Incremental Approaches for Dynamic Abstract Argumentation

Francesco Parisi

fparisi@dimes.unical.it Department of Informatics, Modeling, Electronics and System Engineering University of Calabria, Italy

> joint work with Gianvincenzo Alfano and Sergio Greco

3rd Workshop on Advances in Argumentation in Artificial Intelligence (*Al*³)

November 19, 2019

Rende, Italy

Dynamic Argumentation

- Argumentation frameworks are well-known formalisms for modelling and deciding disputes between two or more agents
- Several formalisms, e.g., Abstract Argumentation Frameworks (AFs), Bipolar Argumentation Frameworks (BAFs), or more expressive languages such as Defeasible Logic Programming (DeLP)
- Argumentation frameworks are often dynamic (change over the time) as a consequence of the fact that argumentation is inherently dynamic (change mind/opinion, new available knowledge)

Given an argumentation framework \mathcal{AF}_t at time t, the arguments' status S_t (e.g. accepted/ reject) at time t, and an update u modifying the initial framework \mathcal{AF}_t into \mathcal{AF}_{t+1} , should we recompute the updated arguments' status S_{t+1} from scratch?

Outline

Introduction

Incremental Approach for Dung's AFs

- Main idea
- Influenced Arguments
- Reduced Argumentation Framework
- Incremental Algorithm and Experiments
- Approach for Extensions of Dung's AF
 - Bipolar Argumentation Frameworks
 - AFs with Second-Order Attacks
- 4 Skeptically Preferred Acceptance
 - Main idea
 - Supporting set and Context-based AF
 - Incremental Algorithm and Experiments

Argumentation Semantics

 Several semantics have been proposed to identify "reasonable" sets of arguments, called *extensions*

Argumentation semantics can be also defined in terms of labelling

• Function $L : A \rightarrow \{IN, OUT, UNDECIDED\}$ assigns a label (accepted, rejected, undecided) to each argument

Argumentation Semantics

 Several semantics have been proposed to identify "reasonable" sets of arguments, called *extensions*

- Argumentation semantics can be also defined in terms of labelling
- Function $L : A \rightarrow \{IN, OUT, UNDECIDED\}$ assigns a label (accepted, rejected, undecided) to each argument

Dynamic Abstract Argumentation Frameworks

- Most argumentation frameworks are dynamic systems, which are often updated by adding/removing arguments/attacks.
- For each semantics, extensions/labellings change if we update the initial AF by adding/removing arguments/attacks

Example (Updated AF $\mathcal{A} = +(c, f)(\mathcal{A}_0)$)

S	$\mathcal{E}_{\mathcal{S}}(\mathcal{A}_0)$	$\mathcal{E}_{\mathcal{S}}(\mathcal{A}))$
со	$\{\{f,g\},\{a,f,g\},\{b,f,g\}\}$?
pr	$\{\{a, f, g\}, \{b, f, g\}\}$?
st	$\{\{b, f, g\}\}$?
gr	$\{\{f,g\}\}$?

• How do we incrementally compute the semantics of updated AFs?

Dynamic Abstract Argumentation Frameworks

- Most argumentation frameworks are dynamic systems, which are often updated by adding/removing arguments/attacks.
- For each semantics, extensions/labellings change if we update the initial AF by adding/removing arguments/attacks

Example (Updated AF $\mathcal{A} = +(c, f)(\mathcal{A}_0)$)

S	$\mathcal{E}_{\mathcal{S}}(\mathcal{A}_0)$	$\mathcal{E}_{\mathcal{S}}(\mathcal{A}))$
со	$\{\{f,g\},\{a,f,g\},\{b,f,g\}\}$	$\{\{g\}, \{a, g\}, \{b, f, g\}\}$
pr	$\{\{a, f, g\}, \{b, f, g\}\}$	$\{\{a,g\},\{b,f,g\}\}$
st	$\{\{b, f, g\}\}$	$\{\{b, f, g\}\}$
gr	$\{\{f,g\}\}$	{ {g} }

• How do we incrementally compute the semantics of updated AFs?

• For several well-known semantics (i.e., *grounded*, *complete*, *preferred*, *stable*) an extension of the updated AF can be efficiently computed by looking only at a small part of the AF, called the *Reduced* AF, which is "influenced by" the update operation

 Once computed an extension for the reduced AF, it can be combined with the initial extension of the given AF to get an extension of the updated AF

Main idea

Overview of the approach

Given an initial AF A_0 , an extension E_0 , and an update $u = \pm(a, b)$

Three main steps/modules:

- 1) Identify a sub-AF $A_d = \langle A_d, \Sigma_d \rangle$, called *reduced* AF (R-AF) on the basis of the updates in *U* and additional information provided by the initial extension E_0
- 2) Compute an S-extension E_d of the reduced AF A_d by using an external (non-incremental) solver
- 3) Merge E_d with the portion $(E_0 \setminus A_d)$ of the initial extension that does not change

Architecture of ERASE, a system for Efficiently Recomputing Argumentation SEmantics.

Influenced Arguments

Irrelevant updates (1/2)

- Updates preserving a given initial extension/labelling
- Cases for which *E*₀ is still an extension of the updated AF after a *positive* update (attack addition)

update		$L_0(b)$		
+(<i>a</i> , <i>b</i>)		IN	UNDECIDED	OUT
	IN			co,pr,st,gr
$L_0(a)$	UNDECIDED		co,gr	co, pr, gr
	OUT	co, pr , st	co,gr	co,pr,st,gr

Example (For the update +(c, f) the initial preferred extension $E_0 = \{b, f, g\}$ is preserved, as $L_0(c) = OUT$ and $L_0(f) = IN$)

Influenced Arguments

Irrelevant updates (2/2)

- Similar result for negative updates
- Cases for which *E*₀ is still an extension of the updated AF after a *negative* update (attack removal)

update			$L_0(b)$	
-(<i>a</i> , <i>b</i>)		IN	UNDECIDED	OUT
	IN	N/A	N/A	
L ₀ (a)	UNDECIDED	N/A		co, pr, gr
	OUT	co, pr, st, gr	co, pr, gr	co,pr,st,gr

 In these cases we do not need to recompute the semantics of the updated AF: just return the initial extension

Influenced Arguments

Influenced set: Intuition

- $\mathcal{I}(u, \mathcal{A}_0, E_0)$ denotes the *influenced set* of $u = \pm(a, b)$ w.r.t. \mathcal{A}_0 and E_0
- 1) $\mathcal{I}(u, A_0, E_0) = \emptyset$ if *u* is irrelevant w.r.t. E_0 and the considered semantics
- 2) The status of an argument can change only if it is reachable from *b*: $\mathcal{I}(u, \mathcal{A}_0, E_0) \subseteq Reach_{\mathcal{A}}(b)$
- 3) If argument *z* is not reachable from *b* and $z \in E_0$, then also the status of the arguments attacked by *z* cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)

Update +(c, f) is irrelevant w.r.t. the preferred extension $E_0 = \{b, f, g\}$

 $\Rightarrow \mathcal{I}(+(\boldsymbol{c},\boldsymbol{f}),\mathcal{A}_0,\{\boldsymbol{b},\boldsymbol{f},\boldsymbol{g}\}) = \emptyset$

Influenced Arguments

Influenced set: Intuition

- $\mathcal{I}(u, \mathcal{A}_0, E_0)$ denotes the *influenced set* of $u = \pm(a, b)$ w.r.t. \mathcal{A}_0 and E_0
- 1) $\mathcal{I}(u, A_0, E_0) = \emptyset$ if *u* is irrelevant w.r.t. E_0 and the considered semantics
- 2) The status of an argument can change only if it is reachable from *b*: $\mathcal{I}(u, \mathcal{A}_0, E_0) \subseteq Reach_{\mathcal{A}}(b)$
- 3) If argument *z* is not reachable from *b* and $z \in E_0$, then also the status of the arguments attacked by *z* cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)

$$\mathcal{I}(+(c, f), \mathcal{A}_0, E_0) \subseteq \textit{Reach}(f) = \{e, d, a, b, c\}$$

$$\Rightarrow g, h \notin \mathcal{I}(+(c, f), \mathcal{A}_0, E_0)$$

Influenced Arguments

Influenced set: Intuition

- $\mathcal{I}(u, \mathcal{A}_0, E_0)$ denotes the *influenced set* of $u = \pm(a, b)$ w.r.t. \mathcal{A}_0 and E_0
- 1) $\mathcal{I}(u, \mathcal{A}_0, E_0) = \emptyset$ if *u* is irrelevant w.r.t. E_0 and the considered semantics
- 2) The status of an argument can change only if it is reachable from *b*: $\mathcal{I}(u, \mathcal{A}_0, E_0) \subseteq Reach_{\mathcal{A}}(b)$
- 3) If argument z is not reachable from b and $z \in E_0$, then also the status of the arguments attacked by z cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)

 $d \notin \mathcal{I}(+(d, f), \mathcal{A}_0, E_0)$ since it is attacked by $g \in E_0$ and g is not reachable from f.

Thus the arguments that can be reached only using *d* cannot belong to $\mathcal{I}(+(c, f), \mathcal{A}_0, E_0)$.

 \Rightarrow The influenced set is $\mathcal{I}(+(c, f), \mathcal{A}_0, E_0) = \{f, e\}$

- Given an AF A₀, an extension E₀, and an update u = ±(a, b), an extension for the updated AF is recomputed for a small part of the updated AF, called *reduced AF* and denoted R(u, A₀, E₀)
- R(u, A₀, E₀) consists of the subgraph of u(A₀) induced by I(u, A₀, E₀)
 plus additional nodes/edges representing the "external context":
 - 1) if there is in $u(A_0)$ an edge from a node $a \notin \mathcal{I}(u, A_0, E_0)$ to a node $b \in \mathcal{I}(u, A_0, E_0)$, we add edge (a, b) if the status of a is IN.
 - 2) if there is in $u(\mathcal{A}_0)$ an edge from $e \notin \mathcal{I}(u, \mathcal{A}_0, E_0)$ to $c \in \mathcal{I}(u, \mathcal{A}_0, E_0)$ such that e in UNDECIDED, we add edge (c, c) to $\mathcal{R}(u, \mathcal{A}_0, E_0)$

Example (From the influenced set to the Reduced AF)

Sub-AF induced Reduced AF by $\mathcal{I}(u, \mathcal{A}_0, E_0)$

- Given an AF A_0 , an extension E_0 , and an update $u = \pm(a, b)$, an extension for the updated AF is recomputed for a small part of the updated AF, called *reduced AF* and denoted $\mathcal{R}(u, A_0, E_0)$
- $\mathcal{R}(u, \mathcal{A}_0, E_0)$ consists of the subgraph of $u(\mathcal{A}_0)$ induced by $\mathcal{I}(u, \mathcal{A}_0, E_0)$
- plus additional nodes/edges representing the "external context":
 1) If there is in u(A₀) an edge from a node a ∉ I(u, A₀, E₀) to a node
 - $b \in \mathcal{I}(u, \mathcal{A}_0, E_0)$, we add edge (a, b) if the status of a is IN,
 - 2) if there is in $u(\mathcal{A}_0)$ an edge from $e \notin \mathcal{I}(u, \mathcal{A}_0, E_0)$ to $c \in \mathcal{I}(u, \mathcal{A}_0, E_0)$ such that e in UNDECIDED, we add edge (c, c) to $\mathcal{R}(u, \mathcal{A}_0, E_0)$

Example (From the influenced set to the Reduced AF)

 $A_0 \text{ and } E_0$ $a \qquad b \qquad c$ $d \qquad c \qquad f$ $g \qquad h$

Sub-AF induced Reduced AF by $\mathcal{I}(u, \mathcal{A}_0, E_0)$

- Given an AF A₀, an extension E₀, and an update u = ±(a, b), an extension for the updated AF is recomputed for a small part of the updated AF, called *reduced AF* and denoted R(u, A₀, E₀)
- $\mathcal{R}(u, \mathcal{A}_0, E_0)$ consists of the subgraph of $u(\mathcal{A}_0)$ induced by $\mathcal{I}(u, \mathcal{A}_0, E_0)$
- plus additional nodes/edges representing the "external context":
 - 1) if there is in $u(A_0)$ an edge from a node $a \notin \mathcal{I}(u, A_0, E_0)$ to a node $b \in \mathcal{I}(u, A_0, E_0)$, we add edge (a, b) if the status of a is IN,
 - 2) if there is in $u(A_0)$ an edge from $e \notin \mathcal{I}(u, A_0, E_0)$ to $c \in \mathcal{I}(u, A_0, E_0)$ such that *e* in UNDECIDED, we add edge (c, c) to $\mathcal{R}(u, A_0, E_0)$

Example (From the influenced set to the Reduced AF)

0000000000

Introduction Incremental Approach for Dung's AFs Approach for Extensions of Dung's AF Skeptically Preferred Acceptance Conclusions and future work

Incremental Algorithm and Experiments

Using extensions of the reduced AF

Theorem (Merging extensions)

Let A_0 be an AF, and $A = u(A_0)$ be the AF resulting from performing update $u = \pm(a, b)$ on A_0 . Let $E_0 \in \mathcal{E}_S(A_0)$ be an extension for A_0 under a semantics $S \in \{co, pr, st, gr\}$. Then, if $\mathcal{E}_{S}(\mathcal{R}(u, A_0, E_0))$ is not empty, then there is an extension $E \in \mathcal{E}_{\mathcal{S}}(\mathcal{A})$ for the updated AF \mathcal{A} such that $E = (E_0 \setminus \mathcal{I}(u, \mathcal{A}_0, E_0)) \cup E_d$ where E_d is an S-extension for reduced AF $\mathcal{R}(u, A_0, E_0)$.

Example (Merging an initial extension with that of the reduced AF)

Incremental Algorithm and Experiments

Incremental Algorithm

Algorithm Incr-Alg(A_0, u, S, E_0 , Solver_S)

Input: AF $A_0 = \langle A_0, \Sigma_0 \rangle$, update $u = \pm (a, b)$, semantics $S \in \{c_0, pr, st, gr\}$, extension $E_0 \in \mathcal{E}_S(\mathcal{A}_0)$, function Solver_S(\mathcal{A}) returning an *S*-extension for AF \mathcal{A} if it exists, \perp otherwise; Output: An *S*-extension $E \in \mathcal{E}_S(u(\mathcal{A}_0))$ if it exists, \perp otherwise; 1: $S = \mathcal{I}(u, \mathcal{A}_0, E_0)$; // Compute the influenced set 2: if $(S = \emptyset)$ then 3: return E_0 ; // If the influenced set is empty, return the initial extension E_0 4: $\mathcal{A}_d = \mathcal{R}(u, \mathcal{A}_0, E_0)$; // Otherwise, compute the reduced AF 5: Let $E_d =$ Solver_S(\mathcal{A}_d); // Compute an extension for the reduced AF using an external solver 6: if $(E_d \neq \bot)$ then 7: return $E = (E_0 \setminus S) \cup E_d$; // Merge E_0 with extension E_d of the reduced AF 8: else

9: **return** Solver_S($u(A_0)$); // If an extension for the reduced AF doesn't exist (it can happen for stable semantics), compute an extension from scratch

Incremental Algorithm and Experiments

Experimental Results

Outline

Introduction

- 2 Incremental Approach for Dung's AFs
 - Main idea
 - Influenced Arguments
 - Reduced Argumentation Framework
 - Incremental Algorithm and Experiments

Approach for Extensions of Dung's AF

- Bipolar Argumentation Frameworks
- AFs with Second-Order Attacks

Skeptically Preferred Acceptance

- Main idea
- Supporting set and Context-based AF
- Incremental Algorithm and Experiments

Conclusions and future work

Bipolar Argumentation Frameworks

Bipolar Argumentation Frameworks

- An abstract Bipolar Argumentation Framework (BAF) is a triple (A, Σ, Π), where
 - $A \subseteq Arg$ is a set of *arguments*,
 - $\Sigma \subseteq A \times A$ is a set of *attacks*,
 - $\Pi \subseteq A \times A$ is set of supports ($\Sigma \cap \Pi = \emptyset$)
- Dung's AF is a BAF of the form $\langle A, \Sigma, \emptyset \rangle$.

Example (BAF)

$$\begin{split} A &= \{a, b, c, d, e, f\} \\ \Sigma &= \{(a, c), \ (c, b), \ (b, d), \ (d, e) \\ &\quad (e, d), \ (e, e), \ (e, f)\} \\ \Pi &= \{(a, b)\} \end{split}$$

The coexistence of the support and attack relations in BAFs entails that new kinds of "implicit" attacks should be considered

Supported attack

Mediated attack

- A set S ⊆ A set-attacks an argument b ∈ A iff there exists a supported or mediated attack for b by an argument a ∈ S
- S ⊆ A defends an argument a ∈ A iff for each b ∈ A such that {b} set-attacks a, it is the case that S set-attacks b
- BAFs semantics (e.g. stable and preferred) can be defined as in the Dung's framework using the above notions of set-attack and defence

Bipolar Argumentation Frameworks

Overview of the approach

Bipolar Argumentation Frameworks

The Meta-Argumentation Framework

- The definition of meta-AF builds on that proposed in [Boella et al., 2010]
- consider additional (meta)arguments (e.g., Z_{f,b}) and attacks (e.g., (b, Z_{f,b})) that will allow us to *simulate updates* to be performed on BAF B₀ by means of updates performed on the corresponding the meta-AF M₀.

Bipolar Argumentation Frameworks

Incremental Algorithm

Algorithm Incr-BAF($\mathcal{B}_0, u, E_0, \mathcal{S}, \text{Solver}_{\mathcal{S}}$)

Input: BAF $\mathcal{B}_0 = \langle A_0, \Sigma_0 \Pi_0 \rangle$, update *u* of the form $u = \pm (a \Rightarrow b)$ or $u = \pm (a \to b)$, an initial *S*-extension E_0 , semantics $S \in \{ \text{pr, st} \}$, function Solver_S(\mathcal{A}) returning an *S*-extension for AF \mathcal{A} if it exists, \perp otherwise

Output: An S-extension E for $u(\mathcal{B}_0)$ if it exists, \perp otherwise;

1: if $checkProp(\mathcal{B}_0, u, E_0, \mathcal{S})$ then

2: return E_0 // Check if the initial extension is preserved (the update is irrelevant)

- 3: Let $\mathcal{M}_0 = \langle A^m, \Sigma^m \rangle$ be the the meta-AF for \mathcal{B}_0 w.r.t. *u* // Compute the meta AF
- 4: Let u^m be the update for \mathcal{M}_0 corresponding to u // Translate u into u^m
- 5: Let E_0^m be the initial S-extension for \mathcal{M}_0 corresponding to E_0 // Convert the initial extension for the BAF into an extension for the meta AF
- 6: Let $E^m = \text{Incr-Alg}(\mathcal{M}_0, u^m, \mathcal{S}, E_0^m, \text{Solver}_{\mathcal{S}}) // \text{Compute an } \mathcal{S}\text{-extension for the meta AF}$ 7: if $(E^m \neq \bot)$ then
- 8: return $E = (E^m \cap A_0);$
- 9: else

10: return \perp ; // An extension for the the meta AF could not exists (e.g., stable semantics)

Bipolar Argumentation Frameworks

Experimental Results (p is the percentage of supports)

AFs with Second-Order Attacks

Extended Abstract Argumentation Frameworks

- An Extended Argumentation Framework (EAF) is a triple $\langle A, \Sigma, \Delta \rangle$, where
 - $A \subseteq Arg$ is a set of arguments
 - $\Sigma \subseteq A \times A$ is a set of attacks
 - Δ is a binary relation over $A \times \Sigma$: second-order attacks
- A Dung's AF is an EAF of the form $\langle A, \Sigma, \emptyset \rangle$

Example (EAF)

$$\begin{split} A &= \{a, b, c, d, e\} \\ \Sigma &= \{(a, b), \ (b, c), \ (c, d), \ (d, c), \\ &\quad (d, e), \ (e, e)\} \\ \Delta &= \{(a, (d, c))\} \end{split}$$

$$a \rightarrow b \rightarrow c \qquad d \rightarrow e$$

AFs with Second-Order Attacks

Semantics for Extended Abstract Argumentation

The semantics of EAFs can be given in terms of meta-argumentation frameworks (i.e., Dung's AFs) where additional (meta-)arguments and attacks are considered to model second-order attacks

Example (EAF and corresponding Meta-AF)

$$X_{a,(d,c)} \longrightarrow Y_{a,(d,c)} \longrightarrow Y_{a,(d,c)} \longrightarrow Y_{d,c} \longleftarrow X_{d,c} \longrightarrow X_{d,c} \longrightarrow X_{d,c} \longrightarrow Y_{d,c} \longrightarrow X_{d,c} \longrightarrow X_{d,c} \longrightarrow Y_{d,c} \longrightarrow X_{d,c} \longrightarrow X_$$

AFs with Second-Order Attacks

Overview of the approach

AFs with Second-Order Attacks

Results (*s* is the percentage of second-order attacks)

Outline

Introduction

- 2 Incremental Approach for Dung's AFs
 - Main idea
 - Influenced Arguments
 - Reduced Argumentation Framework
 - Incremental Algorithm and Experiments
 - Approach for Extensions of Dung's AF
 - Bipolar Argumentation Frameworks
 - AFs with Second-Order Attacks

Skeptically Preferred Acceptance

- Main idea
- Supporting set and Context-based AF
- Incremental Algorithm and Experiments

Main idea

Skeptically Preferred Acceptance

An argument g (goal) is skeptically preferred accepted w.r.t. A (denoted as SA_A(g) = true) iff it appears in every pr-extension of A.

- A preferred extension of an AF ${\cal A}$ is a maximal admissible set of ${\cal A}$
- The ideal extension of A is the biggest admissible set of A which is contained in every preferred extension of A
- If an argument is in the ideal extension then it is skeptically (preferred) accepted, but the converse does not hold

Main idea

Updates and Context-based AF (CbAF)

 The skeptical preferred acceptance of goal argument w.r.t an updated AF can be efficiently computed by looking only at a small part of the AF, called the *Context-based* AF

Example (From the updated AF to the CbAF)

- The Context-based AF depends on the update, the initial *ideal* extension, and the *goal argument*
- It is useful to incrementally maintain the ideal extension

Supporting set and Context-based AF

Supporting set: Intuition

- Sup(u, A, E, g) is the set of arguments whose status may change after performing update u and s.t. they may imply a change of the status of the goal argument g
- Sup(u, A, E, g) for update u = ±(a, b), goal g, and ideal extension E consists of the arguments that
 - (*i*) can be reached from *b* without using any argument attacked by $z \in E$ that is not reachable from *b*, and
 - (*ii*) allow to reach the goal *g* by using only the arguments selected as above (if not possible it is empty)

Example (For update u = +(h, d))

Don't use g and e as they are attacked by some argument in the ideal extensions (i.e., f) which is not reachable from the target node d of the update +(h,d)

Supporting set and Context-based AF

Supporting set: Intuition

- Sup(u, A, E, g) is the set of arguments whose status may change after performing update u and s.t. they may imply a change of the status of the goal argument g
- Sup(u, A, E, g) for update u = ±(a, b), goal g, and ideal extension E consists of the arguments that
 - (*i*) can be reached from *b* without using any argument attacked by $z \in E$ that is not reachable from *b*, and
 - (*ii*) allow to reach the goal *g* by using only the arguments selected as above (if not possible it is empty)

Example (For update u = +(h, d))

For the goal c, the supporting set is
$$Sup(u, A_0, E_{id}, c) = \{c, d\}$$

For the goal h, the supporting set is empty: the goal cannot be reached from d without using g

Supporting set and Context-based AF

Context-based AF for skeptical acceptance

- A restriction of the AF to incrementally compute the status of the goal
- Similar to the reduced AF for gr, co, st, and pr
- But here we use as input the ideal extension and Sup(u, A, E, g)
- In addition to the arguments of the reduced AF, we need to consider the arguments and attacks of the updated AF such that:
 (a) they occur in a path ending in Sup(u, A, E, g), and
 (b) the arguments of the path outside the supporting set are undecided

Example (From the updated AF to the CbAF)

Supporting set and Context-based AF

CbAF for the incremental computation of the ideal ext.

- Same as the Context-based AF for the skeptical acceptance
- But build from a supporting set where the goal argument is not specified (it can be any argument): Sup(u, A₀, E₀, *)
- Sup(u, A₀, E₀, *) is defined as Sup(u, A₀, E₀, g) but without considering the conditions that the arguments selected must allow to reach the goal g

Example (From the updated AF to the CbAF)

- in our example, since $Sup(u, A_0, E_0, \star) = Sup(u, A_0, E_0, c)$ then $CbAF(u, A_0, E_0, \star) = CbAF(u, A_0, E_0, c)$
- in general CbAF(u, A₀, E₀, ⋆) includes CbAF(u, A₀, E₀, g) for each g

Incremental Algorithm and Experiments

Incremental Algorithm

Algorithm SPA($A_0, g, SA_{A_0}(g), u, E_0$)

Input: AF $A_0 = \langle A_0, \Sigma_0 \rangle$, argument $g \in A_0$, skeptical acceptance $SA_{A_0}(g)$ of g w.r.t. A_0 , update $u = \pm (a, b)$, ideal extension E_0 of A_0 ;

Output: skeptical acceptance $SA_{u(A_0)}(g)$ of g w.r.t. $u(A_0)$, ideal extension E of $u(A_0)$;

1: Let $S_{\star} = Sup(u, A_0, E_0, \star)$ // supporting set for computing the updated ideal extension

2: Let $A_{id} = CbAF(u, A_0, E_0, \star)// CbAF$ for computing the updated ideal extension

3: Let $E = (E_0 \setminus S_*) \cup \text{ID-Solver}(A_{id}) / / \text{Incremental computation of the ideal extension}$ 4: if $g \in E$ then

5: return $\langle true, E \rangle //$ if the goal is in the ideal extension, then it is skeptical accepted 6: if $g \in E^+$ then

7: return $\langle false, E \rangle / / g$ is attacked by the ideal extension, thus it is not skeptically accepted 8: Let $S_g = Sup(u, A_0, E_0, g) / /$ supporting set for the skeptical acceptance of g 9: if S_g is empty then

10: return $\langle SA_{A_0}(g), E \rangle //$ skeptical acceptance preserved

11: Let $A_{sa} = \text{CbAF}(u, A_0, E_0, g) // \text{CbAF}$ for skeptical acceptance of g

12: **return** (SA-Solver(A_{sa}, g), E)// If the supporting set is not empty, it suffices to compute the skeptical acceptance only on the CbAF

Incremental Algorithm and Experiments

Experimental Results: improvement of SPA and SPA-base over the computation from scratch

- Incremental algorithm SPA, where ID-Solver is pyglaf [Alviano, 2017] and SA-Solver is ArgSemSAT [Cerutti et al., 2014], the solver that won the ICCMA'17 DS-pr track;
- SPA-base, a version of SPA where the ideal extension is not used;
- ArgSemSAT for the computation from scratch.

Outline

Introduction

- 2 Incremental Approach for Dung's AFs
 - Main idea
 - Influenced Arguments
 - Reduced Argumentation Framework
 - Incremental Algorithm and Experiments
 - Approach for Extensions of Dung's AF
 - Bipolar Argumentation Frameworks
 - AFs with Second-Order Attacks
- 4 Skeptically Preferred Acceptance
 - Main idea
 - Supporting set and Context-based AF
 - Incremental Algorithm and Experiments

Conclusions and future work

Conclusions and Future Work

- We discussed a general incremental approach based on identifying a tighter portion of the updated framework (e.g. AF, BAF) to be examined for recomputing the status of arguments
- The approach uses both the initial arguments' status, the update, as well as the structure of the given framework
- The incremental approach enables any non-incremental algorithm to be used as an incremental one for boosting computation
- It can be applied to the incremental computation of skeptical acceptance
- Current and Future work:
 - (i) applying the technique to more general argumentation frameworks (e.g., ASAF, DeLP) and other semantics (e.g., semi-stable)
 - enumerating all the extensions and deciding credulous/sceptical acceptance for other semantics
 - (iii) devising heuristics to take advantages of different algorithms (incremental or not, depending on the input framework)

Thank you for your attention!

... question?

Selected References

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi.

Efficient Computation of Extensions for Dynamic Abstract Argumentation Frameworks: An Incremental Approach. In IJCAI, pages 49–55, 2017.

Sergio Greco, Francesco Parisi.

Incremental Computation of Deterministic Extensions for Dynamic Argumentation Frameworks. In IJCAI, pages 288–304, 2016.

Sergio Greco, Francesco Parisi.

Efficient Computation of Deterministic Extensions for Dynamic Abstract Argumentation Frameworks. In ECAI, pages 1668–1669, 2016.

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi.

A meta-argumentation approach for the efficient computation of stable and preferred extensions in dynamic bipolar argumentation frameworks. Intelligenza Artificiale, 2018.

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi.

Computing Stable and Preferred Extensions of Dynamic Bipolar Argumentation Frameworks. AI*IA Workshop on Advances in Argumentation in Artificial Intelligence (AI3), 2017.

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi.

Computing Extensions of Dynamic Abstract Argumentation Frameworks with Second-Order Attacks. IDEAS, 2018.

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi.

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi: An Efficient Algorithm for Skeptical Preferred Acceptance in Dynamic Argumentation Frameworks In JUCAL 2019.