Constrained AFs	Weak-constrained AFs	Conclusions

Argumentation Frameworks with Strong and Weak Constraints: Semantics and Complexity

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, Irina Trubitsyna

{g.alfano, greco, fparisi, i.trubitsyna}@dimes.unical.it Department of Informatics, Modeling, Electronics and System Engineering University of Calabria Italy

Thirty-Fifth AAAI Conference on Artificial Intelligence

February 2-9, 2021

Virtual Event

Argumentation	in Al		
Motivation			
000000			
Introduction	Constrained AFs	Weak-constrained AFs	Conclusions

- A general way for representing arguments and relationships (rebuttals) between them
- It allows representing dialogues, making decisions, and handling inconsistency and uncertainty

Abstract Argumentation Framework (AF) [Dung1995]: arguments are abstract entities (no attention is paid to their internal structure) that may attack and/or be attacked by other arguments

Example (A simple AF)

Albert (a), Betty (b) and Charlie (c) wish to attend a basketball game on Saturday evening, but only two tickets are available.

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
000000			
Motivation			

Argumentation Semantics

Several semantics have been proposed to identify "reasonable" sets of arguments (called *extensions*)

Example (AF Λ)

	Semantic S	Set of S -extensions of Λ
	complete (co)	$\{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}, \{a, b\}, \{a, b, c\}, \{a, b, c\},$
	preferred (pr)	$\frac{\{a, c, b\}, \{b, c, a\}\}}{\{\{a, b, c\}, \{a, b, \bar{c}\}, \{a, b, \bar{c}\}, \{c, \bar{c}\},$
$(\bar{a}) \leftrightarrow (\bar{b}) \leftrightarrow (\bar{c})$	semi-stable (sst)	$\frac{\{a, c, b\}, \{b, c, a\}\}}{\{\{a, b, c\}, \{a, b, \bar{c}\}, \{a, b, \bar{c}\}, \{c, \bar{c}\},$
	stable (st)	$\frac{\{a, c, b\}, \{b, c, a\}\}}{\{\{a, b, c\}, \{a, b, \bar{c}\}, \{a, b, \bar{c}\}, \{c, \bar{c}\},$
	grounded (gr)	$\frac{\{a,c,b\},\{b,c,a\}\}}{\{\emptyset\}}$

Argument *a* is (resp. is not) credolously (resp. skeptically) accepted under semantics $S \in \{co, pr, st, sst\}$: $CA_S(a) = true$ (resp. $SA_S(a) = false$).

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
000000			
Motivation			
AFs with	constraints $(1/2)$		

Despite the expressive power and generality of AFs, in some cases it is difficult to accurately model domain knowledge by an AF in a natural and easy-to-understand way.

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
000000			
Motivation			
AFs with o	constraints $(1/2)$		

Example

Albert, Betty and Charlie wish to attend a basketball game on Saturday evening, but only two tickets are available.

(a) (b) (a)	Semantic \mathcal{S}	Set of extensions
	preferred (pr)	${E_1 = {a, b, \bar{c}}, E_2 = {a, \bar{b}, c},$
↓ ↓ ↓		$E_3 = \{\bar{a}, b, c\}, E_4 = \{a, b, c\}\}$
$(\bar{a}) \leftarrow \bar{b} \leftarrow \bar{c}$	stable (st)	$\{E_1 = \{a, b, \bar{c}\}, E_2 = \{a, \bar{b}, c\},\$
		$E_3 = \{\bar{a}, b, c\}, E_4 = \{a, b, c\}\}$

However, E_4 is not feasible, because only two tickets are available, meaning that only two people could attend the game.

To overcome such a situation, and thus providing a natural and compact way for expressing such kind of conditions, the use of constraints has been proposed.

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
0000000			
Motivation			
AFs with o	constraints $(2/2)$		

Example

Albert, Betty and Charlie wish to attend a basketball game on Saturday evening, but only two tickets are available.

(a)	b	(c)
× ×	× ×	<u> </u>
(\bar{a})	$\bullet(\bar{b})\bullet$	\overline{c}

Semantic ${\cal S}$	Set of extensions
preferred (pr)	$\{E_1 = \{a, b, \bar{c}\}, E_2 = \{a, \bar{b}, c\}, \\ E_3 = \{\bar{a}, b, c\}, E_4 = \{a, b, c\}\}$
stable (st)	$ \{ E_1 = \{a, b, \bar{c}\}, E_2 = \{a, \bar{b}, c\}, \\ E_3 = \{\bar{a}, b, c\}, E_4 = \{a, b, c\} \} $

The constraint $a \wedge b \wedge c \Rightarrow$ false can be used to state that a, b, and c are not jointly accepted, i.e., Albert, Betty and Charlie cannot attend the game together. The effect is that E_4 is discarded.

We call an AF with constraints a Constrained AF (CAF).

Introducing	Weak Constraint	te	
Motivation			
0000000			
Introduction	Constrained AFs	Weak-constrained AFs	Conclusions

- Although constraints allow restricting the set of feasible solutions, they do not help in finding *best* or preferable solutions.
- If there are only two tickets available then Albert and Betty should preferably attend the game.
- This is a weak constraint which is required to be satisfied if possible.

Example (A simple WAF)

Consider a WAF obtained by adding to the previous CAF the weak constraint true $\rightarrow a \wedge b$, stating that is desirable that Albert and Betty attend the game together.

Semantic ${\cal S}$	Set of extensions
preferred (pr)	$\{ E_1 = \{a, b, \bar{c}\}, E_2 = \{a, \bar{b}, c\}, \\ E_3 = \{\bar{a}, b, c\}, E_4 = \{a, b, c\} \}$
stable (st)	$\{ \frac{E_1 = \{a, b, \bar{c}\}, E_2 = \{a, \bar{b}, c\}, \\ E_3 = \{\bar{a}, b, c\}, E_4 = \{a, b, c\} \}$

Then, extension E_1 is selected as the "best" preferred/stable one.

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
0000000			
Contributions			
Contributio	ons: new framewo	rk	

- We propose new semantics for CAFs relying on a simple yet expressive form of constraints that are interpreted using Lukasiewicz's logic, leading to an intuitive constraints' semantics
- We introduce WAFs and propose two criteria for interpreting weak constraints: *maximal-set* (msS) and *maximum-cardinality* (mcS)
- We investigate restricted forms of WAFs where constraints are linearly ordered (LWAF) or where constraints are expressed by denials

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
000000			
Contributions			
Contributio	ons: complexity		

• We investigate the complexity of credulous acceptance (CA_S) and skeptical acceptance (SA_S) for WAFs, showing that differently from strong constraints the introduction of weak constraints typically increases the complexity of one level in the polynomial hierarchy.

					Framework					
	/	AF	CA	F		WAF		LWAF	NCAF	NWAF
S	CAS	SA _S	CAS	SA _S	CA _{msS}	SA _{ms S}	CA _{mcS} / SA _{mcS}	CAS/SAS	CAS	CA _{msS}
co	NP-c	Р	NP-c	co <i>N</i> P-c	Σ ₂ ^P -c	П2 -с	$\Delta_2^P[\log n]$ -c	Δ ^{<i>P</i>} ₂ -c	NP-c	Σ ₂ ^P -c
st	NP-c	co <i>N</i> P-c	NP-c	co <i>N</i> P-c	Σ ₂ ^P -c	П2-с	$\Delta_2^P [\log n]$ -c	Δ ^{<i>P</i>} ₂ -c	NP-c	Σ ₂ ^P -c
pr	NP-c	П ^Р -с	$\Lambda P-h, \Sigma_2^P$	П ^Р -с	Σ_2^P -h, Σ_3^P	П ^{<i>P</i>} -с	$\Delta_3^P[\log n]$ -c	Δ ^{<i>P</i>} ₃ -c	NP-c	Σ ₂ ^P -c
sst	Σ ₂ ^P -c	П2-с	Σ ₂ ^P -c	П2-с	Σ ^P ₃ -c	П ^Р -с	$\Delta_3^P[\log n]$ -c	Δ ^P ₃ -c	Σ ₂ ^P -c	Σ ^P ₃ -c

Constrained AFs	Weak-constrained AFs	Conclusions

Outline

- Motivation
- Contributions

2 Constrained AFs

Semantics and Complexity Results

Weak-constrained AFs

- Semantics and Complexity Results
- Stratified WAFs
- CAFs/WAFs with Denials

Conclusions

	Constrained AFs	Weak-constrained AFs	Conclusions
	•00		
Semantics and Complexity Res	sults		
CAF seman	tics (1/2)		

((Strong) constraint)

Let $\mathcal{L}'_{\mathcal{A}}$ be the propositional language defined from \mathcal{A} and the connectives \land , \lor , \neg , where \mathcal{A} is a set of arguments. A *(strong) constraint* is a formula of one of the following forms: (*i*) $\varphi \Rightarrow v$, or (*ii*)

 $v \Rightarrow \varphi$, where φ is a propositional formula in $\mathcal{L}'_{\mathcal{A}}$ and $v \in \{f, u, t\}$.

Example

The constraint $a \land b \land c \Rightarrow f$ states that at least one of the arguments a, b and c must be false, whereas $t \Rightarrow a \land b \land c$ states that a, b and c must be all true.

(CAF)

A Constrained Argumentation Framework (CAF) is a triple $\Omega = \langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$ where $\langle \mathcal{A}, \mathcal{R} \rangle$ is an AF and \mathcal{C} is a set of propositional formulae built from $\mathcal{L}'_{\mathcal{A}}$.

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
	000		
Semantics and Complexity Res	ults		
CAF seman	tics $(2/2)$		
C/ II SCITICIT			

((Revised) CAF semantics)

Given a CAF $\Omega = \langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$, a set of arguments $S \subseteq \mathcal{A}$ is a complete (resp., grounded, preferred, stable, semi-stable) extension for Ω if S is a complete (resp., grounded, preferred, stable, semi-stable) extension for $\langle \mathcal{A}, \mathcal{R} \rangle$ and $S \models \mathcal{C}$.

Example (A CAF)

 $\text{Consider the CAF } \Omega = \langle \{a, b, c\}, \, \{(a, b), \, (b, a), \, (b, c), (c, c)\}, \, \{\texttt{t} \Rightarrow a \land b\} \rangle.$

The AF $\langle \{a, b, c\}, \{(a, b), (b, a), (b, c), (c, c)\} \rangle$ has three complete extensions, $E_1 = \emptyset$, $E_2 = \{a\}$ and $E_3 = \{b\}$, but all extensions do not satisfy the constraint stating that both *a* and *b* must belong to them. Thus Ω has no complete extensions, and thus no grounded extension.

	Constrained AFs	Weak-constrained AFs	Conclusions
	000		
Semantics and Complexity Results			
Complexity Resu	ults		

- The fact that the grounded extension may not exist for CAFs impacts on the complexity of the skeptical acceptance problem under complete semantics, which cannot be longer decided by simply looking at the grounded extension as for the case of AFs.
- Similarly, credulous acceptance under preferred semantics for CAFs can no longer be decided by checking credulous acceptance under complete semantics.

		Framework				
		AF	CA	F		
\mathcal{S}	CA_S	$S\!A_S$	CAS	SAS		
со	NP-c	Р	NP-c	co <i>N</i> P-c		
st	NP-c	co <i>NP-</i> c	NP-c	co <i>NP</i> -c		
pr	NP-c	П ₂ ^P -с	NP-h, Σ_2^P	П ₂ ^P -с		
sst	Σ_2^P -c	П ₂ ^P -с	Σ_2^P -c	П ₂ ^P -с		

Constrained AFs	Weak-constrained AFs	Conclusions

Outline

Introduction

- Motivation
- Contributions

Constrained AFs

• Semantics and Complexity Results

3 Weak-constrained AFs

- Semantics and Complexity Results
- Stratified WAFs
- CAFs/WAFs with Denials

Conclusions

	Constrained AFs	Weak-constrained AFs	Conclusions
		000000	
Semantics and Complexity Results			
M/AE compartic	c		

(Weak constrained AF)

A Weak constrained Argumentation Framework (WAF) is a tuple $\langle \mathcal{A}, \mathcal{R}, \mathcal{C}, \mathcal{W} \rangle$, where $\langle \mathcal{A}, \mathcal{R}, \mathcal{C} \rangle$ is a CAF and \mathcal{W} is a set of weak constraints.

Example

Consider the WAF $\langle \mathcal{A}, \mathcal{R}, \mathcal{C}, \mathcal{W} \rangle$ (a) $\bullet \bullet b$ (c) $\bullet \bullet d$ with $\mathcal{W} = \{ w_1 = c \to f, w_2 = a \lor \neg a \to u \}$ stating that c should preferably be false (w_1) and a should preferably be undefined (w_2) .

Two criteria for interpreting weak constraints

- **maximal set** criterion, considering as preferable (or *best*) extensions the ones that satisfy a maximal set of weak constraints, and
- **maximum-cardinality** criterion, considering as preferable (or *optimal*) extensions the ones that satisfy a maximal number of weak constraints.

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
		000000	
Semantics and Complexity F	lesults		
Maximal_S	et Semantics		

(c)

d

 $(a) \leftarrow (b)$

Example (A WAF)

$$\begin{split} \mathcal{W} &= \{w_1 = c \to f, \ w_2 = a \lor \neg a \to u\}, \ \mathcal{C} = \emptyset \\ 1 \ \operatorname{co/gr} & E_0 = \{\} &\models \{w_2\}, \\ 2 \ \operatorname{co} & E_1 = \{a\} &\models \{\}, \\ 3 \ \operatorname{co} & E_2 = \{b\} &\models \{\}, \\ 4 \ \operatorname{co} & E_3 = \{c\} &\models \{\}, \\ 5 \ \operatorname{co} & E_4 = \{d\} &\models \{w_1, w_2\}, \\ 6 \ \operatorname{co/pr/st/sst} & E_5 = \{a, c\} \models \{\}, \\ 7 \ \operatorname{co/pr/st/sst} & E_6 = \{a, d\} \models \{w_1\}, \\ 8 \ \operatorname{co/pr/st/sst} & E_7 = \{b, c\} \models \{\} \text{ and} \\ 9 \ \operatorname{co/pr/st/sst} & E_8 = \{b, d\} \models \{w_1\}. \end{split}$$

The maximal-set preferred (stable, semi-stable) extensions are E_6 and E_8 , whereas there is only one maximal-set complete extension, which is E_4 .

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
		000000	
Semantics and Complexity Results			
Maximum-Cardi	nality Semantics		

Example (A WAF)

$$\mathcal{W} = \{w_1 = \mathbf{t} \to a, w_2 = \mathbf{t} \to b, w_3 = c \to \mathbf{f}\}, \ \mathcal{C} = \emptyset$$

- 1 co/gr $E_1 = \{\} \models \mathcal{W}_1 = \emptyset,$
- 2 co/pr $E_2 = \{a\} \models \mathcal{W}_2 = \{w_1\},$
- 3 co/pr/st/sst $E_3 = \{b\} \models \mathcal{W}_3 = \{w_2, w_3\},$
- The only maximum-cardinality preferred extension is E_3 (as $|W_3|=2 > |W_1|=1 > |W_0|=0$).
- According to the maximal-set semantics, both E_2 and E_3 are maximal-set preferred extensions.
- Regarding the stable (and semi-stable) semantics, as there is only one extension, E_3 is both a maximal-set and a maximum-cardinality extension.

	Constrained AFs	Weak-constrained AFs	Conclusions			
		0000000				
Semantics and Complexity Results						
Complexity Results						

	Framework							
		AF	CA	F		WAF		
S	CA_S	SA_S	CA_S	SAS	CA_{msS}	SA_{msS}	CA_{mcS}/SA_{mcS}	
со	NP-c	Р	NP-c	co <i>NP</i> -c	Σ_2^P -c	П ^{<i>P</i>} -с	$\Delta_2^P[\log n]$ -c	
st	NP-c	co <i>NP-</i> c	NP-c	co <i>N</i> P-c	Σ_2^P -c	П ₂ ^P -с	$\Delta_2^P[\log n]$ -c	
pr	NP-c	П ₂ ^P -с	NP-h, Σ_2^P	П ₂ ^P -с	Σ_2^P -h, Σ_3^P	П ^{<i>P</i>} -с	$\Delta_3^P[\log n]$ -c	
sst	Σ_2^P -c	П ₂ ^P -с	Σ_2^P -c	П ₂ ^P -с	Σ ₃ ^P -c	П ₃ ^P -с	$\Delta_3^P[\log n]$ -c	

• Differently from strong constraints the introduction of weak constraints typically increases the complexity of one level in the polynomial hierarchy.

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
		000000	
Stratified WAFs			
C			

Stratified Weak Constrained AFs

We also considered WAFs where weak constraints are partially ordered.

A Stratified Weak constrained Argumentation Framework (SWAF) is a WAF $\langle \mathcal{A}, \mathcal{R}, \mathcal{C}, \mathcal{W} \rangle$ where \mathcal{W} is a list of sets of weak constraints $(\mathcal{W}_1, \ldots, \mathcal{W}_n)$.

- The idea is that weak constraints are applied one stratum at a time
- Given a set S of S-extensions of ⟨A, R, C⟩, the best/optimal S-extensions are obtained by first computing the set S₁ ⊆ S which are best/optimal solutions w.r.t. W₁, then the set S₂ ⊆ S₁ of S-extensions which are best/optimal solutions w.r.t. W₂ is selected, and so on
- If n = 1 then SWAFs coincide with standard WAFs

	Constrained AFs	Weak-constrained AFs	Conclusions
		0000000	
Stratified WAFs			
Linearly-or	dered WAFs		

- A particular form of SWAFs are the ones where every stratum is a singleton, that we called *Linearly ordered WAFs (LWAF)*
- Observe that for linearly ordered SWAFs (LWAFs), $CA_{msS} = CA_{mcS}$ and $SA_{msS} = SA_{mcS}$.

		AF	CA	F		WAF		LWAF
S	CA_S	$S\!A_S$	CA_S	SAS	CA_{msS}	SA_{msS}	$CA_{{\tt mc}{\cal S}}/SA_{{\tt mc}{\cal S}}$	CA_S/SA_S
со	NP-c	Р	NP-c	co <i>NP</i> -c	Σ ₂ ^P -c	П ₂ ^P -с	$\Delta_2^P[\log n]$ -c	Δ_2^P -c
st	NP-c	co <i>N</i> P-c	NP-c	co <i>NP-</i> c	$\Sigma_2^{\overline{P}}$ -c	П <u>Р</u> -с	$\Delta_2^P[\log n]$ -c	Δ_2^P -c
pr	NP-c	П ₂ ^P -с	NP-h, Σ_2^P	П ₂ ^P -с	Σ_2^P -h, Σ_3^P	П ^{<i>P</i>} -с	$\Delta_3^P[\log n]$ -c	Δ_3^P -c
sst	Σ_2^P -c	Π_2^P -c	Σ_2^P -c	Π_2^P -c	Σ_3^P -c	П ^{<i>P</i>} -с	$\Delta_3^P[\log n]$ -c	Δ_3^P -c

Framework

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
		000000	
CAFs/WAFs with Denials			
Negative C	onstraints		

A constraint of the form $\varphi \Rightarrow f$ where φ is a conjunction containing arguments or negated arguments is called *denial* (or *negative*) constraint.

An NCAF (resp. NWAF) is a CAF (resp. WAF) where weak and strong constraints are defined by denials.

					Framework					
		٩F	CAI	F		WAF		LWAF	NCAF	NWAF
S	CAS	SA _S	CAS	SAS	CA _{msS}	SA _{ms S}	CA _{mcS} /SA _{mcS}	CA_S/SA_S	CAS	CA_{msS}
co	NP-c	Р	NP-c	co <i>N</i> P-c	Σ ₂ ^P -c	П2 ^Р -с	$\Delta_2^P[\log n]$ -c	Δ_2^P -c	NP-c	Σ_2^P -c
st	NP-c	co <i>N</i> P-c	NP-c	co <i>N</i> P-c	Σ ₂ ^P -c	П2-с	$\Delta_2^P [\log n]$ -c	Δ ^{<i>P</i>} ₂ -c	MP-c	$\Sigma_2^{\overline{P}}$ -c
pr	NP-c	П2 ^Р -с	MP-h, Σ_2^P	П2 ^Р -с	Σ_2^P -h, Σ_3^P	П ^{<i>P</i>} -с	$\Delta_3^P[\log n]$ -c	Δ ^{<i>P</i>} ₃ -c	MP-c	Σ ₂ ^P -c
sst	Σ ₂ ^P -c	П ₂ ^P -с	Σ ₂ ^P -c	П2-с	Σ ₂ ^P -c	П ₃ ^P -с	$\Delta_3^P [\log n] - c$	Δ ^P ₃ -c	Σ ₂ ^P -c	Σ ₃ ^P -c

Constrained AFs	Weak-constrained AFs	Conclusions

Outline

Introduction

- Motivation
- Contributions

Constrained AFs

• Semantics and Complexity Results

Weak-constrained AFs

- Semantics and Complexity Results
- Stratified WAFs
- CAFs/WAFs with Denials

Conclusions

	Constrained AFs	Weak-constrained AFs	Conclusions
			•
Conclusions and future work			
Conclusions and	future work		

- We have introduced a general argumentation framework where both strong and weak constraints can be easily expressed
- Weak constraints allow for selecting best or optimal extensions satisfying some conditions on arguments, if possible
- Our complexity analysis shows how the several forms of constrains impact on the complexity of credulous and skeptical reasoning
- Constraints, especially weak ones, generally increase the expressivity of AFs
- FW) Considering more general forms of constraints, not only using variables ranging on the sets of arguments, but also constraints allowing to express conditions on aggregates (e.g., at least n arguments from a given set *S* should be accepted/rejected)

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions
			•
Conclusions and future work			
Conclusions and	future work		

- We have introduced a general argumentation framework where both strong and weak constraints can be easily expressed
- Weak constraints allow for selecting best or optimal extensions satisfying some conditions on arguments, if possible
- Our complexity analysis shows how the several forms of constrains impact on the complexity of credulous and skeptical reasoning
- Constraints, especially weak ones, generally increase the expressivity of AFs
- FW) Considering more general forms of constraints, not only using variables ranging on the sets of arguments, but also constraints allowing to express conditions on aggregates (e.g., at least n arguments from a given set *S* should be accepted/rejected)

Introduction	Constrained AFs	Weak-constrained AFs	Conclusions

Thank you!

... any question?