Introduction	Incremental Computation	Experiments 00	Conclusions and future work O

Computing Skeptical Preferred Acceptance in Dynamic Argumentation Frameworks with Recursive Attack and Support Relations

Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi

DIMES Dept., University of Calabria, Italy

8th International Conference on Computational Models of Argument

September 8 - 11, 2020 (Virtual) Perugia, Italy

Introduction • 0 0 0	Incremental Computation	Experiments 00	Conclusions and future work O
Motivation			

Attack-Support Argumentation Framework (ASAF)

- A general way for representing arguments and relationships between them, allowing to represent dialogues, making decisions, and handling inconsistency and uncertainty.
- Extension of AF (and BAF) with recursive attacks and "necessary" supports

Example (a simple ASAF)

- w_t : winter season
- w_i : it is windy
 - r: it rains
- ${\tt w}_{\rm e}$: the court is wet
 - p: play tennis
 - s: need a sweatshirt
 - o: tennis racket shop is open

Introduction OOO	Incremental Computation	Experiments 00	Conclusions and future work O
Motivation			
Preferred	d Semantics		

- Extensions also include attacks and supports that contribute to determine the set of accepted arguments.
- An element (i.e., an argument/attack/support) X is skeptically preferred accepted w.r.t. Δ (denoted as SA_Δ(X) = true) iff it appears in every pr-extension of Δ

Example (ASAF Δ)

Set of preferred extensions of Δ	
---	--

$$\{\mathsf{w}_{i}, \mathsf{r}, \gamma_{1}, \mathsf{s}, \mathsf{w}_{e}, \omega_{2}, \mathsf{w}_{t}, \omega_{4}, \omega_{5}, \gamma_{2}\},\$$

 $\{\texttt{w}_{\texttt{i}},\texttt{r},\gamma_1,\texttt{s},\texttt{p},\omega_3,\texttt{w}_{\texttt{t}},\omega_4,\omega_5,\gamma_2\}\}$

Introduction OOO	Incremental Computation	Experiments 00	Conclusions and future work O
Motivation			
Preferred	d Semantics		

- Extensions also include attacks and supports that contribute to determine the set of accepted arguments.
- An element (i.e., an argument/attack/support) X is skeptically preferred accepted w.r.t. Δ (denoted as SA_Δ(X) = true) iff it appears in every pr-extension of Δ

Example (ASAF Δ)

Introduction	Incremental Computation	Experiments 00	Conclusions and future work O
Motivation			
Dynamic AS	AFs		

- Typically an ASAF represents a temporary situation, and new arguments, attacks and supports can be added/removed to take into account new available knowledge.
- An update u for an ASAF Δ allow us to change Δ into an ASAF u(Δ) by adding or removing an argument, an attack, or a support.
- If E_0 is a preferred extension for Δ and $u(\Delta)$ is obtained by adding (resp. removing) the set *S* of isolated arguments, then a preferred extension for $u(\Delta)$ is obtained as $E = E_0 \cup S$ (resp. $E = E_0 \setminus S$).
- We focus on the addition (+) (resp., deletion (-)) of of an attack or a support not present (resp., present) in a given ASAF.

Introduction OO●O	Incremental Computation	Experiments 00	Conclusions and future work O
Motivation			
Dynamic AS	AFs		

Example (update -(w_t, ω_1))

Set of pr-extensions of Δ	Set of pr-extensions of $u(\Delta)$
$\left\{ \{ \mathbf{w}_{i}, \mathbf{r}, \gamma_{1}, \mathbf{s}, \mathbf{w}_{e}, \omega_{2}, \mathbf{w}_{t}, \omega_{4}, \omega_{5}, \gamma_{2} \}, \right\}$	2
$\{w_1, 1, y_1, s, p, \omega_3, w_t, \omega_4, \omega_5, y_2\}\}$:

_			
Motivation			
Introduction 00●0	Incremental Computation	OO Experiments	O
the second state of the se			

Dynamic ASAFs

Example (update -(w_t, ω_1))

Set of pr-extensions of Δ	Set of pr-extensions of $u(\Delta)$
$[\{\{w_{i}, r, \gamma_{1}, s, w_{e}, \omega_{2}, w_{t}, \omega_{4}, \omega_{5}, \gamma_{2}\},$	
$\{\texttt{w}_{\texttt{i}},\texttt{r},\gamma_1,\texttt{s},\texttt{p},\omega_3,\texttt{w}_{\texttt{t}},\omega_4,\omega_5,\gamma_2\}\}$	$\{\{\mathtt{w}_{t}, \mathtt{w}_{i}, \mathtt{s}, \mathtt{p}, \mathtt{o}, \omega_{1}, \omega_{3}, \gamma_{1}, \gamma_{2}\}\}$

Introduction OO●O	Incremental Computation	Experiments 00	Conclusions and future work O
Motivation			
Dynamic AS	AFs		

Example (update -(w_t, ω_1))

Set of pr-extensions of Δ	Set of pr-extensions of $u(\Delta)$
$ \begin{array}{c} \left\{ \{ \texttt{w}_{i},\texttt{r},\gamma_{1},\texttt{s},\texttt{w}_{e},\omega_{2},\texttt{w}_{t},\omega_{4},\omega_{5},\gamma_{2} \}, \\ \{ \texttt{w}_{i},\texttt{r},\gamma_{1},\texttt{s},\texttt{p},\omega_{3},\texttt{w}_{t},\omega_{4},\omega_{5},\gamma_{2} \} \right\} \end{array} $	$\{\{\boldsymbol{w}_{f}, \boldsymbol{w}_{i}, \boldsymbol{s}, \boldsymbol{p}, \boldsymbol{o}, \boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{3}, \boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}\}\}$

Introduction OO●O	Incremental Computation	Experiments 00	Conclusions and future work O
Motivation			
Dynamic AS	AFs		

Example (update -(w_t, ω_1))

Set of pr-extensions of Δ	Set of pr-extensions of $u(\Delta)$
$[\{\{\mathbf{w}_{i},\mathbf{r},\gamma_{1},\mathbf{s},\mathbf{w}_{e},\omega_{2},\mathbf{w}_{t},\omega_{4},\omega_{5},\gamma_{2}\},$	
$\{\texttt{w}_{\texttt{i}},\texttt{r},\gamma_1,\texttt{s},\texttt{p},\omega_3,\texttt{w}_{\texttt{t}},\omega_4,\omega_5,\gamma_2\}\}$	$\{\{\boldsymbol{W}_{i}, \boldsymbol{S}, \boldsymbol{p}, \boldsymbol{o}, \omega_{1}, \omega_{3}, \gamma_{1}, \gamma_{2}\}\}$

Should we recompute $SA_u(\Delta)(p)$ from scratch?

Introduction 000●	Incremental Computation	Experiments 00	Conclusions and future work O
Motivation			
Contribution	S		

- 1) Given an update and a goal element, we identify a set of elements, called alterable set, whose acceptance status may change after the update.
- We define the Proxy ASAF allowing us to compute the skeptical preferred acceptance of a goal by focusing on a restriction of the input ASAF. (containing the alterable set).
- 3) We introduce an incremental algorithm for computing the skeptical preferred acceptance of a goal within a dynamic ASAF.
- 4) We also propose a version of the algorithm that uses a translation of our problem to the AF domain.
- 5) Experimental analysis comparing with fastest solvers from ICCMA 2019.

Introduction	Incremental Computation	Experiments	Conclusions and future work

Outline

2 Incremental Computation

- SPA
- Proxy ASAF
- Incremental Algorithm

B) Experiments

Introduction 0000	Incremental Computation	Experiments 00	Conclusions and future work O
SPA			
Alterable set	: Intuition		

- Alt(Δ, u, G) is the set of elements whose status may change after performing update u and s.t. they may imply a change of the status of G.
- Informal definition: Alt(Δ, u, G) for u = ±δ and G consists of the elements that can reach G from δ.

Example ($Alt(\Delta, u, G)$) where G = p and $u = -\omega_5$)

Alterable set $Alt(\Delta, u, p)$	Reachable Elements	
$\{\omega_5, \omega_1, \mathtt{r}, \gamma_1, \mathtt{w}_e, \omega_2, \mathtt{p}, \omega_3\}$	$\left[\left\{\omega_{5},\omega_{1},\mathtt{r},\omega_{4},\gamma_{1},\mathtt{o},\mathtt{w}_{\mathtt{e}},\omega_{2},\mathtt{p},\omega_{3}\right\}\right]$	

Introduction	Incremental Computation	Experiments	Conclusions and future work
	0000		
SPA			

Alterable set: Definition

(Alterable Set)

Let $\Delta = \langle A, \Omega, \Gamma \rangle$ be an ASAF, $u = \pm \delta$ an update, and $G \in A \cup \Omega \cup \Gamma$ a (goal) element. Let

-
$$Alt_0(\Delta, u, G) = \begin{cases} \emptyset & \text{if } G \notin Reach_{\Delta^u}(\delta); \\ N_{\Delta^u}(\delta) & \text{otherwise.} \end{cases}$$

-
$$Alt_{i+1}(\Delta, u, G) = Alt_i(\Delta, u, G) \cup \{Z \mid Z \in N_{\Delta^u}(Y), Y \in Alt_i(\Delta, u, G), G \in Reach_{\Delta^u}(Z)\}.$$

Let *n* be the natural number such that $Alt_n(\Delta, u, G) = Alt_{n+1}(\Delta, u, G)$. Then alterable set $Alt(\Delta, u, G)$ is $Alt_n(\Delta, u, G)$.

(Theorem 1)

Let $\Delta = \langle A, \Omega, \Gamma \rangle$ be an ASAF, *u* an update, $u(\Delta)$ the updated ASAF, and *G* a goal element in $A \cup \Omega \cup \Gamma$. If $Alt(\Delta, u, G) = \emptyset$ then $SA_{u(\Delta)}(G) = SA_{\Delta}(G)$.

Introduction	Incremental Computation	Experiments	Conclusions and future work O
Proxy ASAF			
Proxy AS	SAF		

(Proxy ASAF)

Let $\Delta = \langle A, \Omega, \Gamma \rangle$ be an ASAF, $u = \pm \delta$ an update, and $G \in A \cup \Omega \cup \Gamma$ a goal element. Let $S = Alt(\Delta, u, G)$. The Proxy ASAF of Δ w.r.t u and G is $PASAF(\Delta, u, G) = u(\Delta)\downarrow_{S \cup Reach_{u(\Delta)}^{-1}(S)}$.

Example (Proxy ASAF of our example)

 $PASAF(\Delta, u, p)$ given from the restriction of $u(\Delta)$ to:

- $S = Alt(\Delta, u, p) = \{\omega_5, \omega_1, r, \gamma_1, w_e, \omega_2, p, \omega_3\} +$
- Reach⁻¹_{$u(\Delta)$}(S) = {w_i}.

Introduction 0000	Incremental Computation	Experiments 00	Conclusions and future work O
Proxy ASAF			
Proxy ASAF	:		

Example (Proxy ASAF of our example)

 $PASAF(\Delta, u, p)$ given from the restriction of $u(\Delta)$ to:

- $S = Alt(\Delta, u, p) = \{\omega_5, \omega_1, r, \gamma_1, w_e, \omega_2, p, \omega_3\} +$
- $Reach_{u(\Delta)}^{-1}(S) = \{w_{i}\}.$

$$(\underline{w_1}, \underline{r}, \underline{w_2}, \underline{p})$$

(Theorem 2)

Let $\Delta = \langle A, \Omega, \Gamma \rangle$ be an ASAF, *u* an update, $u(\Delta)$ the updated ASAF, and a goal element $G \in A \cup \Omega \cup \Gamma$. If $Alt(\Delta, u, G) \neq \emptyset$ then *G* is skeptically preferred accepted w.r.t. $u(\Delta)$ iff it is skeptically preferred accepted w.r.t. the Proxy ASAF *PASAF*(Δ, u, G).

Introduction	Incremental Computation	Experiments	Conclusions and future work O
Incremental Algorithm			
Incremental	Algorithm		

Algorithm 1 ASAF-SA(Δ , u, G, SA_{Δ}(G), ASAF-Solver)

Input: ASAF $\Delta = \langle A, \Omega, \Gamma \rangle$, update *u*, goal $G \in A \cup \Omega \cup \Gamma$, initial skeptical preferred acceptance $SA_{\Delta}(G)$, function ASAF-Solver computing the skeptical preferred acceptance of a goal element for an ASAF.

Output: updated skeptically preferred acceptance of *G* w.r.t $u(\Delta)$.

1: Let
$$S = Alt(\Delta, u, G)$$

2: if
$$S = \emptyset$$
 then

- 3: return $SA_{\Delta}(G)$;
- 4: Let $\Delta_P = PASAF(\Delta, u, G)$
- 5: **return** ASAF-Solver(G, Δ_P)

Algorithm 2: Enabling the computation at the AF level. Let ASAFtoAF be a function that takes as input an ASAF Δ and returns the corresponding AF $\langle \mathbb{A}_{\Delta}, \Sigma_{\Delta} \rangle$ [*Alfano et al, ECAI2020*]. Then, the invocation of the ASAF solver at Line 5 is replaced by AF-Solver(\overline{G} , ASAFtoAF(Δ_P)), where AF-Solver is a function computing the skeptical preferred acceptance of a given argument w.r.t. a given AF, and \overline{G} is the argument of $\langle \mathbb{A}_{\Delta}, \Sigma_{\Delta} \rangle$ corresponding to G.

Increment	al Algorithm		
Incremental Algorithm			
Introduction 0000	Incremental Computation	Experiments 00	Conclusions and future work O

Algorithm 1 ASAF-SA(Δ , u, G, SA_{Δ}(G), ASAF-Solver)

Input: ASAF $\Delta = \langle A, \Omega, \Gamma \rangle$, update *u*, goal $G \in A \cup \Omega \cup \Gamma$, initial skeptical preferred acceptance $SA_{\Delta}(G)$, function ASAF-Solver computing the skeptical preferred acceptance of a goal element for an ASAF.

Output: updated skeptically preferred acceptance of *G* w.r.t $u(\Delta)$.

1: Let
$$S = Alt(\Delta, u, G)$$

2: if
$$S = \emptyset$$
 then

- 3: **return** $SA_{\Delta}(G)$;
- 4: Let $\Delta_P = PASAF(\Delta, u, G)$
- 5: return ASAF-Solver(\overline{G} , Δ_P) AF-Solver(\overline{G} , ASAFtoAF(Δ_P))

Algorithm 2: Enabling the computation at the AF level. Let ASAFtoAF be a function that takes as input an ASAF Δ and returns the corresponding AF $\langle \mathbb{A}_{\Delta}, \Sigma_{\Delta} \rangle$ [*Alfano et al, ECAl2020*]. Then, the invocation of the ASAF solver at Line 5 is replaced by AF-Solver(\overline{G} , ASAFtoAF(Δ_P)), where AF-Solver is a function computing the skeptical preferred acceptance of a given argument w.r.t. a given AF, and \overline{G} is the argument of $\langle \mathbb{A}_{\Delta}, \Sigma_{\Delta} \rangle$ corresponding to G.

Introduction	Incremental Computation	Experiments	Conclusions and future work
0000	00000	00	
Incremental Algorithm			
The AF f	or the ASAF		

(AF for ASAF [Alfano et al, ECAI2020])

Let $\Delta = \langle A, \Omega, \Gamma \rangle$ be an ASAF. The *AF* for Δ is $\Lambda_{\Delta} = \langle A_{\Delta}, \Sigma_{\Delta} \rangle$, where:

•
$$\mathbb{A}_{\Delta} = \mathbf{A} \cup \{ \omega, \omega^* \mid \omega \in \Omega \} \cup \{ \gamma, \gamma^* \mid \gamma \in \Gamma \}.$$

•
$$\Sigma_{\Delta} = \{ (\mathbf{s}(\omega), \omega^*), (\omega^*, \omega), (\omega, \mathbf{t}(\omega)) \mid \omega \in \Omega \} \cup$$

$$\{ (\omega, \mathbf{t}(\omega)^*) \mid \omega \in \Omega, \mathbf{t}(\omega) \in \mathsf{\Gamma} \} \cup$$

 $\{ (\mathbf{S}(\gamma), \gamma^*), \ (\gamma^*, \mathbf{t}(\gamma)) \ | \ \gamma \ \in \ \mathsf{\Gamma} \ \} \cup$

 $\{ (\gamma^*, \mathbf{t}(\gamma)^*) \mid \gamma \in \Gamma, \mathbf{t}(\gamma) \in \Gamma \}.$

Introduction	Incremental Computation	Experiments 00	Conclusions and future work O	
Incremental Algorithm				
The ΔF for the $\Delta S \Delta F$				

 ω_1 corresponds to the chain of attacks from w_i to r through ω_1 and ω_1^* ω_5 corresponds to the attacks $(w_t, \omega_5^*), (\omega_5, \omega_5), (\omega_5, \omega_1)$.

Introduction	Incremental Computation	Experiments	Conclusions and future work
0000	00000	00	

Outline

Incremental Computation
 SPA

- Proxy ASAF
- Incremental Algorithm

3 Experiments

Introduction	Incremental Computation	Experiments •O	Conclusions and future work O
Experimental validation			
Methodol	oav		

Datasets

We generated set of ASAFs from AF used as ICCMA'19 benchmarks by transforming AF's attacks into first/second/third level ASAF's attacks or supports with a given probability.

Methodology

- For each ASAF Δ in the dataset, we consider a (randomly chosen) goal element *G* and an update *u*.
- We compute $SA_{u(\Delta)}(G)$ with Alg.2.
- We compute the *improvement* of Alg. 2 over the computation from scratch (t_s/t_{A_2}).

Introduction	Incremental Computation	Experiments O	Conclusions and future work O		
Experimental validation					
Experimental Results					

- The improvement can be either very large or limited.
- The incremental algorithm outperforms the computation from scratch.

Introduction	Incremental Computation	Experiments	Conclusions and future work

Outline

Incremental Computation
 SPA

- Proxy ASAF
- Incremental Algorithm

3 Experiments

Introduction 0000	Incremental Computation	Experiments 00	Conclusions and future work	
Conclusions and future work				
Conclusions and future work				

- We introduced a technique for the incremental computation of SPA in dynamic ASAFs
- Given the generality of the ASAF, our technique can be also applied to AFRAs and AFNs
- We identified a tighter portion of the updated ASAF to be examined for recomputing the acceptance
- Our experiments showed that the incremental technique outperforms the computation from scratch
- As future work we plan to investigate similar approaches for Recursive Argumentation Framework with Necessities (RAFN) where a support may come also from a set of arguments, as well as extending our technique to deal with other semantics.

Introduction	Incremental Computation	Experiments	Conclusions and future work

Thank you!

... any question argument?