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Motivation

Tracking moving objects (1/2)

@ Tracking moving objects is fundamental in several application contexts
(e.g. environment protection, product traceability, traffic monitoring,
mobile tourist guides, analysis of animal behavior, etc.)
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Motivation

Tracking moving objects (2/2)

@ Location estimation techniques have limited accuracy and precision

e limitations of technologies used (e.g. GPS, Cellular networks, WiFi,
Bluetooth, RFID, etc.)

e limitations of the estimation methods (e.g., proximity to antennas,
triangulation, signal strength sample map, dead reckoning, etc.)
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Motivation

SPOT framework

@ SPOT : a declarative framework for the representation and processing of
probabilistic spatio-temporal data with uncertain
probabilities [Parker, Subrahmanian, Grant. TKDE *07]

@ A SPOT database is a set of atoms loc(id, r, t)[¢, u]

@ Joc(id, r, t)[¢, u] means that “object id is/was/will be inside region r at time
t with probability in the interval [¢, u]”.

Example

loc(idy, a, 1)[.4,.7]
loc(id;, b, 1)[.4, .9] - —
/oc(/d1, c,9)[.9,1] :
loc(id;, d,15)[.6, 1] j 5= =
loc(id;, e, 18)[.7,1] s
loc(idz, b, 2)[.5, .9] !
Ioc(ldg, c,12)[.9,1] ‘

a
0o 1 2 3 4 5 6 7
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Motivation

Limits of SPOT DBs

@ Not general enough to represent additional knowledge concerning
constraints on the movements of objects
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Motivation

Limits of SPOT DBs

@ Not general enough to represent additional knowledge concerning
constraints on the movements of objects
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@ There cannot be two distinct objects in
region ¢ at any time point between 1 and
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Motivation

Limits of SPOT DBs

@ Not general enough to represent additional knowledge concerning
constraints on the movements of objects
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@ No object can reach region e starting from
region a in less than 10 time points
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Motivation

Limits of SPOT DBs

@ Not general enough to represent additional knowledge concerning
constraints on the movements of objects
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@ Object id can go away from region c only — __
if it stayed there for at least 2 time points T
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Contribution

Probabilistic spatio-temporal KBs

@ A probabilistic spatio-temporal (PST ) knowledgebase (KB) consists of
1) atomic statements, such as those representable in the SPOT framework

2) spatio-temporal denial formulas, a general class of formulas expressing
constraints on moving objects
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Contribution

Probabilistic spatio-temporal KBs

@ A probabilistic spatio-temporal (PST ) knowledgebase (KB) consists of
1) atomic statements, such as those representable in the SPOT framework

2) spatio-temporal denial formulas, a general class of formulas expressing
constraints on moving objects

@ Formal semantics, in terms of worlds, interpretations, and models

@ Complexity of checking consistency of PST KBs

o NP-complete in general

e Mixed-binary linear programming algorithm providing sufficient conditions for
checking consistency

e A tractable case

@ Using consistency checking for answering queries in PST KBs



The PST Framework

Outline

9 The PST Framework
@ Syntax
@ Semantics
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Syntax

PST atoms

@ Notation: /D is the set of objects identifiers, Space is a grid of N x N
points, T is a time interval

Definition (st-atom)

A spatio-temporal atom (st-atom) is of the form loc(X, Y, Z), where:
@ X is a variable ranging over /D, or a constant id € ID;
@ Y is a variable ranging over P(Space), or a constant r C Space
@ Zis a variable ranging over T, or a constantt € T.




The PST Framework
@0000

Syntax

PST atoms

@ Notation: /D is the set of objects identifiers, Space is a grid of N x N
points, T is a time interval

Definition (st-atom)

A spatio-temporal atom (st-atom) is of the form loc(X, Y, Z), where:
@ X is a variable ranging over /D, or a constant id € ID;
@ Y is a variable ranging over P(Space), or a constant r C Space
@ Zis a variable ranging over T, or a constantt € T.

Definition (PST atom — SPOT atom in the previous framework)

A PST atom is a ground st-atom loc(id, r, t) annotated with a probability
interval [¢, u] C [0, 1] — denoted as loc(id, r, t)[¢, u].

@ loc(id, r, t)[¢, u] says that object id is/was/will be inside region r at time ¢
with probability in the interval [¢, u]
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Syntax

Example

@ A set of PST atoms (i.e., a SPOT database)

loc(idy, ¢,9)[.9, 1]

loc(ids, a, 1)[.4,.7] —7

loc(idy, b, 1)[.4, .9] E =
loc(ids, d, 15)[.6, 1] e

loc(idi, e, 18)[.7,1] ! X
loc(ids, b, 2)[.5, .9] I '
loc(idz, ¢, 12)[.9, 1] 1

loc(idx, d, 18)[.6,.9] -0 =
loc(ids, d, 20)[.2, .9] o2 s e e
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Syntax

Example

@ A set of PST atoms (i.e., a SPOT database)

loc(idy, ¢,9)[.9, 1]

loc(ids, a, 1)[.4,.7] —7

loc(idy, b, 1)[.4, .9] e B2
loc(idy, d, 15)[.6, 1] e

loc(idi, e, 18)[.7,1] ! X
loc(ids, b, 2)[.5, .9] I '
loc(idz, ¢, 12)[.9, 1] 1

loc(idx, d, 18)[.6,.9] -0 =
loc(idz, d, 20)[.2, .9] o2 s e e

@ To get PST KBs we add integrity constraints in the form of
spatio-temporal denial formulas (std formulas for short)

@ Such formulas are expressive enough to capture a large set of constraints
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Syntax

Spatio-temporal denial formula

Definition (Std- formula)

k
VX, Y, Z = [(/\ foc(X;, Y, Z)) A a(X) A B(Y) A(2)]
i=1
@ X, Y, and Z are sets whose variables range over ID, P(Space), and T

@ loc(X;, Y, Z) are st-atoms such that X; (resp., Y;, Z) occurs in X (resp, Y,
Z) — each variable in X, Y, and Z occurs in at least one st-atom
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Syntax

Spatio-temporal denial formula

Definition (Std- formula)

k
VX, Y, Z = [(/\ foc(X;, Y, Z)) A a(X) A B(Y) A(2)]
i=1
@ X, Y, and Z are sets whose variables range over ID, P(Space), and T
@ loc(X;, Y, Z) are st-atoms such that X; (resp., Y;, Z) occurs in X (resp, Y,
Z) — each variable in X, Y, and Z occurs in at least one st-atom
@ «(X) is a conjunction of built-in predicates of the form X; ¢ X;, where X;
and X; are variables in X orids in ID, and o € {=, #}
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Syntax

Spatio-temporal denial formula

Definition (Std- formula)

k
VX, Y, Z = [(/\ foc(X;, Y, Z)) A a(X) A B(Y) A(2)]
i=1
@ X, Y, and Z are sets whose variables range over ID, P(Space), and T
@ loc(X;, Y, Z) are st-atoms such that X; (resp., Y;, Z) occurs in X (resp, Y,
Z) — each variable in X, Y, and Z occurs in at least one st-atom

@ «(X) is a conjunction of built-in predicates of the form X; ¢ X;, where X;
and X; are variables in X orids in ID, and o € {=, #}

@ 3(Y) is a conjunction of built-in predicates Y; o Y;, where Y; and Y; are
variables in Y or regions, and ¢ € {=,#, C, D, ov, nov} (ov stands for
"overlaps" and nov stands for "does not overlap")
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Syntax

Spatio-temporal denial formula

Definition (Std- formula)

k
VX, Y, Z = [(/\ foc(X;, Y, Z)) A a(X) A B(Y) A(2)]
i=1

@ X, Y, and Z are sets whose variables range over ID, P(Space), and T

@ loc(X;, Y, Z) are st-atoms such that X; (resp., Y;, Z) occurs in X (resp, Y,
Z) — each variable in X, Y, and Z occurs in at least one st-atom

@ «(X) is a conjunction of built-in predicates of the form X; ¢ X;, where X;
and X; are variables in X orids in ID, and o € {=, #}

@ 3(Y) is a conjunction of built-in predicates Y; o Y;, where Y; and Y; are
variables in Y or regions, and ¢ € {=,#, C, D, ov, nov} (ov stands for
"overlaps" and nov stands for "does not overlap")

@ ~(Z) is a conjunction of built-in predicates of the form Z; ¢ Z;, where each

Z; and Z; is a time point in T or a variable in Z that may be followed by +n
where nis a positive integer, and ¢ € {=, #, <, >}.
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Syntax

Examples of spatio-temporal denial formulas

1) There cannot be two distinct objects in region ¢ at any time point between
1 and 20:

f; = VX1,X2,Z1 —|[/OC(X1,C, Z1)/\/OC(X2, C, Z1)/\X1 7& XoNZy > 1N20 > 21]
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Syntax

Examples of spatio-temporal denial formulas

2) No object can reach region e starting from region a in less than 10 time
points:

> :VX1,Z1,Z_2 —‘[/OC(X1,a,Z1) A\ /OC(X1,e,Zg) NZy < ZoNZo < Zy+ 10]

e
N\
\

T ™
by
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Syntax

Examples of spatio-temporal denial formulas

3) Object id can go away from region c only if it stayed there for at least 2
time points:
=YY, 5 Yg, Z 5 ZQ, Z3 —|[/OC(I'd, Y, 5 Z1) N /OC(id, C, 22) N IOC(/d, YQ, Zg) N\
YinovecAYonovceANZo =21 +1NL <Z3NZLo+2> 23]

-+

w A N
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Syntax

PST knowledgebases

Definition (PST KB)

A PST KB K is a pair (A, F), where A is a finite set of PST atoms and F is
finite set of std-formulas.

A = {loc(ids, c,9)[.9, 1]

loc(idy, a, 1)[.4,.7] —

loc(ich, b, 1)[.4, .9] ‘ =
loc(ich, d, 15)[.6, 1] 1.

loc(idy, e,18)[.7,1] ! i
loc(ids, b, 2)[.5, .9] I '
loc(ids, ¢,12)[.9,1] ‘

loc(ids, d, 18)[.6, .9] - g
loc(ick, d, 20)[.2, .9]} s e

F = {f1 =VXi, X2, 2 ﬁ[/OC(X1,C,Z1) N /OC(XQ,C,Z1) ANXi#ZXoNZy >11N20 > Z1]
hL=VX,24,2 ﬁ[loc(Xha, Z1) N /OC(X1,6, Zz) NL < ZoNZo < Zy+ 10]
f; = VY17 Y2,21,22,Z3 —\[/OC(/d, Y1,Z1) A /OC(id, c, Zz) A /OC(/d, Y2,Zs)/\
YinovcAYonoveANL =21 +1NLo < ZsNLo+2 > Zg]}
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Semantics

World

@ A world specifies a possible trajectory for each object id € ID (i.e., says
where in Space object id was/is/will be at each time t € T)

Definition (World)
A world w is a function, w : ID x T — Space

World wy describes possible trajectories for idy and id> during the time interval [0, 20]:
wi (ich, t) = (4,1) for t € [0, 5] T =y
wi (idy, t) = (7,2) for t € [6,7] ’ N
wi (idy, t) = (7,4) for t € [8,10] j e |
wy (idy, t) = (4,4) for t € [11,16] 1 —
wy (idy, t) = (1,6) for t € [17,20] ‘ — f" 1
: o =
—0 g |
0 1 2 3 4 5 6 7
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Semantics

World

@ A world specifies a possible trajectory for each object id € ID (i.e., says
where in Space object id was/is/will be at each time t € T)

Definition (World)
A world w is a function, w : ID x T — Space

World wy describes possible trajectories for idy and id> during the time interval [0, 20]:
wi(idy, t) = (4,1) for t € [0, 5]
W1(id1,t)= (7,2) for t € [677] -7 —
W1(I.d1,t):(7,4) fort € [8,10] 6\ 0 5 7 _JL .
wi(idy,t) = (4,4) for t € [11,16] 5 A
wy (idy, t) = (1,6) for t € [17,20] a \ reh
3 [ hi J]
wi(ide, t) = (6,1) for t € [0, 11] e T A
wy (ids, t) = (7,5) for t € [12,15] = )
wi (idh, t) = (7,7) for t € [16,16] —0 )
wy (idz, t) = (4,5) for t € [17,20] 0 1 2 3 4 5 6 7
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Semantics

Satisfaction

@ World w satisfies a ground st-atom a = loc(id, r, t) (denoted as w = a) iff
w(id,t) er

-— ™ -
wy (ich, t) = (4,1) for t € [0, 5] of fo =
wy (idy, t) = (7,2) for t € [6,7] Wil T T
wy (idy, t) = (7,4) for t € [8,10] o0 1
wi (ich, t) = (4,4) for t € [11,16] = ‘ 2
ws (idy, t) = (1,6) for t € [17,20] S e

— 0 H + + ‘é

0 1 2 3 4 5 6 7

@ wq = loc(idy, b,0), as wy(idy,0) = (4, 1) belongs to region b
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Semantics

Satisfaction

@ World w satisfies a ground st-atom a = loc(id, r, t) (denoted as w = a) iff
w(id,t) er

@ w satisfies a conjunction of ground st-atoms (i.e., a ground std-formula)
iff w satisfies every st-atom in the conjunction

-— ™ -
wy (ich, t) = (4,1) for t € [0, 5] of fo =
wy (idy, t) = (7,2) for t € [6,7] Wil T T
wy (idy, t) = (7,4) for t € [8,10] o0 1
wi (ich, t) = (4,4) for t € [11,16] = ‘ 2
ws (idy, t) = (1,6) for t € [17,20] S e

— 0 H + + ‘é

@ wq = loc(idy, b,0), as wy(idy,0) = (4, 1) belongs to region b

@ wy = —[loc(idy, b,0) A loc(ids, e, 15)] as wy [~ loc(id;, e, 15), since
wi(ids, 15) = (4,4) ¢ e
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Semantics

Ground std-formulas

@ Given an std-formula f, ©; denotes the set of all substitutions of variables
in X, Y, and Z with constants in ID, S, and T, respectively, where S is the
set of all sets of Space that contain a single point
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Semantics

Ground std-formulas

@ Given an std-formula f, ©; denotes the set of all substitutions of variables
in X, Y, and Z with constants in ID, S, and T, respectively, where S is the
set of all sets of Space that contain a single point

@ The ground std-formula 6(f) resulting from applying 8 € ©; to f is:
0(f) = =[( ANy loc(0(X), 0( Y1), 0(Z)))) A a(0(X)) A BO(Y)) A ~(6(2))]

e f1 =VX1,Xs,Z —|[IOC(X1,C, Z1)/\/OC(X2, C, Z1)/\X1 7& XoNZy > 1N20 > Z1]

@ 0 ={Xi/idi, Xo/id>, Zy/6}, where idy, idyx € ID and time point 6 isin T

@ 9(fy) = —[loc(idi, c,6) A loc(ids, c,6)]
(idy # ida N6 > 1 A6 < 20, evaluating to frue, is not reported in 6(f;))
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Semantics

Ground std-formulas

@ Given an std-formula f, ©; denotes the set of all substitutions of variables
in X, Y, and Z with constants in ID, S, and T, respectively, where S is the
set of all sets of Space that contain a single point

@ The ground std-formula 6(f) resulting from applying 8 € ©; to f is:
0(f) = =[( ANy loc(0(X), 0( Y1), 0(Z)))) A a(0(X)) A BO(Y)) A ~(6(2))]

@ f; = VX1,X2,Z1 —|[IOC(X1,C, Z1)/\/OC(X2, C, Z1)/\X1 7& XonZy > 1020 > Z1]
@ 0 ={Xi/idi, Xo/id>, Zy/6}, where idy, idyx € ID and time point 6 isin T

@ 9(fy) = —[loc(idi, c,6) A loc(ids, c,6)]
(idy # ida N6 > 1 A6 < 20, evaluating to frue, is not reported in 6(f;))

@ World w satisfies an std-formula f (denoted as w = f) iff for each
substitution 6 € ©¢, w |= 6(f)
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Semantics

Interpretations

@ Aninterpretation / for a PST KB K is a probability distribution function
(PDF) over the set W(K) of all worlds of K

@ /(w) is the probability that w describes the actual trajectories of all the
objects

Example (Interpretation /)

W1 Wo W3 Wy
rrimaz=i I nisaz= IRk risa R R
ol i | ol el | ol el | o 1 el ?
3 : nj ° nj = ‘ n\%[ ° - ‘ d]
[ T ——— _— T = =S i |
} 1| ————t. 1 - L } } b
0 I ° i ° i o ¢ &l
I(wy) = 0.7 I(wp) = 0.2 I(ws) =0.1 I(ws) =0

All other words are assigned probability equal to zero by interpretation /

@ Only the interpretations that are compatible with the information in K
(PST atoms + std-formulas) are models
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Semantics

Models

Definition (Model)

A model M for a PST KB K = (A, F) is an interpretation for K such that:
(i) Vloc(id, r, t)[¢, u] € A, > M(w) € [¢, ul;

w | w=loc(id,r,t)

Example (Model M)

° [
[ §el

—= T T

: = | | 1

1

| ! Bl !

— ot it ‘
T

o s o o
=
|2
Qv QST
o s o o -
——
!
o ¢
i~ Qv ST
o s o o
1
o ¢
el
o s o o
|KD
o
o5

ol 4 ol 4] ol 4 o
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

M(wi) = 0.7 M(wz) = 0.2 M(ws) = 0.1 M(ws) =0

@ For atom loc(id, c,9)[.9, 1],
Zw|w|:loc(id1,c,9) M(w) = M(wr) + M(ws) + M(ws) =1 € [.9, .1]
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Semantics

Models

Definition (Model)
A model M for a PST KB K = (A, F) is an interpretation for K such that:
(i) Vloc(id, r, t)[¢, u] € A, > M(w) € [¢, ul;

w | w=loc(id,r,t)
(i) VieF, S M(w)=0.
w | wiAf

Example (Model M)

7 t 7 7 7 B
ol io [ ] ol io [ ] o] o [ 6 l ) -\
5 ar & 5 ar 4 5 At % 5 a 4 ?
4 ] e} 4 ] 4 4 o o
3 \T 0\%) 3 \T \%[ S T K el
T ] ‘ = :
: : = ! ] S
ot} ot} et »‘ 1
o £l d £l ol £l o 4l
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 [ 2 3 4 5 6 7 [ 2 3 4 5 6 7
M(w;) = 0.7 M(wz) = 0.2 M(ws) = 0.1 M(ws) =0

@ M(ws) = 0 since ws violates the constraint “no object can reach region e starting
from region ain less than 10 time points”
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Semantics

Consistency

Definition (Model)
A model M for a PST KB K = (A, F) is an interpretation for K such that:
(i) Vloc(id,r,t)[¢,u] € A, > M(w) € [¢, u];
w | wi=loc(id,r,t)
iy vieF, > M(w)=0.
w | whAf

Definition (Consistency)
PST KB K is consistent iff there is a model for it.




Checking Consistency

Outline

e Checking Consistency
@ Computational Complexity

@ Sufficient Condition for Checking Consistency
@ A Tractable Case
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Computational Complexity

Complexity

Deciding whether PST KB K = (A, F) is consistent is NP-complete.
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Computational Complexity

Complexity

Deciding whether PST KB K = (A, F) is consistent is NP-complete.

@ Membership: deciding whether K is consistent corresponds to checking
the feasibility of
(1) Vloc(id, r,t)[¢,u] € A,
(a) £< > Vi
w;|w;=loc(id,r,t)

(b) 2 Visu

L w;|w;=loc(id,r,t)
LPIK) =9 (2) vfer, > v=0
w; | wilEf
(3) > vi=1
w; | w,eW(K)

(4) YwieW(K), vi>0
@ v; represents probability M(w;) assigned to w; € W(K) by M € M(K)
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Computational Complexity

Complexity

Deciding whether PST KB K = (A, F) is consistent is NP-complete.

@ Membership: deciding whether K is consistent corresponds to checking
the feasibility of
(1) Vloc(id, r,t)[¢,u] € A,
(a) £< > Vi
w;|w;=loc(id,r,t)

(b) 2 Visu

L w;|w;=loc(id,r,t)
LPIK) =9 (2) vfer, > v=0
w; | wilEf
(3) > vi=1
w; | w,eW(K)

(4) YwieW(K), vi>0
@ v; represents probability M(w;) assigned to w; € W(K) by M € M(K)
@ Exponential number of variables v; (|W(K)| = |Space]!’PI'ITl)
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Computational Complexity

Membership in NP

@ It can be shown that LP(K) is feasible iff there is a solution for LP(K)
consisting of at most 2 - | A| 4 |F| + 1 non-zero variables (it follows from a
well-known result on the size of solutions of linear programming
problems [Papadimitriou, Steiglitz '82])



Checking Consistency
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Computational Complexity

Membership in NP

@ It can be shown that LP(K) is feasible iff there is a solution for LP(K)
consisting of at most 2 - | A| + |F| + 1 non-zero variables (it follows from a
well-known result on the size of solutions of linear programming
problems [Papadimitriou, Steiglitz '82])

@ Guess an assignment s’ consisting of 2 - | A| + | F| + 1 pairs
(vj,value of v;),

@ Check in polynomial time whether s’ is a solution of LP*(K), obtained
from LP(K) by keeping in it only the variables in s’

@ If s’ is a solution of LP*(K), then LP(K) is feasible
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Computational Complexity

NP-hardness

@ Reduction from Hamiltonian path problem

@ Consider a graph G = (V, E) with vertexes V = {w, ..., v} and edges E
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Computational Complexity

NP-hardness

@ Reduction from Hamiltonian path problem

@ Consider a graph G = (V, E) with vertexes V = {w, ..., v} and edges E
@ Assume ID = {id}, Space = V,and T =0,..., K]

@ Define K = (A, F) such that

- A consists of the PST atom loc(id, vy, 0)[1, 1], and

- F consists of std-formulas f/ (with i € [0..k]) and f, such that:

) fl =2y, 2 —[loc(id, {vi}, Z1) A loc(id, Space\ V', Zo) A Z = Z; + 1]
where V' is the set of vertexes v; s.t. (v;,v}) € E

i) £ =VY;, 2, Z —[loc(id, Y1, 2Zy) A loc(id, Yy, Ze) A Z1 # 2]
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Computational Complexity

NP-hardness

@ Reduction from Hamiltonian path problem

@ Consider a graph G = (V, E) with vertexes V = {w, ..., v} and edges E
@ Assume ID = {id}, Space = V,and T =0,..., K]

@ Define £ = (A, F) such that

- A consists of the PST atom loc(id, vy, 0)[1, 1], and

- F consists of std-formulas f/ (with i € [0..k]) and f, such that:

) fl =2y, 2 —[loc(id, {vi}, Z1) A loc(id, Space\ V', Zo) A Z = Z; + 1]
where V' is the set of vertexes v; s.t. (v;,v}) € E

iy b =VYy,2y,2 —[loc(id, Y1,21) A loc(id, Y1, Z2) N Zy # 2]
@ There is a model for K iff there is a Hamiltonian path in G

= Every world which is assigned a probability greater than zero by a model
encodes a Hamiltonian path

< Given a Hamiltonian path, define a model as a PDF over worlds
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Sufficient Condition for Checking Consistency

MBLP(K)

@ A mixed-binary linear programming problem whose feasibility entails
consistency

@ Variable vjq 1, represents the probability that id is at point p at time ¢

@ Binary variables ¢

Definition (MBLP(K))
MBLP(K) consists of the following (in)equalities:

(1) Vioc(id, r, t)[,u] € A: £ < > Vigip < U;
pEr

(2) vid € ID,te T: ZpeSpace Vid.tp = 1;
(8) Vp € Space,id € ID,t € T: Vigtp > 0;
(4) Vf e F, V0 € © s.t. 4(f) is logically equivalent to the negation of the
conjunction of st-atoms /\ﬁ‘=1 loc(0(Xi),0(Yi),0(Z)), the inequalities:
@ Vie[.kl: X Voo <
pPEO(Y)

(b) S, 6i=k—1; // at least one st-atom is false
() Vie [1.k]: & € {0,1}.
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Sufficient Condition for Checking Consistency

Using MBLP(K)

If MBLP(K) is feasible then K is consistent

@ Techniques for solving linear optimization problems can be adopted to
address the consistency checking problem
@ The converse of the theorem above does not hold

Let ID = {id}, T =[0,1], Space = {po, p1}, K = (A, F) where
A = {loc(id, po,0)[0.5,0.5], loc(id, p1,1)[0.5,0.5]} and
F = {-lloc(id, {po},0) A loc(id, {p1 }, 1)1}

W ZAEAARZ 0.5< Vigop < 05; 0.5< Vig1p, < 0.5;
wi(id,0) || po | po | P1 | P Vid,0,0p + Vid,0,00 =15 Vid 1,0 + Vid,1,0, = 1
wi(id, 1) || po | p1 | o | ps Vid,0,p < 01; Vid,1,p; < 02;

[ Mw) [[05]0]0]05] &+te=1 81,02 € {0,1}; via,ip; 2 0

@ M is a model for K but MBLP(K) is not feasible, as it includes the inequalities
above
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A Tractable Case

Unary std-formulas are tractable

@ Unary std-formulas consist of only one st-atom and a conjunction of
built-in predicates

@ “There is no object in region r at any time between 5 and 10” :
VXi,Z —\[/OC(X1,I',Z1) NZy >5A10 > Z1]
@ “Object id is always in region r”:

VY1, Zy —[loc(id, Y1,2Z1) A Yinov r].
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A Tractable Case

Unary std-formulas are tractable

@ Unary std-formulas consist of only one st-atom and a conjunction of
built-in predicates

@ “There is no object in region r at any time between 5 and 10” :
VXi,Z —\[/OC(X1,I',Z1) NZy >5A10 > Z1]

@ “Object id is always in region r”:
VY1, Zy —[loc(id, Y1,2Z1) A Yinov r].

Theorem

Let K = (A, F) be a PST KB such that F consists of unary std-formulas only.
Then, deciding whether K is consistent is in PTIME.

A,
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Queries

@ Query (?id, g, ?t,[¢, u]) says: “Given a region g and a probability interval
[¢, u], find all objects id and times t such that id is inside region g at time t
with a probability in the interval [¢, u].”



Query Answering
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Queries

@ Query (?id, g, ?t,[¢, u]) says: “Given a region g and a probability interval
[¢, u], find all objects id and times t such that id is inside region g at time t
with a probability in the interval [¢, u].”

@ Two semantics for interpreting this statement

Definition (Optimistic/Cautious Query Answers)

Let K be a consistent PST KB, and Q = (?id, q, ?t, [¢, u]) a query.
Then, (id, t) is

- an optimistic answer to Q w.r.t. K iff there is a model M for K s.t.

S Mw) et ]

w|wl=loc(id,q,t)

- a cautious answer to Q w.r.t. K iff for each a model M for K it holds that

> Mw) e[yl

w|wl=loc(id,q,t)
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Answering Queries

@ Consistency checking can be used to answer queries under both
optimistic and cautious semantics

Proposition
Let K = (A, F) be a consistent PST KB, and Q = (?id, q, ¢, [¢, u]). Then,
@ (id, t) is an optimistic answer to Q w.r.t. K iff (AU {loc(id, q, t)[¢, u]}, F) is
consistent.

@ (id, t) is a cautious answer to Q w.r.t. K iff (AU {loc(id, q, t)[0, {— €|}, F)
and (AU {loc(id, q, t)[u + ¢, 1]}, F) are not consistent.

@ ¢=1/(ma)™ where m=2 - |A| + |F| + 1 and a is the maximum among
the numerators and denominators of the probabilities in K

@ The size of ¢ is polynomial w.r.t. the size of K

@ The value of € can be determined by applying a well-known result on
boundedness of solutions of linear programming
problems [Papadimitriou, Steiglitz ’82].
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e a class of formulas for which consistency checking is PTIME

@ using consistency checking for answering queries under both optimistic and
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Conclusions and future work

@ Knowledge representation for probabilistic spatio-temporal data
@ The knowledge is represented as
e spatio-temporal atoms describing the location of objects in time with a
probability interval
o spatio-temporal denial formulas describing the integrity constraints the
system must satisfy

@ We showed that

e consistency checking is NP-complete

sufficient conditions for checking consistency via linear programming

a class of formulas for which consistency checking is PTIME

using consistency checking for answering queries under both optimistic and
cautious semantics

@ Further issues that we plan to investigate:

other tractable cases

complexity of query answering for consistent PST KBs

repairing inconsistent PST KBs and answering queries

process queries after updates

® 0 e



Thank you!

... any question?
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