graph $G = \langle V, E \rangle$ with vertexes $V = \{v_0, \dots, v_k\}$ and edges E
- Assume $ID = \{id\}$, Space = V, and T = [0, ..., k]
- Define $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ such that
- \mathcal{A} consists of the PST atom $loc(id, v_0, 0)[1, 1]$, and
- \mathcal{F} consists of std-formulas f_1^i (with $i \in [0..k]$) and f_2 such that:

i) $f_1^j = \forall Z_1, Z_2 \neg [loc(id, \{v_i\}, Z_1) \land loc(id, Space \setminus V', Z_2) \land Z_2 = Z_1 + 1]$ where V' is the set of vertexes v_j s.t. $(v_i, v_j) \in E$

ii) $f_2 = \forall Y_1, Z_1, Z_2 \neg [loc(id, Y_1, Z_1) \land loc(id, Y_1, Z_2) \land Z_1 \neq Z_2]$

- $\bullet\,$ There is a model for ${\cal K}$ iff there is a Hamiltonian path in ${\it G}$
- ⇒ Every world which is assigned a probability greater than zero by a model encodes a Hamiltonian path
- ⇐ Given a Hamiltonian path, define a model as a PDF over worlds

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Computational Cor	mplexity			
NP-ha	rdness			

- Reduction from Hamiltonian path problem
- Consider a graph $G = \langle V, E \rangle$ with vertexes $V = \{v_0, \dots, v_k\}$ and edges E
- Assume $ID = \{id\}$, Space = V, and T = [0, ..., k]
- Define $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ such that
- \mathcal{A} consists of the PST atom $loc(id, v_0, 0)[1, 1]$, and
- \mathcal{F} consists of std-formulas f_1^i (with $i \in [0..k]$) and f_2 such that:

i) $f_1^i = \forall Z_1, Z_2 \neg [loc(id, \{v_i\}, Z_1) \land loc(id, Space \setminus V', Z_2) \land Z_2 = Z_1 + 1]$ where V' is the set of vertexes v_j s.t. $(v_i, v_j) \in E$

ii) $f_2 = \forall Y_1, Z_1, Z_2 \neg [loc(id, Y_1, Z_1) \land loc(id, Y_1, Z_2) \land Z_1 \neq Z_2]$

- \bullet There is a model for ${\cal K}$ iff there is a Hamiltonian path in ${\it G}$
- ⇒ Every world which is assigned a probability greater than zero by a model encodes a Hamiltonian path
- ⇐ Given a Hamiltonian path, define a model as a PDF over worlds

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Computational Con	mplexity			
NP-ha	rdness			

- Reduction from Hamiltonian path problem
- Consider a graph $G = \langle V, E \rangle$ with vertexes $V = \{v_0, \dots, v_k\}$ and edges E
- Assume $ID = \{id\}$, Space = V, and T = [0, ..., k]
- Define $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ such that
- \mathcal{A} consists of the PST atom $loc(id, v_0, 0)[1, 1]$, and
- \mathcal{F} consists of std-formulas f_1^i (with $i \in [0..k]$) and f_2 such that:

i) $f_1^i = \forall Z_1, Z_2 \neg [loc(id, \{v_i\}, Z_1) \land loc(id, Space \setminus V', Z_2) \land Z_2 = Z_1 + 1]$ where V' is the set of vertexes v_j s.t. $(v_i, v_j) \in E$

ii) $f_2 = \forall Y_1, Z_1, Z_2 \neg [loc(id, Y_1, Z_1) \land loc(id, Y_1, Z_2) \land Z_1 \neq Z_2]$

- There is a model for \mathcal{K} iff there is a Hamiltonian path in G
- ⇒ Every world which is assigned a probability greater than zero by a model encodes a Hamiltonian path
- Given a Hamiltonian path, define a model as a PDF over worlds

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Sufficient Condition	for Checking Consistency			
MBLP((<i>K</i>)			

- A mixed-binary linear programming problem whose feasibility entails consistency
- Variable *v*_{*id*,*t*,*p*} represents the probability that *id* is at point *p* at time *t*
- Binary variables δ

Definition (MBLP(\mathcal{K}))

 $\begin{aligned} & \textit{MBLP}(\mathcal{K}) \text{ consists of the following (in)equalities:} \\ & (1) \ \forall \textit{loc}(\textit{id}, r, t)[\ell, u] \in \mathcal{A}: \ \ \ell \leq \sum_{p \in r} \textit{v}_{\textit{id}, t, p} \leq u; \end{aligned}$

- (2) $\forall id \in ID, t \in T: \sum_{p \in Space} v_{id,t,p} = 1;$
- (3) $\forall p \in Space, id \in ID, t \in T: v_{id,t,p} \geq 0;$
- (4) ∀f ∈ F, ∀θ ∈ Θ_f s.t. θ(f) is logically equivalent to the negation of the conjunction of st-atoms Λ^k_{i=1} loc(θ(X_i), θ(Y_i), θ(Z_i)), the inequalities:
 - (a) $\forall i \in [1..k]$: $\sum_{p \in \theta(Y_i)} v_{\theta(X_i), \theta(Z_i), p} \leq \delta_i;$
 - (b) $\sum_{i=1}^{k} \delta_i = k 1;$ // at least one st-atom is false (c) $\forall i \in [1..k]: \delta_i \in \{0, 1\}.$

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Sufficient Condition	n for Checking Consistency			
MBLP((<i>K</i>)			

- A mixed-binary linear programming problem whose feasibility entails consistency
- Variable *v_{id,t,p}* represents the probability that *id* is at point *p* at time *t*
- Binary variables δ

Definition (MBLP(*K*))

 $MBLP(\mathcal{K})$ consists of the following (in)equalities:

(1)
$$\forall loc(id, r, t)[\ell, u] \in \mathcal{A}: \quad \ell \leq \sum_{p \in r} v_{id, t, p} \leq u;$$

(2)
$$\forall id \in ID, t \in T: \sum_{p \in Space} v_{id,t,p} = 1;$$

(3) $\forall p \in Space, id \in ID, t \in T: v_{id,t,p} \geq 0;$

(4) $\forall f \in \mathcal{F}, \forall \theta \in \Theta_f \text{ s.t. } \theta(f) \text{ is logically equivalent to the negation of the conjunction of st-atoms } \bigwedge_{i=1}^k loc(\theta(X_i), \theta(Y_i), \theta(Z_i)), \text{ the inequalities:}$

(a)
$$\forall i \in [1..k]$$
: $\sum_{p \in \theta(Y_i)} V_{\theta(X_i), \theta(Z_i), p} \leq \delta_i;$

(b) $\sum_{i=1}^{k} \delta_i = k - 1;$ // at least one st-atom is false (c) $\forall i \in [1..k]: \delta_i \in \{0, 1\}.$

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Sufficient Condition	for Checking Consistency			
Using I	$MBLP(\mathcal{K})$			

Theorem

If $MBLP(\mathcal{K})$ is feasible then \mathcal{K} is consistent

 Techniques for solving linear optimization problems can be adopted to address the consistency checking problem

The converse of the theorem above does not hold

Example

Let $ID = \{id\}, T = [0, 1], Space = \{p_0, p_1\}, \mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ where $\mathcal{A} = \{loc(id, p_0, 0)[0.5, 0.5], loc(id, p_1, 1)[0.5, 0.5]\}$ and $\mathcal{F} = \{\neg [loc(id, \{p_0\}, 0) \land loc(id, \{p_1\}, 1)]\}$

VV_i	W_1	W_2	W ₃	W_4
$W_i(id, 0)$	p_0	p_0	<i>p</i> ₁	p_1
$W_i(id, 1)$	p_0	<i>p</i> ₁	p_0	p_1
$M(w_i)$				

• M is a model for \mathcal{K}

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Sufficient Condition	for Checking Consistency			
Using I	$MBLP(\mathcal{K})$			

Theorem

If $MBLP(\mathcal{K})$ is feasible then \mathcal{K} is consistent

- Techniques for solving linear optimization problems can be adopted to address the consistency checking problem
- The converse of the theorem above does not hold

Example

W_i W_i

Let $ID = \{id\}, T = [0, 1], Space = \{p_0, p_1\}, \mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ where $\mathcal{A} = \{loc(id, p_0, 0)[0.5, 0.5], loc(id, p_1, 1)[0.5, 0.5]\}$ and $\mathcal{F} = \{\neg [loc(id, \{p_0\}, 0) \land loc(id, \{p_1\}, 1)]\}$

Wi	<i>W</i> ₁	W ₂	W ₃	<i>W</i> ₄	$0.5 \le v_{id,0,p_0} \le 0.5;$	$0.5 \le v_{id,1,p_1} \le 0.5;$
<i>i</i> (<i>id</i> , 0)	p_0	p_0	<i>p</i> ₁	<i>p</i> ₁		$v_{id,1,p_0} + v_{id,1,p_1} = 1;$
<i>i</i> (<i>id</i> , 1)	p_0	<i>p</i> ₁	p_0	<i>p</i> ₁	$V_{id,0,p_0} \leq \delta_1;$	$V_{id,1,p_1} \leq \delta_2;$
$M(w_i)$	0.5	0	0	0.5	$\delta_1 + \delta_2 = 1;$	$\delta_1, \delta_2 \in \{0, 1\}; v_{id, i, p_j} \ge 0$

 M is a model for K but MBLP(K) is not feasible, as it includes the inequalities above

Introduction	The PST Framework	Checking Consistency ○○○○○●	Query Answering	Conclusions and future work O
A Tractable Case				

Unary std-formulas are tractable

 Unary std-formulas consist of only one st-atom and a conjunction of built-in predicates

Example

• "There is no object in region r at any time between 5 and 10" : $\forall X_1, Z_1 \neg [loc(X_1, r, Z_1) \land Z_1 \ge 5 \land 10 \ge Z_1]$

 "Object id is always in region r": ∀Y₁, Z₁ ¬[loc(id, Y₁, Z₁) ∧ Y₁nov r].

Theorem

Let $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ be a PST KB such that \mathcal{F} consists of unary std-formulas only. Then, deciding whether \mathcal{K} is consistent is in PTIME.

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
A Tractable Case				

Unary std-formulas are tractable

 Unary std-formulas consist of only one st-atom and a conjunction of built-in predicates

Example

• "There is no object in region r at any time between 5 and 10" : $\forall X_1, Z_1 \neg [loc(X_1, r, Z_1) \land Z_1 \ge 5 \land 10 \ge Z_1]$

 "Object id is always in region r": ∀Y₁, Z₁ ¬[loc(id, Y₁, Z₁) ∧ Y₁nov r].

Theorem

Let $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ be a PST KB such that \mathcal{F} consists of unary std-formulas only. Then, deciding whether \mathcal{K} is consistent is in PTIME.

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O

Outline

Introduction

- Motivation
- Contribution

The PST Framework

- Syntax
- Semantics

3 Checking Consistency

- Computational Complexity
- Sufficient Condition for Checking Consistency
- A Tractable Case

Query Answering

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Queries				

- Query (?id, q, ?t, [l, u]) says: "Given a region q and a probability interval [l, u], find all objects id and times t such that id is inside region q at time t with a probability in the interval [l, u]."
- Two semantics for interpreting this statement

Definition (Optimistic/Cautious Query Answers)

Let \mathcal{K} be a consistent PST KB, and $Q = (?id, q, ?t, [\ell, u])$ a query. Then, $\langle id, t \rangle$ is

- an optimistic answer to Q w.r.t. \mathcal{K} iff there is a model M for \mathcal{K} s.t.

$$\sum_{w|w\models loc(id,q,t)} M(w) \in [\ell, u]$$

- a cautious answer to Q w.r.t. $\mathcal K$ iff for each a model M for $\mathcal K$ it holds that

$$\sum_{w|w|=loc(id,a,t)} M(w) \in [\ell, u]$$

Introduction	The PST Framework	Checking Consistency	Query Answering ●O	Conclusions and future work O
Queries				

- Query (?id, q, ?t, [l, u]) says: "Given a region q and a probability interval [l, u], find all objects id and times t such that id is inside region q at time t with a probability in the interval [l, u]."
- Two semantics for interpreting this statement

Definition (Optimistic/Cautious Query Answers)

Let \mathcal{K} be a consistent PST KB, and $Q = (?id, q, ?t, [\ell, u])$ a query. Then, $\langle id, t \rangle$ is

И

- an optimistic answer to Q w.r.t. \mathcal{K} iff there is a model M for \mathcal{K} s.t.

$$\sum_{\boldsymbol{w}|\boldsymbol{w}\models loc(id,q,t)} \boldsymbol{M}(\boldsymbol{w}) \in [\ell, \boldsymbol{u}]$$

- a cautious answer to Q w.r.t. \mathcal{K} iff for each a model M for \mathcal{K} it holds that

$$\sum_{\substack{v|w\models loc(id,q,t)}} M(w) \in [\ell, u]$$

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Answe	ring Queries	3		

Consistency checking can be used to answer queries under both optimistic and cautious semantics

Proposition

Let $\mathcal{K} = \langle \mathcal{A}, \mathcal{F} \rangle$ be a consistent PST KB, and $Q = (?id, q, ?t, [\ell, u])$. Then,

- ⟨id, t⟩ is an optimistic answer to Q w.r.t. K iff ⟨A ∪ {loc(id, q, t)[ℓ, u]}, F⟩ is consistent.
- ⟨id, t⟩ is a cautious answer to Q w.r.t. K iff ⟨A ∪ {loc(id, q, t)[0, ℓ − ε]}, F⟩ and ⟨A ∪ {loc(id, q, t)[u + ε, 1]}, F⟩ are not consistent.
- ϵ = 1/(ma)^m where m = 2 · |A| + |F| + 1 and a is the maximum among the numerators and denominators of the probabilities in *K*
- The size of ϵ is polynomial w.r.t. the size of ${\cal K}$
- The value of *ε* can be determined by applying a well-known result on boundedness of solutions of linear programming problems [Papadimitriou, Steiglitz '82].

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
.				

Outline

Introduction

- Motivation
- Contribution

The PST Framework

- Syntax
- Semantics

3 Checking Consistency

- Computational Complexity
- Sufficient Condition for Checking Consistency
- A Tractable Case

Query Answering

Introduction The PS	GT Framework C	Checking Consistency (Query Answering	Conclusions and future work
00000 0000	0000000 0	000000	00	•

- Knowledge representation for probabilistic spatio-temporal data
- The knowledge is represented as
 - spatio-temporal atoms describing the location of objects in time with a probability interval
 - spatio-temporal denial formulas describing the integrity constraints the system must satisfy
- We showed that
 - consistency checking is NP-complete
 - sufficient conditions for checking consistency via linear programming
 - a class of formulas for which consistency checking is PTIME
 - using consistency checking for answering queries under both optimistic and cautious semantics
- Further issues that we plan to investigate:
 - other tractable cases
 - complexity of query answering for consistent PST KBs
 - repairing inconsistent PST KBs and answering queries
 - process queries after updates

Introduction The PS	GT Framework C	Checking Consistency (Query Answering	Conclusions and future work
00000 0000	0000000 0	000000	00	•

- Knowledge representation for probabilistic spatio-temporal data
- The knowledge is represented as
 - spatio-temporal atoms describing the location of objects in time with a probability interval
 - spatio-temporal denial formulas describing the integrity constraints the system must satisfy
- We showed that
 - consistency checking is NP-complete
 - sufficient conditions for checking consistency via linear programming
 - a class of formulas for which consistency checking is PTIME
 - using consistency checking for answering queries under both optimistic and cautious semantics
- Further issues that we plan to investigate:
 - other tractable cases
 - complexity of query answering for consistent PST KBs
 - repairing inconsistent PST KBs and answering queries
 - process queries after updates

Introduction The PS	GT Framework C	Checking Consistency (Query Answering	Conclusions and future work
00000 0000	0000000 0	000000	00	•

- Knowledge representation for probabilistic spatio-temporal data
- The knowledge is represented as
 - spatio-temporal atoms describing the location of objects in time with a probability interval
 - spatio-temporal denial formulas describing the integrity constraints the system must satisfy
- We showed that
 - consistency checking is NP-complete
 - sufficient conditions for checking consistency via linear programming
 - a class of formulas for which consistency checking is PTIME
 - using consistency checking for answering queries under both optimistic and cautious semantics
- Further issues that we plan to investigate:
 - other tractable cases
 - complexity of query answering for consistent PST KBs
 - repairing inconsistent PST KBs and answering queries
 - process queries after updates

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work

Thank you!

... any question?

Appendix

References

Selected References

Parker, A., Subrahmanian, V.S., Grant, J.

A logical formulation of probabilistic spatial databases. *IEEE TKDE*, pp. 1541–1556, 2007.

Papadimitriou, C.H., Steiglitz, K.,

Combinatorial optimization: algorithms and complexity. Prentice-Hall, Inc., 1982.