On the Semantics of Recursive Bipolar AFs and Partial Stable Models

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi and Irina Trubitsyna

{g.alfano, greco, fparisi, trubitsyna}@dimes.unical.it DIMES Department, University of Calabria, Italy

4th Workshop on Advances In Argumentation In Artificial Intelligence

> November 25 - 26, 2020 (Virtual Event)

Abstract Argumentation Framework (AF)

Abstract Argumentation Framework (AF) [Dung1995]

Arguments are abstract entities (no attention is paid to their internal structure) that may attack and/or be attacked by other arguments.

Formally, an AF is a pair $A = \langle A, \Sigma \rangle$, where:

• *A* is a set of arguments, and • $\Sigma \subseteq A \times A$ is a set of attacks.

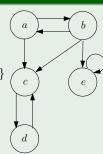
Example (a simple AF A)

$$\mathcal{A} = \langle A, \Sigma \rangle$$
 where

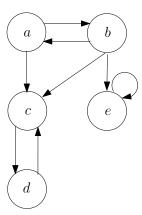
$$A = \{a, b, c, d, e\}$$
 and

$$\Sigma = \{(a,b), (b,a), (a,c), (b,c), (b,e), (e,e), (d,c), (c,d)\}$$

An evaluation process is needed in order to conclude something.

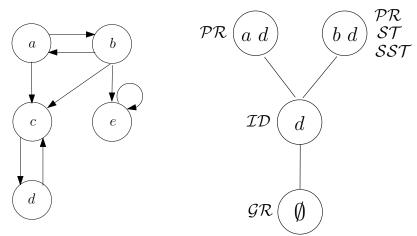


Refinements of the Complete Extension An Example



Semantic	Extensions	Refinement
	Ø	
	{ d }	
complete	{ a , d }	≡
	{ b , d }	
preferred	{a, d}	maximal
	{ b , d }	w.r.t ⊆
semi-stable	{ <i>b</i> , <i>d</i> }	minimal set of
		undecided args
stable	{b, d}	w/o UN args
ideal	{ d }	maximal &
		contained in each pr
grounded	Ø	minimal w.r.t ⊆

Refinements of the Complete Extension An Example



The set of complete extensions defines a meet semi-lattice

Computing Partial Stable Models (PSMs)

- A (normal) LP P is a set of rules of the form $A \leftarrow B_1 \wedge \cdots \wedge B_n$, with n > 0
- Given a (partial) interpretation $M \subseteq B_P \cup \neg B_P$, P^M is the positive instantiation of P w.r.t M obtained by replacing every negated body literal $\neg a$ with its truth value $\vartheta_M(\neg a)$ w.r.t. M

$$\vartheta_{\mathit{M}}(\neg a) \in \{\mathit{True}, \mathit{False}, \mathit{Undef}\}$$

 M is a Partial Stable Model (PSM) of P if it is the minimal model of P^M

Other Semantics

Program P: $a \leftarrow \neg b$; $b \leftarrow \neg a$; $c \leftarrow \neg a, \neg b, \neg d$; $d \leftarrow \neg c$; $e \leftarrow \neg e, \neg b$;

Semantic	Extensions	Refinement
	Ø	-
Partial Stable Model	$\{\neg c, d\}$	≡
$\mathcal{PS}(M)$	$\{a, \neg b, \neg c, d\}$	
	$\{\neg a, b, \neg c, d, \neg e\}$	
maximal-stable	$\{a, \neg b, \neg c, d\}$	maximal
$\mathcal{MS}(P)$	$\{\neg a, b, \neg c, d, \neg e\}$	w.r.t ⊆
least-undefined	$\{\neg a, b, \neg c, d, \neg e\}$	minimal set of
$\mathcal{LM}(P)$		undefined atoms
total stable	$\{\neg a, b, \neg c, d, \neg e\}$	w/o undef atoms
$\mathcal{SM}(P)$		
max-deterministic	$\{\neg c, d\}$	maximal &
$\mathcal{MD}(P)$		\in each $\mathcal{MS}(P)$
well-founded	Ø	minimal w.r.t ⊆
$\mathcal{WF}(P)$		
	Partial Stable Model $\mathcal{PS}(M)$ maximal-stable $\mathcal{MS}(P)$ least-undefined $\mathcal{LM}(P)$ total stable $\mathcal{SM}(P)$ max-deterministic $\mathcal{MD}(P)$ well-founded	Partial Stable Model $\mathcal{PS}(M)$ $\{a, \neg b, \neg c, d\}$ $\{a, \neg b, \neg c, d, \neg e\}$ maximal-stable $\{a, \neg b, \neg c, d, \neg e\}$ least-undefined $\mathcal{LM}(P)$ total stable $\mathcal{SM}(P)$ $\{\neg a, b, \neg c, d, \neg e\}$ $\mathcal{SM}(P)$ max-deterministic $\mathcal{MD}(P)$ well-founded

Other Semantics

Program P:

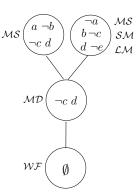
$$a \leftarrow \neg b$$
;

$$b \leftarrow \neg a$$
;

$$c \leftarrow \neg a, \neg b, \neg d$$
:

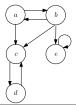
$$d \leftarrow \neg c$$
:

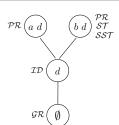
$$e \leftarrow \neg e, \neg b$$
:



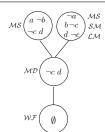
The set of partial stable models of *P* defines a meet semi-lattice.

Analogies? Yes!





Program P: $a \leftarrow \neg b$; $b \leftarrow \neg a$; $c \leftarrow \neg a, \neg b, \neg d$; $d \leftarrow \neg c$; $e \leftarrow \neg e, \neg b$;

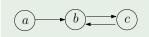


Relations with LP

A one-to-one correspondence between 3-valued stable models and complete extensions of an AF has been already proposed (Wu et al. 2009; Caminada et al. 2015). $\not =$ for \mathcal{SST}

 $P_{\Delta} = \{a \leftarrow \bigwedge_{(b,a) \in \Omega} \neg b \mid a \in A\}$ is the propositional program derived from Δ .

Example



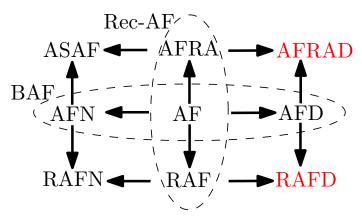
$$b \leftarrow \neg c, \neg a$$

$$c \leftarrow \neg b$$

$$PSM = \widehat{\mathcal{CO}(\Delta)}$$
: $\{\{a, c, \neg b\}\}$

Beyond Dung AF

Several Abstract Argumentation Frameworks extending Dung AF proposed in literature, and different ways to obtain extensions.

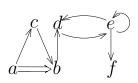


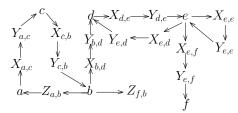
- Sometimes the AF-based semantics are a bit difficult to understand, especially when approaching argumentation.
- The semantics can be given:

- Sometimes the AF-based semantics are a bit difficult to understand, especially when approaching argumentation.
- The semantics can be given:
- Directly: hidden relations should be taken into account.

Mediated attack d = c = b = a d = c = b = aSupported attack

- Sometimes the AF-based semantics are a bit difficult to understand, especially when approaching argumentation.
- The semantics can be given:
- Directly: hidden relations should be taken into account.
- Via meta-argumentation: several (fake) meta-arguments and meta-attacks are added.





- Sometimes the AF-based semantics are a bit difficult to understand, especially when approaching argumentation.
- The semantics can be given:
- Directly: hidden relations should be taken into account.
- Via meta-argumentation: several (fake) meta-arguments and meta-attacks are added.

The same holds when moving on Rec-BAFs, but in a more complicated way due to the recursive interactions, which requires several definitions, loosing one of the key aspects of argumentation: simplicity.

Direct and Meta-AF Semantics for Rec-BAFs

(Support Sequence and Support Set)

(Conditional Defeat)

...

(Conflict-freeness)

(Acceptability)

(Admissibility)

(ASAF Extensions) ...

_	$\mathcal{A} \stackrel{lpha}{\longrightarrow} \mathcal{C}$	$\mathcal{A} \Longrightarrow \alpha \longrightarrow \mathcal{C}$
	$\mathcal{A} \stackrel{\circ}{\Longrightarrow} \mathcal{C}$	$\overrightarrow{A} \Longrightarrow \overrightarrow{\alpha^*} \xrightarrow{\alpha^-} C$
	$A \xrightarrow{\alpha \atop \beta \uparrow} C$ B	$ \begin{array}{c} \mathcal{A} \Longrightarrow \alpha \longrightarrow \mathcal{C} \\ \uparrow \\ \mathcal{B} \Longrightarrow \beta \end{array} $
	$\mathcal{A} \xrightarrow{lpha} \mathcal{C} \mathcal{B}$	$A \Rightarrow \alpha \to \mathcal{C}$ $B \Rightarrow \beta^+ \qquad \beta^-$
	$A \xrightarrow{\frac{\alpha}{\beta}} C$ B	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$A \stackrel{a}{\underset{\beta \ }{\Longrightarrow}} \mathcal{C}$	$B \Rightarrow \beta^{+} \beta^{-} \rightarrow \alpha$

What we Propose

- Sometimes the AF-based semantics are a bit difficult to understand, especially when approaching argumentation.
- The semantics can be given:
- Directly: hidden relations should be taken into account.
- Via meta-argumentation: several (fake) meta-arguments and meta-attacks are added.
- Model semantics defined for frameworks extending AF by means of PSMs of logic programs

Main Result

For any framework $\Delta \in \mathfrak{F}$ and a propositional program P, whenever $\widehat{\mathcal{CO}(\Delta)} = \mathcal{PS}(P)$ it holds that :

$$\widehat{\mathcal{PR}(\Delta)} = \mathcal{MS}(P)$$

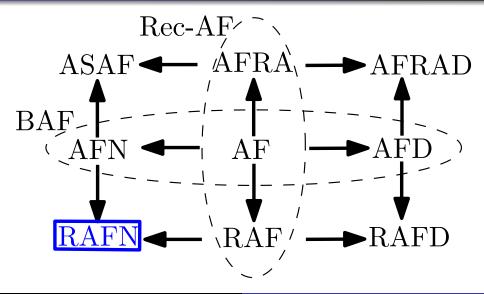
$$\widehat{\mathcal{ST}}(\Delta) = \mathcal{SM}(P)$$

$$\widehat{\mathcal{SST}}(\Delta) = \mathcal{LM}(P)$$

$$\widehat{\mathcal{GR}}(\widehat{\Delta}) = \mathcal{WF}(P)$$

$$\widehat{\mathcal{I}\mathcal{D}(\Delta)} = \mathcal{M}\mathcal{D}(P)$$

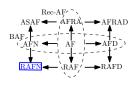
LP for AF-based frameworks: RAFN



Recursive AF with Necessities (RAFN)

(Corresponding Prop. Program of an RAFN)

$$\textit{X} \leftarrow \bigwedge_{\alpha \in \Sigma \land \textbf{t}(\alpha) = \textit{X}} (\neg \alpha \lor \neg \textbf{s}(\alpha)) \land \bigwedge_{\beta \in \Pi \land \textbf{t}(\beta) = \textit{X}} (\neg \beta \lor \textbf{s}(\beta)).$$



(Equivalent Definition of defeated and acceptable sets)

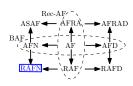
$$\begin{aligned} \mathsf{DEF}(S) &= \{X \in A \cup \Sigma \cup \Pi \mid \\ (\exists \alpha \in \Sigma \cap S \, . \, \mathbf{s}(\alpha) \in S \, \land \, \mathbf{t}(\alpha) = X) \lor \\ (\exists \beta \in \Pi \cap S \, . \, \mathbf{s}(\beta) \in \mathsf{DEF}(S) \, \land \, \mathbf{t}(\beta) = X) \ \}; \end{aligned}$$
$$\mathsf{ACC}(S) &= \{X \in A \cup \Sigma \cup \Pi \mid \\ (\forall \alpha \in \Sigma \, . \, \mathbf{t}(\alpha) = X \Rightarrow (\alpha \in \mathsf{DEF}(S) \lor \mathbf{s}(\alpha) \in \mathsf{DEF}(S))) \land \end{aligned}$$

 $(\forall \beta \in \Pi . \mathbf{t}(\beta) = X \Rightarrow (\beta \in \mathsf{DEF}(S) \lor \mathbf{s}(\beta) \in \mathsf{ACC}(S)))$.

Recursive AF with Necessities (RAFN)

(Corresponding Prop. Program of an RAFN)

$$X \leftarrow \bigwedge_{\alpha \in \Sigma \land \mathbf{t}(\alpha) = X} (\neg \alpha \lor \neg \mathbf{s}(\alpha)) \land \bigwedge_{\beta \in \Pi \land \mathbf{t}(\beta) = X} (\neg \beta \lor \mathbf{s}(\beta)).$$



(Theorem)

For any RAFN Δ , $\widehat{\mathcal{CO}(\Delta)} = \mathcal{PS}(P_{\Delta})$

Example

$$b \leftarrow \neg \beta \lor a$$

$$c \leftarrow$$

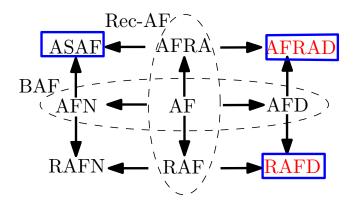
$$\alpha \leftarrow$$

$$\beta \leftarrow \neg \alpha \lor \neg c$$

$$\widehat{\mathcal{CO}(\Delta)} = \mathcal{PS}(P_{\Delta}) :$$
 $\{\{a, b, c, \alpha, \neg \beta\}\}$

LP for (other) AF-based frameworks (1/2)

Same is done for the other AF-based frameworks.



LP for (other) AF-based frameworks (2/2)

(Corresponding Prop. Program of an ASAF)

$$X \leftarrow \varphi(X) \land \bigwedge_{\alpha \in \Sigma \land \mathsf{t}(\alpha) = X} \neg \alpha \land \bigwedge_{\beta \in \Pi \land \mathsf{t}(\beta) = X} (\neg \beta \lor \mathsf{s}(\beta)) \text{ where } \varphi(X) = \begin{cases} \mathsf{s}(X) \text{ if } X \in \Sigma \\ \texttt{true otherwise} \end{cases}.$$

(Corresponding Prop. Program of an AFRAD)

$$X \leftarrow \varphi(X) \land \bigwedge_{\alpha \in \Sigma \land \mathbf{t}(\alpha) = X} \neg \alpha \land \bigwedge_{\beta \in \Pi \land \mathbf{s}(\beta) = X} (\neg \beta \lor \mathbf{t}(\beta)) \text{ where } \varphi(X) = \begin{cases} \mathbf{s}(X) \text{ if } X \in \Sigma \\ \text{true otherwise.} \end{cases}$$

(Corresponding Prop. Program of an RAFD)

$$X \leftarrow \bigwedge_{\alpha \in \Sigma \land \mathbf{t}(\alpha) = X} (\neg \alpha \lor \neg \mathbf{s}(\alpha)) \land \bigwedge_{\beta \in \Pi \land \mathbf{s}(\beta) = X} (\neg \beta \lor \mathbf{t}(\beta)).$$

Conclusions and Future Work

- A simple & general logical framework able to capture in a systematic and succinct way different features of several AF-based frameworks under different argumentation semantics.
- The proposed approach can be used for better understanding the semantics of extended AF frameworks (sometimes a bit involved), and is flexible enough for encouraging the study of other extensions.
- Enabling the computation at the LP level: using ASP solvers for computing extensions in extended AFs.
- FW) Generalize our logical approach to deal also with Probabilistic AF-based frameworks, weights, preferences, and considering supports with multiple sources.

Introducing Results LPs for AF-based frameworks Conclusions and Future Work

Thank you!

... any guestion argument?