Computing Skeptical Preferred Acceptance in Dynamic Argumentation Frameworks with Recursive Attack and Support Relations

Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi

DIMES Dept., University of Calabria, Italy
$8^{\text {th }}$ International Conference on Computational Models of Argument

$$
\begin{aligned}
& \text { September } 8 \text { - 11, } 2020 \\
& \text { (Virtual) Perugia, Italy }
\end{aligned}
$$

Attack-Support Argumentation Framework (ASAF)

- A general way for representing arguments and relationships between them, allowing to represent dialogues, making decisions, and handling inconsistency and uncertainty.
- Extension of AF (and BAF) with recursive attacks and "necessary" supports

Example (a simple ASAF)

w_{t} : winter season
w_{i} : it is windy
r : it rains
w_{e} : the court is wet
p : play tennis
s: need a sweatshirt

o: tennis racket shop is open

Preferred Semantics

- Extensions also include attacks and supports that contribute to determine the set of accepted arguments.
- An element (i.e., an argument/attack/support) X is skeptically preferred accepted w.r.t. Δ (denoted as $S A_{\Delta}(X)=$ true) iff it appears in every pr-extension of Δ

Example (ASAF \triangle)

Set of preferred extensions of Δ
$\left\{\left\{\mathrm{w}_{\mathrm{i}}, r, \gamma_{1}, \mathrm{~s}, \mathrm{w}_{\mathrm{e}}, \omega_{2}, \mathrm{w}_{\mathrm{t}}, \omega_{4}, \omega_{5}, \gamma_{2}\right\}\right.$,
$\left.\left\{\mathrm{w}_{\mathrm{i}}, r, \gamma_{1}, \mathrm{~s}, \mathrm{p}, \omega_{3}, \mathrm{w}_{\mathrm{t}}, \omega_{4}, \omega_{5}, \gamma_{2}\right\}\right\}$

Preferred Semantics

- Extensions also include attacks and supports that contribute to determine the set of accepted arguments.
- An element (i.e., an argument/attack/support) X is skeptically preferred accepted w.r.t. Δ (denoted as $S A_{\Delta}(X)=$ true) iff it appears in every pr-extension of Δ

Example (ASAF \triangle)

Dynamic ASAFs

- Typically an ASAF represents a temporary situation, and new arguments, attacks and supports can be added/removed to take into account new available knowledge.
- An update u for an ASAF Δ allow us to change Δ into an ASAF $u(\Delta)$ by adding or removing an argument, an attack, or a support.
- If E_{0} is a preferred extension for Δ and $u(\Delta)$ is obtained by adding (resp. removing) the set S of isolated arguments, then a preferred extension for $u(\Delta)$ is obtained as $E=E_{0} \cup S$ (resp. $E=E_{0} \backslash S$).
- We focus on the addition (+) (resp., deletion (-)) of of an attack or a support not present (resp., present) in a given ASAF.

Dynamic ASAFs

Example (update - $\left(w_{\mathrm{t}}, \omega_{1}\right)$)

Set of pr-extensions of Δ
Set of pr-extensions of $u(\Delta)$
$\left\{\left\{\mathrm{w}_{\mathrm{i}}, \mathrm{r}, \gamma_{1}, \mathrm{~s}, \mathrm{w}_{\mathrm{e}}, \omega_{2}, \mathrm{w}_{\mathrm{t}}, \omega_{4}, \omega_{5}, \gamma_{2}\right\}\right.$,
$\left.\left\{\mathrm{w}_{\mathrm{i}}, \mathrm{r}, \gamma_{1}, \mathrm{~s}, \mathrm{p}, \omega_{3}, \mathrm{w}_{\mathrm{t}}, \omega_{4}, \omega_{5}, \gamma_{2}\right\}\right\}$

Dynamic ASAFs

Example (update -($\left.\mathrm{w}_{\mathrm{t}}, \omega_{1}\right)$)

Set of pr-extensions of $\Delta \quad$ Set of pr-extensions of $u(\Delta)$

$$
\begin{array}{c|c}
\hline\left\{\left\{\mathrm{w}_{\mathrm{i}}, r, \gamma_{1}, \mathrm{~s}, \mathrm{w}_{\mathrm{e}}, \omega_{2}, \mathrm{w}_{\mathrm{t}}, \omega_{4}, \omega_{5}, \gamma_{2}\right\},\right. \\
\left.\left\{\mathrm{w}_{\mathrm{i}}, \mathrm{r}, \gamma_{1}, \mathrm{~s}, \mathrm{p}, \omega_{3}, w_{\mathrm{t}}, \omega_{4}, \omega_{5}, \gamma_{2}\right\}\right\} & \left\{\left\{\mathrm{w}_{\mathrm{t}}, \mathrm{w}_{\mathrm{i}}, \mathrm{~s}, \mathrm{p}, \mathrm{o}, \omega_{1}, \omega_{3}, \gamma_{1}, \gamma_{2}\right\}\right\} \\
\hline \hline
\end{array}
$$

Dynamic ASAFs

Example (update -($\left.\mathrm{w}_{\mathrm{t}}, \omega_{1}\right)$)

Set of pr-extensions of Δ	Set of pr-extensions of $u(\Delta)$
$\left\{\left\{\mathrm{w}_{\mathrm{i}}, \mathrm{r}, \gamma_{1}, \mathrm{~s}, \mathrm{w}_{\mathrm{e}}, \omega_{2}, \mathrm{w}_{\mathrm{t}}, \omega_{4}, \omega_{5}, \gamma_{2}\right\}\right.$, $\left.\left\{\mathrm{w}_{\mathrm{i}}, r, \gamma_{1}, \mathrm{~s}, \mathrm{p}, \omega_{3}, \mathrm{w}_{\mathrm{t}}, \omega_{4}, \omega_{5}, \gamma_{2}\right\}\right\}$	$\left\{\left\{\mathrm{w}_{\mathrm{t}}, \mathrm{w}_{\mathrm{i}}, \mathrm{s}, \mathrm{p}, \circ, \omega_{1}, \omega_{3}, \gamma_{1}, \gamma_{2}\right\}\right\}$

Dynamic ASAFs

Example (update - $\left(\mathrm{w}_{\mathrm{t}}, \omega_{1}\right)$)

Set of pr-extensions of Δ	Set of pr-extensions of $u(\Delta)$
$\left\{\left\{\mathrm{w}_{\mathrm{i}}, r, \gamma_{1}, \mathrm{~s}, \mathrm{w}_{\mathrm{e}}, \omega_{2}, \mathrm{w}_{\mathrm{t}}, \omega_{4}, \omega_{5}, \gamma_{2}\right\}\right.$, $\left.\left\{\mathrm{w}_{\mathrm{i}}, r, \gamma_{1}, \mathrm{~s}, \mathrm{p}, \omega_{3}, \mathrm{w}_{\mathrm{t}}, \omega_{4}, \omega_{5}, \gamma_{2}\right\}\right\}$	$\left\{\left\{\boldsymbol{w}_{\mathrm{i}}, \mathrm{s}, \mathrm{p}, \mathrm{o}, \omega_{1}, \omega_{3}, \gamma_{1}, \gamma_{2}\right\}\right\}$

Should we recompute $S A_{u}(\Delta)(\mathrm{p})$ from scratch?

Contributions

1) Given an update and a goal element, we identify a set of elements, called alterable set, whose acceptance status may change after the update.
2) We define the Proxy ASAF allowing us to compute the skeptical preferred acceptance of a goal by focusing on a restriction of the input ASAF. (containing the alterable set).
3) We introduce an incremental algorithm for computing the skeptical preferred acceptance of a goal within a dynamic ASAF.
4) We also propose a version of the algorithm that uses a translation of our problem to the AF domain.
5) Experimental analysis comparing with fastest solvers from ICCMA 2019.

Outline

(1) Introduction

- Motivation
(2) Incremental Computation
- SPA
- Proxy ASAF
- Incremental Algorithm
(3) Experiments

4. Conclusions and future work

Alterable set: Intuition

- $\operatorname{Alt}(\Delta, u, G)$ is the set of elements whose status may change after performing update u and s.t. they may imply a change of the status of G.
- Informal definition: $\operatorname{Alt}(\Delta, u, G)$ for $u= \pm \delta$ and G consists of the elements that can reach G from δ.

Example $\left(\operatorname{Alt}(\Delta, u, G)\right.$ where $G=\mathrm{p}$ and $\left.u=-\omega_{5}\right)$

Alterable set Alt $(\Delta, u, p) \quad$ Reachable Elements

| $\left\{\omega_{5}, \omega_{1}, r, \gamma_{1}, w_{\mathrm{e}}, \omega_{2}, \mathrm{p}, \omega_{3}\right\}$ | $\left\{\omega_{5}, \omega_{1}, r, \omega_{4}, \gamma_{1}, \circ, \mathrm{w}_{\mathrm{e}}, \omega_{2}, \mathrm{p}, \omega_{3}\right\}$ |
| :--- | :--- | :--- |

Alterable set: Definition

(Alterable Set)

Let $\Delta=\langle A, \Omega, \Gamma\rangle$ be an ASAF, $u= \pm \delta$ an update, and $G \in A \cup \Omega \cup \Gamma$ a (goal) element. Let

$$
\begin{aligned}
& -A l t_{0}(\Delta, u, G)=\left\{\begin{array}{l}
\emptyset \text { if } G \notin \operatorname{Reach}_{\Delta^{u}}(\delta) ; \\
N_{\Delta^{u}}(\delta) \text { otherwise. }
\end{array}\right. \\
& -\operatorname{Alt}_{i+1}(\Delta, u, G)=\operatorname{Alt}_{i}(\Delta, u, G) \cup\left\{Z \mid Z \in N_{\Delta^{u}}(Y), Y \in A l t_{i}(\Delta, u, G),\right. \\
& \left.G \in \operatorname{Reach}_{\Delta^{u}}(Z)\right\} .
\end{aligned}
$$

Let n be the natural number such that $A l t_{n}(\Delta, u, G)=A l t_{n+1}(\Delta, u, G)$. Then alterable set $\operatorname{Alt}(\Delta, u, G)$ is $\operatorname{Alt}_{n}(\Delta, u, G)$.

(Theorem 1)

Let $\Delta=\langle A, \Omega, \Gamma\rangle$ be an ASAF, u an update, $u(\Delta)$ the updated ASAF, and G a goal element in $A \cup \Omega \cup \Gamma$. If $A l t(\Delta, u, G)=\emptyset$ then $S A_{u(\Delta)}(G)=S A_{\Delta}(G)$.

Proxy ASAF

(Proxy ASAF)

Let $\Delta=\langle A, \Omega, \Gamma\rangle$ be an ASAF, $u= \pm \delta$ an update, and $G \in A \cup \Omega \cup \Gamma$ a goal element. Let $S=\operatorname{Alt}(\Delta, u, G)$. The Proxy ASAF of Δ w.r.t u and G is $\operatorname{PASAF}(\Delta, u, G)=u(\Delta) \downarrow_{S U R e a c h}^{u(\Delta)}(S)$.

Example (Proxy ASAF of our example)

$\operatorname{PASAF}(\Delta, u, \mathrm{p})$ given from the restriction of $u(\Delta)$ to:

- $S=\operatorname{Alt}(\Delta, u, p)=\left\{\omega_{5}, \omega_{1}, r, \gamma_{1}, w_{e}, \omega_{2}, p, \omega_{3}\right\}+$
- $\operatorname{Reach}_{u(\Delta)}^{-1}(S)=\left\{\mathrm{w}_{\mathrm{i}}\right\}$.

Proxy ASAF

Example (Proxy ASAF of our example)

$\operatorname{PASAF}(\Delta, u, \mathrm{p})$ given from the restriction of $u(\Delta)$ to:

- $S=\operatorname{Alt}(\Delta, u, p)=\left\{\omega_{5}, \omega_{1}, r, \gamma_{1}, w_{e}, \omega_{2}, p, \omega_{3}\right\}+$
- $\operatorname{Reach}_{u(\Delta)}^{-1}(S)=\left\{\mathrm{w}_{\mathrm{i}}\right\}$.

$$
\mathrm{W}_{\mathrm{i}} \underset{\omega_{1}}{\Longrightarrow} \underset{\gamma_{1}}{\Longrightarrow} \underset{\mathrm{We}_{\mathrm{\omega}}}{\stackrel{\omega_{2}}{\leftrightarrows}} \mathrm{P}
$$

(Theorem 2)

Let $\Delta=\langle A, \Omega, \Gamma\rangle$ be an ASAF, u an update, $u(\Delta)$ the updated ASAF, and a goal element $G \in A \cup \Omega \cup \Gamma$. If $\operatorname{Alt}(\Delta, u, G) \neq \emptyset$ then G is skeptically preferred accepted w.r.t. $u(\Delta)$ iff it is skeptically preferred accepted w.r.t. the Proxy $\operatorname{ASAF} \operatorname{PASAF}(\Delta, u, G)$.

Incremental Algorithm

Algorithm 1 ASAF-SA($\Delta, u, G, S A_{\Delta}(G)$, ASAF-Solver)
Input: ASAF $\Delta=\langle A, \Omega, \Gamma\rangle$, update u, goal $G \in A \cup \Omega \cup \Gamma$, initial skeptical preferred acceptance $S A_{\Delta}(G)$, function ASAF-Solver computing the skeptical preferred acceptance of a goal element for an ASAF.
Output: updated skeptically preferred acceptance of G w.r.t $u(\Delta)$.
1: Let $S=\operatorname{Alt}(\Delta, u, G)$
2: if $S=\emptyset$ then
3: return $S A_{\Delta}(G)$;
4: Let $\Delta_{P}=\operatorname{PASAF}(\Delta, u, G)$
5: return ASAF-Solver $\left(G, \Delta_{P}\right)$

Algorithm 2: Enabling the computation at the AF level. Let ASAFtoAF be a function that takes as input an ASAF \triangle and returns the corresponding AF Line 5 is replaced by $\operatorname{AF}-\operatorname{Solver}\left(\bar{G}, \operatorname{ASAFtoAF}\left(\Delta_{P}\right)\right)$, where $A F-S o l v e r ~ i s ~ a ~$
function computing the skeptical preferred acceptance of a given argument w.r.t. a given AF, and \bar{G} is the argument of $\left\langle\mathbb{A}_{\Delta}, \Sigma_{\Delta}\right\rangle$ corresponding to G.

Incremental Algorithm

Algorithm 1 ASAF-SA($\Delta, u, G, S A_{\Delta}(G)$, ASAF-Solver)
Input: ASAF $\Delta=\langle A, \Omega, \Gamma\rangle$, update u, goal $G \in A \cup \Omega \cup \Gamma$, initial skeptical preferred acceptance $S A_{\Delta}(G)$, function ASAF-Solver computing the skeptical preferred acceptance of a goal element for an ASAF.
Output: updated skeptically preferred acceptance of G w.r.t $u(\Delta)$.
1: Let $S=\operatorname{Alt}(\Delta, u, G)$
2: if $S=\emptyset$ then
3: return $S A_{\Delta}(G)$;
4: Let $\Delta_{P}=\operatorname{PASAF}(\Delta, u, G)$
5: return ASAF-Solver $\left(G, \overline{\Delta_{P}}\right)$ AF-Solver $\left(\bar{G}, \operatorname{ASAFtoAF}\left(\Delta_{P}\right)\right)$

Algorithm 2: Enabling the computation at the AF level. Let ASAFtoAF be a function that takes as input an ASAF Δ and returns the corresponding AF $\left\langle\mathbb{A}_{\Delta}, \Sigma_{\Delta}\right\rangle$ [Alfano et al, ECAI2020]. Then, the invocation of the ASAF solver at Line 5 is replaced by $\operatorname{AF}-\operatorname{Solver}\left(\bar{G}, \operatorname{ASAFtoAF}\left(\Delta_{P}\right)\right)$, where AF-Solver is a function computing the skeptical preferred acceptance of a given argument w.r.t. a given AF, and \bar{G} is the argument of $\left\langle\mathbb{A}_{\Delta}, \Sigma_{\Delta}\right\rangle$ corresponding to G.

The AF for the ASAF

(AF for ASAF [Alfano et al, ECAl2020])

Let $\Delta=\langle A, \Omega, \Gamma\rangle$ be an ASAF. The $A F$ for Δ is $\Lambda_{\Delta}=\left\langle A_{\Delta}, \Sigma_{\Delta}\right\rangle$, where:

- $\mathbb{A}_{\Delta}=\boldsymbol{A} \cup\left\{\omega, \omega^{*} \mid \omega \in \Omega\right\} \cup\left\{\gamma, \gamma^{*} \mid \gamma \in \Gamma\right\}$.
- $\Sigma_{\Delta}=\left\{\left(\mathbf{s}(\omega), \omega^{*}\right),\left(\omega^{*}, \omega\right),(\omega, \mathbf{t}(\omega)) \mid \omega \in \Omega\right\} \cup$
$\left\{\left(\omega, \mathbf{t}(\omega)^{*}\right) \mid \omega \in \Omega, \mathbf{t}(\omega) \in \Gamma\right\} \cup$
$\left\{\left(\mathbf{s}(\gamma), \gamma^{*}\right),\left(\gamma^{*}, \mathbf{t}(\gamma)\right) \mid \gamma \in \Gamma\right\} \cup$ $\left\{\left(\gamma^{*}, \mathbf{t}(\gamma)^{*}\right) \mid \gamma \in \Gamma, \mathbf{t}(\gamma) \in \Gamma\right\}$.

The AF for the ASAF

ω_{1} corresponds to the chain of attacks from w_{i} to r through ω_{1} and ω_{1}^{*} ω_{5} corresponds to the attacks $\left(w_{t}, \omega_{5}^{*}\right),\left(\omega_{5}^{*}, \omega_{5}\right),\left(\omega_{5}, \omega_{1}\right)$.

Outline

(1) Introduction

- Motivation
(2) Incremental Computation
- SPA
- Proxy ASAF
- Incremental Algorithm
(3) Experiments

4. Conclusions and future work

Methodology

Datasets
 We generated set of ASAFs from AF used as ICCMA'19 benchmarks by transforming AF's attacks into first/second/third level ASAF's attacks or supports with a given probability.

Methodology

- For each ASAF Δ in the dataset, we consider a (randomly chosen) goal element G and an update u.
- We compute $S A_{u(\Delta)}(G)$ with Alg.2.
- We compute the improvement of Alg. 2 over the computation from scratch ($\left.t_{s} / t_{A_{2}}\right)$.

Experimental Results

- The improvement can be either very large or limited.
- The incremental algorithm outperforms the computation from scratch.

Outline

(9) Introduction

- Motivation
(2) Incremental Computation
- SPA
- Proxy ASAF
- Incremental Algorithm
(3) Experiments

4. Conclusions and future work

Conclusions and future work

- We introduced a technique for the incremental computation of SPA in dynamic ASAFs
- Given the generality of the ASAF, our technique can be also applied to AFRAs and AFNs
- We identified a tighter portion of the updated ASAF to be examined for recomputing the acceptance
- Our experiments showed that the incremental technique outperforms the computation from scratch
- As future work we plan to investigate similar approaches for Recursive Argumentation Framework with Necessities (RAFN) where a support may come also from a set of arguments, as well as extending our technique to deal with other semantics.

Thank you!

... any question argument?

