Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work

Count Queries in Probabilistic Spatio-Temporal Knowledge Bases with Capacity Constraints

John Grant¹ Cristian Molinaro² Francesco Parisi²

¹Department of Computer Science and UMIACS, University of Maryland, College Park, USA, email: grant@cs.umd.edu
²Department of Informatics, Modeling, Electronics and System Engineering, DIMES Department, University of Calabria, Italy, email:{cmolinaro,fparisi}@dimes.unical.it

14th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2017) Lugano, Switzerland July 10–14, 2017

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Motivation				

Tracking moving objects (1/2)

 Tracking moving objects is fundamental in several application contexts (e.g. environment protection, product traceability, traffic monitoring, mobile tourist guides, analysis of animal behavior, etc.)

http://www.merl.com/publications/TR2008-010

http://www.edimax.com/au/

http://iris.usc.edu/people/medioni/curren t_research.html

http://www.i3b.org/content/wildlife-behavior

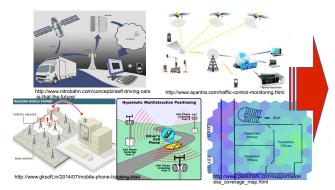
http://www.science20.com/news_articles/german_researc h_center_artificial_intelligence_smart_eye_tracking_glass

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Motivation				

Tracking moving objects (2/2)

Location estimation techniques have limited accuracy and precision

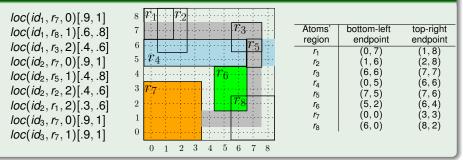
- limitations of technologies used (e.g. GPS, Cellular networks, WiFi, Bluetooth, RFID, etc.)
- limitations of the estimation methods (e.g., proximity to antennas, triangulation, signal strength sample map, dead reckoning, etc.)



object inside a region at a time with uncertain probability

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Motivation				
SPOT	framework			

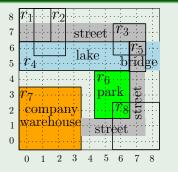
- SPOT: a declarative framework for the representation and processing of probabilistic spatio-temporal data with uncertain probabilities [Parker, Subrahmanian, Grant. TKDE '07]
- A SPOT database is a set of atoms $loc(id, r, t)[\ell, u]$
- loc(id, r, t)[ℓ, u] means that "object id is/was/will be inside region r at time t with probability in the interval [ℓ, u]".



Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000				
Motivation				

 Although PST atoms express much useful information, they cannot express additional knowledge such as constraints on how many objects are allowed in a region, i.e., capacity constraints

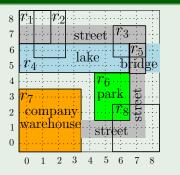
- 1) There cannot be more than one truck on the bridge (region r_5) at any time
- 2) The number of trucks in the company warehouse is between 1 and 3 at any time between 0 and 1
- 3) No truck can be in the lake or the botanic park at any time point



Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000				
Motivation				

 Although PST atoms express much useful information, they cannot express additional knowledge such as constraints on how many objects are allowed in a region, i.e., capacity constraints

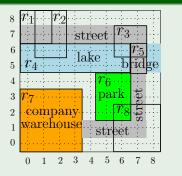
- 1) There cannot be more than one truck on the bridge (region r_5) at any time
- 2) The number of trucks in the company warehouse is between 1 and 3 at any time between 0 and 1
- 3) No truck can be in the lake or the botanic park at any time point



Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000				
Motivation				

 Although PST atoms express much useful information, they cannot express additional knowledge such as constraints on how many objects are allowed in a region, i.e., capacity constraints

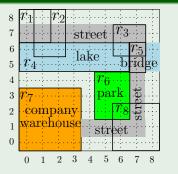
- 1) There cannot be more than one truck on the bridge (region *r*₅) at any time
- The number of trucks in the company warehouse is between 1 and 3 at any time between 0 and 1
- 3) No truck can be in the lake or the botanic park at any time point



Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000				
Motivation				

 Although PST atoms express much useful information, they cannot express additional knowledge such as constraints on how many objects are allowed in a region, i.e., capacity constraints

- 1) There cannot be more than one truck on the bridge (region r_5) at any time
- The number of trucks in the company warehouse is between 1 and 3 at any time between 0 and 1
- 3) No truck can be in the lake or the botanic park at any time point



Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000				
· · · · ·				

Probabilistic spatio-temporal KBs with capacity constraints

- We introduce probabilistic spatio-temporal (PST) knowledgebases (KB) consisting of
- 1) atomic statements, such as those representable in the SPOT framework
- 2) *capacity constraints*, each of them expressing lower- and/or upper-bounds on the number of objects that can be in a certain region.
- Formal semantics, in terms of worlds, interpretations, and models
- Complexity of checking consistency of PST KBs
 - NP-complete in general
 - Restricted classes of PST KBs for which the problem is in PTIME
- Count queries over (consistent) PST KBs: "How many objects are inside region *q* at time *t*?"
 - Formal semantics
 - Complexity
 - Show how checking consistency can be exploited for query answering

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000				

Probabilistic spatio-temporal KBs with capacity constraints

- We introduce probabilistic spatio-temporal (PST) knowledgebases (KB) consisting of
- 1) atomic statements, such as those representable in the SPOT framework
- 2) *capacity constraints*, each of them expressing lower- and/or upper-bounds on the number of objects that can be in a certain region.
- Formal semantics, in terms of worlds, interpretations, and models
- Complexity of checking consistency of PST KBs
 - NP-complete in general
 - Restricted classes of PST KBs for which the problem is in PTIME
- Count queries over (consistent) PST KBs: "How many objects are inside region *q* at time *t*?
 - Formal semantics
 - Complexity
 - Show how checking consistency can be exploited for query answering

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
00000				
· · · · ·				

Probabilistic spatio-temporal KBs with capacity constraints

- We introduce probabilistic spatio-temporal (PST) knowledgebases (KB) consisting of
- 1) atomic statements, such as those representable in the SPOT framework
- 2) *capacity constraints*, each of them expressing lower- and/or upper-bounds on the number of objects that can be in a certain region.
- Formal semantics, in terms of worlds, interpretations, and models
- Complexity of checking consistency of PST KBs
 - NP-complete in general
 - Restricted classes of PST KBs for which the problem is in PTIME
- Count queries over (consistent) PST KBs: "How many objects are inside region *q* at time *t*?"
 - Formal semantics
 - Complexity
 - Show how checking consistency can be exploited for query answering

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O

Outline

Introduction

- Motivation
- Contribution

The PST Framework

- Syntax
- Semantics

Checking Consistency

- Computational Complexity
- Restrictions Allowing PTIME Consistency Checking

Query Answering

- Count queries
- Complexity of Answering Count Queries

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				
PST at	oms			

- We assume a finite set *ID* of *object ids*, a finite set *Space* of *spatial points*.
- A non-empty subset of Space is called a region.
- Arbitrarily large but fixed size window of time T = [0, 1, ..., tmax].

A *spatio-temporal atom* (*st-atom*) is an expression of the form loc(id, r, t), where $id \in ID$, $\emptyset \subsetneq r \subseteq Space$, and $t \in T$.

Definition (PST atom – SPOT atom in the previous framework)

A PST *atom* is an st-atom *loc(id, r, t)* annotated with a probability interval $[\ell, u] \subseteq [0, 1]$ – denoted as *loc(id, r, t)* $[\ell, u]$.

- loc(id, r, t)[ℓ, u] says that object id is/was/will be inside region r at time t with probability in the interval [ℓ, u]
- A SPOT database is a finite set of PST atoms. We extend the SPOT framework to consider capacity constraints.

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				
PST at	oms			

- We assume a finite set *ID* of *object ids*, a finite set *Space* of *spatial points*.
- A non-empty subset of Space is called a region.
- Arbitrarily large but fixed size window of time T = [0, 1, ..., tmax].

A spatio-temporal atom (st-atom) is an expression of the form loc(id, r, t), where $id \in ID$, $\emptyset \subsetneq r \subseteq Space$, and $t \in T$.

Definition (PST atom – SPOT atom in the previous framework)

A PST *atom* is an st-atom *loc(id, r, t)* annotated with a probability interval $[\ell, u] \subseteq [0, 1]$ – denoted as *loc(id, r, t)* $[\ell, u]$.

- loc(id, r, t)[ℓ, u] says that object id is/was/will be inside region r at time t with probability in the interval [ℓ, u]
- A SPOT database is a finite set of PST atoms. We extend the SPOT framework to consider capacity constraints.

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work
	0000000			
Syntax				

Capacity Constraints

Definition (Capacity constraint)

A *capacity constraint* is an expression of the form *capacity*(r, k_1 , k_2 , t), where r is a region, k_1 and k_2 are two integers such that $0 \le k_1 \le k_2 \le |ID|$, and t is a time point in T.

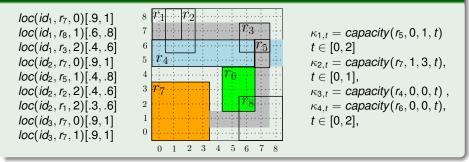
- κ_{1,t} = capacity(r₅, 0, 1, t) with t ∈ [0, 2], there cannot be more than one truck on the bridge (region r₅) at any time between 0 and 2
- κ_{2,t} = capacity(r₇, 1, 3, t), with t ∈ [0, 1], the number of trucks in the company warehouse (region r₇) is between 1 and 3 at any time between 0 and 1
- 3) $\kappa_{3,t} = capacity(r_4, 0, 0, t)$ and $\kappa_{4,t} = capacity(r_6, 0, 0, t)$, with $t \in [0, 2]$, no truck can be in the lake (region r_4) or the botanic park (region r_6) at any time point (assuming tmax = 2)

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Syntax				

PST knowledge base

Definition (PST knowledge base)

A PST knowledge base is a pair $\langle A, C \rangle$, where A is a finite set of PST atoms and C is a finite set of capacity constraints.



Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
World				

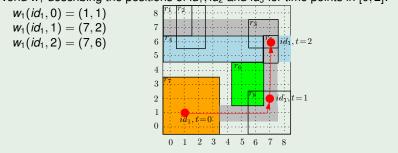
 A world specifies a possible trajectory for each object *id* ∈ *ID* (i.e., says where in *Space* object *id* was/is/will be at each time *t* ∈ *T*)

Definition (World)

A world *w* is a function, $w : ID \times T \rightarrow Space$

Example

World w_1 describing the positions of id_1 , id_2 and id_3 for time points in [0, 2]:



Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
World				

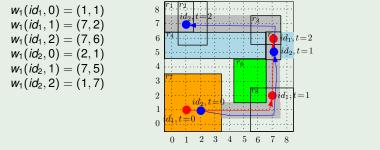
 A world specifies a possible trajectory for each object *id* ∈ *ID* (i.e., says where in *Space* object *id* was/is/will be at each time *t* ∈ *T*)

Definition (World)

A world *w* is a function, $w : ID \times T \rightarrow Space$

Example

World w_1 describing the positions of id_1 , id_2 and id_3 for time points in [0, 2]:



Semantics World	Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
World	Semantics				
	World				

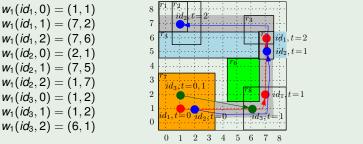
 A world specifies a possible trajectory for each object *id* ∈ *ID* (i.e., says where in *Space* object *id* was/is/will be at each time *t* ∈ *T*)

Definition (World)

A world *w* is a function, $w : ID \times T \rightarrow Space$

Example

World w_1 describing the positions of id_1 , id_2 and id_3 for time points in [0, 2]:



Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Satisfa	oction			

Definition (Satisfaction)

Jalisiaolion

A world *w* satisfies an st-atom a = loc(id, r, t), denoted $w \models a$, iff $w(id, t) \in r$. Moreover, *w* satisfies a capacity constraint $\kappa = capacity(r, k_1, k_2, t)$, denoted $w \models \kappa$, iff $k_1 \le |\{id \in ID(\mathcal{K}) \mid w(id, t) \in r\}| \le k_2$.

Example

World w_1 describing the positions of id_1 , id_2 and id_3 for time points in [0, 2]:

 $w_1(id_1, 0) = (1, 1)$ 8 $w_1(id_1, 1) = (7, 2)$ $w_1 \models loc(id_1, r_7, 0),$ 7 $id_1, t=2$ as $w_1(id_1, 0) = (1, 1) \in r_7$ $w_1(id_1, 2) = (7, 6)$ 6 $w_1(id_2, 0) = (2, 1)$ $id_2, t=1$ $\mathbf{5}$ $w_1(id_2, 1) = (7, 5)$ 4 $\forall t \in [0, 2], w_1 \models capacity(r_5, 0, 1, t)$ 3 $w_1(id_2, 2) = (1, 7)$ as $\{id \in ID(\mathcal{K}) \mid w_1(id, 0) \in r_5\} = \emptyset$ $id_2 t = 0.1$ 2 $w_1(id_3, 0) = (1, 2)$ $\{id \in ID(\mathcal{K}) \mid w_1(id, 1) \in r_5\} = \{id_2\}$ $W_1(id_3, 1) = (1, 2)$ $\{id \in ID(\mathcal{K}) \mid w_1(id, 2) \in r_5\} = \{id_1\}$ t = 0 $id_2, t = 0$ $w_1(id_3, 2) = (6, 1)$ 0 2 3

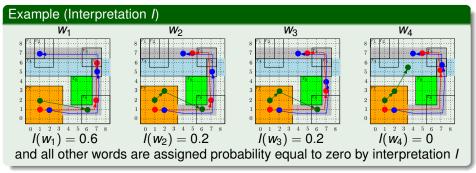
Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
	1. A.			

Interpretations

Definition (Interpretation)

An *interpretation I* for \mathcal{K} is a PDF over the set $\mathcal{W}(\mathcal{K})$ of all worlds of \mathcal{K} .

• *I*(*w*) is the probability that *w* describes the actual trajectories of all objects



• Only the interpretations that are compatible with the information in ${\cal K}$ (PST atoms + Capacity constraints) are models

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Models				

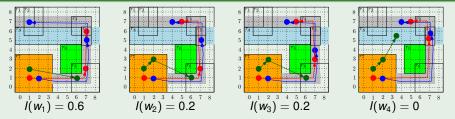
Definition (Model)

A model *M* for $\mathcal{K} = \langle \mathcal{A}, \mathcal{C} \rangle$ is an interpretation for \mathcal{K} such that:

(i)
$$\forall loc(id, r, t)[\ell, u] \in \mathcal{A}, \left(\sum_{w|w\models loc(id, r, t)} M(w)\right) \in [\ell, u];$$

(ii) $\forall \kappa \in \mathcal{C}, \sum_{w|w| \neq \kappa} M(w) = 0.$

Example (Model M)



• For atom $loc(id_1, r_7, 0)[.9, 1]$, $\sum_{w|w|=loc(id_1, r_7, 0)} M(w) = M(w_1) + M(w_2) + M(w_3) = 1 \in [.9, .1]$

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Models				

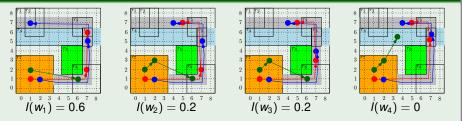
Definition (Model)

A model *M* for $\mathcal{K} = \langle \mathcal{A}, \mathcal{C} \rangle$ is an interpretation for \mathcal{K} such that:

(i)
$$\forall loc(id, r, t)[\ell, u] \in \mathcal{A}, \left(\sum_{w|w\models loc(id, r, t)} M(w)\right) \in [\ell, u];$$

(ii) $\forall \kappa \in \mathcal{C}, \sum_{w|w \not\models \kappa} M(w) = 0.$

Example (Model M)



• $M(w_4) = 0$ since w_4 violates the constraint $\kappa_{1,1} = capacity(r_5, 0, 1, t)$, as there are 2 trucks on the bridge at time 1 according w_4

Introduction 00000	The PST Framework ○○○○○○○●	Checking Consistency	Query Answering	Conclusions and future work O
Semantics				
Consis	tency			

- The set of models for \mathcal{K} will be denoted as $\mathbf{M}(\mathcal{K})$.
- \mathcal{K} is *consistent* iff there exists a model for it (i.e., $\mathbf{M}(\mathcal{K}) \neq \emptyset$)
- PST KB of our running example is consistent

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O

Outline

Introduction

- Motivation
- Contribution

2 The PST Framework

- Syntax
- Semantics

Checking Consistency

- Computational Complexity
- Restrictions Allowing PTIME Consistency Checking

Query Answering

- Count queries
- Complexity of Answering Count Queries

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O		
Computational Cor	Computational Complexity					
Compl	exity					

Theorem

Deciding whether a PST KB \mathcal{K} is consistent is NP-complete.

 Membership: deciding whether K is consistent corresponds to checking the feasibility of

$$LP(\mathcal{K}) := \begin{cases} (1) & \forall \ loc(id, r, t)[\ell, u] \in \mathcal{A}, \\ (a) & \ell \leq \sum v_i \\ (b) & \sum v_i \leq u \\ (b) & \sum v_i \leq u \\ (c) & \forall \kappa \in \mathcal{C}, \sum v_i = 0 \\ (c) & \forall \kappa \in \mathcal{C}, \sum v_i = 0 \\ (c) & \forall \kappa \in \mathcal{W}(\mathcal{K}) \\ (c) & \forall w_i \in \mathcal{W}(\mathcal{K}), v_i \geq 0 \end{cases}$$

v_i represents probability *M*(*w_i*) assigned to *w_i* ∈ *W*(*K*) by *M* ∈ **M**(*K*)
Exponential number of variables *v_i* (i.e., |*W*(*K*)| = |*Space*|^{|*ID*|·|*T*|})

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Computational Cor	nplexity			
Compl	exity			

Theorem

Deciding whether a PST KB \mathcal{K} is consistent is NP-complete.

• Membership: deciding whether ${\cal K}$ is consistent corresponds to checking the feasibility of

$$LP(\mathcal{K}) := \begin{cases} (1) \quad \forall \ loc(id, r, t)[\ell, u] \in \mathcal{A}, \\ (a) \quad \ell \leq \sum_{\substack{W_i \mid W_i \models loc(id, r, t) \\ W_i \mid W_i \models loc(id, r, t) \\ (2) \quad \forall \kappa \in \mathcal{C}, \sum_{\substack{W_i \mid W_i \not\models \kappa \\ W_i \mid W_i \in \mathcal{W}(\mathcal{K}) \\ W_i \mid W_i \in \mathcal{W}(\mathcal{K}), \ V_i \geq 0 \\ \end{cases}$$

• v_i represents probability $M(w_i)$ assigned to $w_i \in W(\mathcal{K})$ by $M \in \mathbf{M}(\mathcal{K})$

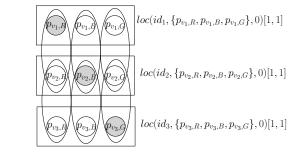
• Exponential number of variables v_i (i.e., $|W(\mathcal{K})| = |Space|^{|ID| \cdot |T|}$)

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O	
Computational Com	Computational Complexity				
Membership in NP					

- It can be shown that $LP(\mathcal{K})$ is feasible iff there is a solution for $LP(\mathcal{K})$ consisting of at most $2 \cdot |\mathcal{A}| + |\mathcal{C}| + 1$ non-zero variables (it follows from a well-known result on the size of solutions of linear programming problems [Papadimitriou, Steiglitz '82])
- Guess an assignment s' consisting of $2 \cdot |\mathcal{A}| + |\mathcal{C}| + 1$ pairs $\langle v_i, value \text{ of } v_i \rangle$,
- Check in polynomial time whether s' is a solution of LP*(K), obtained from LP(K) by keeping in it only the variables in s'
- If s' is a solution of $LP^*(\mathcal{K})$, then $LP(\mathcal{K})$ is feasible

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Computational Com	nplexity			
NP-hai	rdness			

- Reduction from 3-COLORING problem
- Given $G = \langle V, E \rangle$, use 3 points $p_{v,B}$, $p_{v,G}$, $p_{v,B}$ in *Space* for each $v \in V$
- PST atom $loc(id_v, \{p_{v,B}, p_{v,G}, p_{v,B}\}, 0)[1, 1]$ for each vertex $v \in V$
- capacity({p_{i,col}, p_{j,col}}, 0, 1, 0) for each edge (*i*, *j*) ∈ *E* and color col ∈ {*R*, *G*, *B*}



• G is 3-colorable iff K is consistent

 v_3

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Restrictions Allowin	g PTIME Consistency Checking			
Tractat	ole cases			

• Capacity constraints allowing no objects in some regions (e.g., there cannot be trucks in the lake)

Theorem

Let $\mathcal{K} = \langle \mathcal{A}, \mathcal{C} \rangle$ be a PST KB. If \mathcal{C} consists of capacity constraints of the form capacity(r, 0, 0, t), then checking whether \mathcal{K} is consistent is in PTIME.

- Proof hint: it can be reduced to checking consistency of a KB having no capacity constraints, which is in PTIME [Parker, Subrahmanian, Grant. TKDE '07]
- *capacity*(r, 0, 0, t) can be translated into the set of additional atoms $\forall id \in ID$, $loc(id, Space \setminus r, t)[1, 1]$

Introduction

The PST Framework

Checking Consistency

Query Answering

Conclusions and future work

Restrictions Allowing PTIME Consistency Checking

Sufficient conditions for checking consistency (1/2)

- Upper bounds of all PST atoms is 1 and
- regions in different capacity constraints are disjoint

Theorem

Let $\mathcal{K} = \langle \mathcal{A}, \mathcal{C} \rangle$ be a PST KB that satisfies the following conditions:

- A consists of PST atoms of the form loc(id, r, t)[ℓ, 1] and there are no two distinct PST atoms in A for the same object id and time point t, and
- for every time point t, every pair of distinct capacity constraints capacity(r, k₁, k₂, t) and capacity(r', k'₁, k'₂, t) in C is such that r ∩ r' = Ø.

Deciding if there exists a world $w \in W(\mathcal{K})$ s.t. (i) $w \models C$ and (ii) $w(id, t) \in r$ for every $loc(id, r, t)[\ell, 1]$ in \mathcal{A} with $\ell > 0$, is in PTIME. If such a world exists, then \mathcal{K} is consistent.

 reduction to the problem of deciding if a flow network admits a feasible circulation
 Introduction
 The PST Framework
 Checking Consistency
 Ouery Answering
 Conclusions and future work

 00000
 0000000
 0000
 0000
 0
 0

 Restrictions Allowing PTIME Consistency Checking
 Restrictions Allowing PTIME Consistency Checking
 0
 0
 0

Sufficient conditions for checking consistency (2/2)

A PST KB ⟨A,C⟩ is called *simple* iff for every time point t ∈ T, there is at most one capacity constraint of the form *capacity*(r, k₁, k₂, t) in C

Theorem

Let $\mathcal{K} = \langle \mathcal{A}, \mathcal{C} \rangle$ be a simple PST KB. If $\langle \mathcal{A}, \emptyset \rangle$ is consistent and, for every capacity $(r, k_1, k_2, t) \in \mathcal{C}$, $[z, Z] \subseteq [k_1, k_2]$, where $\begin{aligned} z = \min_{M \in \mathbf{M}(\langle \mathcal{A}, \emptyset \rangle)} |\{ id \mid id \in ID \land \left(\sum_{w \mid w(id, t) \in r} M(w) \right) = 1\}|, \\ Z = \max_{M \in \mathbf{M}(\langle \mathcal{A}, \emptyset \rangle)} |\{ id \mid id \in ID \land \left(\sum_{w \mid w(id, t) \in r} M(w) \right) \neq 0\}|, \end{aligned}$ then \mathcal{K} is consistent. Checking consistency under such conditions is in PTIME.

• Computing [z, Z] is in PTIME [Grant, Molinaro, Parisi. SUM 2013]

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Outling				

Outline

Introduction

- Motivation
- Contribution

2 The PST Framework

- Syntax
- Semantics

Checking Consistency

- Computational Complexity
- Restrictions Allowing PTIME Consistency Checking

Query Answering

- Count queries
- Complexity of Answering Count Queries

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Count queries				
Syntax	and seman	tics		

- Count(q, t) asks "How many objects are inside region q at time t?"
- Ranking answer: set of pairs (*i*, [*l_i*, *u_i*]) where
 - *i* is the number of objects that may be in *q* at time *t*
 - ℓ_i and u_i are the minimum and maximum probabilities of having exactly *i* objects in *q* at a time *t* over all models
- For a given model *M*, the probability of having exactly *i* objects in a region *q* at a time point *t* w.r.t. *M* is $Prob_M(q, i, t) = \sum_{w|w|=capacity(q, i, t)} M(w)$

Definition (Ranking Answer)

The ranking answer to a count query Q = Count(q, t) w.r.t. \mathcal{K} is: $Q(\mathcal{K}) = \{ \langle i, [\ell_i, u_i] \rangle \mid 0 \le i \le |ID| \land \ell_i = \min_{M \in \mathbf{M}(\mathcal{K})} Prob_M(q, i, t) \land u_i = \max_{M \in \mathbf{M}(\mathcal{K})} Prob_M(q, i, t) \}.$

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Count queries				
Exampl	е			

Example

• How many trucks are in q (the red square) at time 2?

 $loc(id_1, r_7, 0)[.9, 1]$ 8 7 $loc(id_1, r_8, 1)$ [.6, .8] $loc(id_1, r_3, 2)[.4, .6]$ 6 $loc(id_2, r_7, 0)[.9, 1]$ 5 $loc(id_2, r_5, 1)[.4, .8]$ 4 3 $loc(id_2, r_2, 2)[.4, .6]$ 2 $loc(id_2, r_1, 2)[.3, .6]$ 1 $loc(id_3, r_7, 0)[.9, 1]$ 0 $loc(id_3, r_7, 1)[.9, 1]$ 0 1 2 3 4 5 6 7 8

 $\begin{array}{l} \kappa_{1,t} = capacity(r_5,0,1,t) \\ t \in [0,2] \\ \kappa_{2,t} = capacity(r_7,1,3,t), \\ t \in [0,1], \\ \kappa_{3,t} = capacity(r_4,0,0,t), \\ \kappa_{4,t} = capacity(r_6,0,0,t), \\ t \in [0,2], \end{array}$

• Ranking answer $Q(\mathcal{K}) = \{ \langle 0, [.4, .6] \rangle, \langle 1, [.4, 1] \rangle, \langle 2, [0, .3] \rangle, \langle 3, [0, .1] \rangle \}$

• For instance, $\langle 1, [.4, 1] \rangle$ says that the probability of having exactly one object in *q* at time 2 is between .4 and 1.

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Count queries				
Example	е			

Example

 $loc(id_1, r_7, 0)[.9, 1]$

 $loc(id_1, r_8, 1)$ [.6, .8]

 $loc(id_1, r_3, 2)[.4, .6]$

 $loc(id_2, r_7, 0)[.9, 1]$

 $loc(id_2, r_5, 1)[.4, .8]$

 $loc(id_2, r_2, 2)[.4, .6]$

 $loc(id_2, r_1, 2)[.3, .6]$

 $loc(id_3, r_7, 0)[.9, 1]$

 $loc(id_3, r_7, 1)[.9, 1]$

• How many trucks are in q (the red square) at time 2?

8 7

6

5

4

3

2

1

0

0

 $\begin{array}{l} \kappa_{1,t} = capacity(r_5,0,1,t) \\ t \in [0,2] \\ \kappa_{2,t} = capacity(r_7,1,3,t), \\ t \in [0,1], \\ \kappa_{3,t} = capacity(r_4,0,0,t), \\ \kappa_{4,t} = capacity(r_6,0,0,t), \\ t \in [0,2], \end{array}$

• Ranking answer $Q(\mathcal{K}) = \{ \langle 0, [.4, .6] \rangle, \langle 1, [.4, 1] \rangle, \langle 2, [0, .3] \rangle, \langle 3, [0, .1] \rangle \}$

5 6 7 8

1 2 3 4

 For instance, (1, [.4, 1]) says that the probability of having exactly one object in q at time 2 is between .4 and 1.

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Complexity of Answ	vering Count Queries			
Compl	exity			

Theorem

Computing $Q(\mathcal{K})$ is $FP^{NP[\log n]}$ -hard.

- Reduction to our problem from the $FP^{NP[\log n]}$ -hard problem CLIQUE SIZE: determine the size σ of the largest clique of a graph $G = \langle V, E \rangle$
- Proof hint: An id *id*_v and two spatial points $p_{v,in}, p_{v,out}$ for each $v \in V$
- PST atom saying that id_v must be at one of the two points p_{v,in}, p_{v,out}
- capacity({p_{i,in}, p_{j,in}}, 0, 1, 0) for each (i, j) ∈ (V × V) \ E saying that no more than one object can be in the region consisting of two *in* points associated with a pair of vertices *not* connected by an edge
- $Q = Count(\{p_{1,in}, ..., p_{n,in}\}, 0).$
- The size of the largest clique of *G* is σ iff $Q(\mathcal{K}) = \{ \langle i, [0, 1] \rangle \mid 0 \le i \le \sigma \} \cup \{ \langle i, [0, 0] \rangle \mid \sigma < i \le |ID| \}.$

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work O
Complexity of Answerin	ig Count Queries			

Using consistency checking to answering queries

- Solving some instances of the consistency check problem allows us to answer some count queries
- Given $\mathcal{K} = \langle \mathcal{A}, \mathcal{C} \rangle$, we check consistency of $\mathcal{K}' = \langle \mathcal{A}, \mathcal{C}' \rangle$ to get the answers

Proposition

Let Q = Count(q, t) and $\mathcal{K} = \langle \mathcal{A}, \mathcal{C} \rangle$.

- If K' = ⟨A, C ∪ {capacity(q, k₁, k₂, t)}⟩ is consistent, then ℓ_i = 0 in Q(K) for all i such that i < k₁ or i > k₂.
- If *K*' = ⟨*A*, *C* ∪ {capacity(Space \ q, k₁, k₂, t)}⟩ is consistent, then u_i = 1 in *Q*(*K*) for all *i* ∈ [|*ID*| − k₂, |*ID*| − k₁].

Introduction 00000	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work $_{\bigcirc}$
Outling				

Introduction

- Motivation
- Contribution

2 The PST Framework

- Syntax
- Semantics

Checking Consistency

- Computational Complexity
- Restrictions Allowing PTIME Consistency Checking

Query Answering

- Count queries
- Complexity of Answering Count Queries

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work

- A declarative language suitable in many applications dealing with uncertain spatio-temporal data
- Capacity constraints allow us to model semantic information commonly arising in practice
- We have investigated the complexity of checking consistency and answering count queries
- Intractable in general, but tractable approaches for restricted cases
- Further issues that we plan to investigate:
 - other tractable cases
 - the interaction between capacity constraints and the universal denial constraints proposed in [Parisi, Grant JAIR 2016] to get a unified approach that allows for a wide range of constraints to be expressed
 - the problems of repairing and querying inconsistent PST KBs with capacity constraints (following [Parisi, Grant IJAR 2017] where the problem of restoring consistency of PST KBs without integrity constraints has been explored)

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work

- A declarative language suitable in many applications dealing with uncertain spatio-temporal data
- Capacity constraints allow us to model semantic information commonly arising in practice
- We have investigated the complexity of checking consistency and answering count queries
- Intractable in general, but tractable approaches for restricted cases
- Further issues that we plan to investigate:
 - other tractable cases
 - the interaction between capacity constraints and the universal denial constraints proposed in [Parisi, Grant JAIR 2016] to get a unified approach that allows for a wide range of constraints to be expressed
 - the problems of repairing and querying inconsistent PST KBs with capacity constraints (following [Parisi, Grant IJAR 2017] where the problem of restoring consistency of PST KBs without integrity constraints has been explored)

Introduction	The PST Framework	Checking Consistency	Query Answering	Conclusions and future work

Thank you!

... any question?

Location estimation techniques

- Location estimation techniques build on different technologies (e.g. GPS, Cellular networks, WLAN, Bluetooth, RFID, etc.)
 - proximity techniques derive the location of an object w.r.t. its vicinity to antennas
 - triangulation uses the triangle geometry to compute locations of an object.
 - scene analysis techniques (e.g. fingerprinting technique) involve examination and matching a video/image or electromagnetic characteristics viewed/sensed from an object
 - Dead reckoning techniques provide estimation of the location of an object based on the last known position, assuming that the direction of motion and either the velocity of the target object or the travelled distance are known
 - hybrid techniques
- Several sources of spatial temporal information (e.g. GPS, Cellular networks, WLAN, Wi-Fi), Bluetooth, Zigbee, Ultra-wideband (UWB), and Radio-frequency identification (RFID), or infrared (IR)

Appendix

Selected References

Parker, A., Subrahmanian, V.S., Grant, J.

A logical formulation of probabilistic spatial databases. *IEEE TKDE*, pp. 1541–1556, 2007.

John Grant, Cristian Molinaro, Francesco Parisi Aggregate Count Queries in Probabilistic Spatio-temporal Databases.

Int. Conf. on Scalable Uncertainty Management (SUM), pp. 255-268, 2013.

Francesco Parisi, John Grant,

Knowledge Representation in Probabilistic Spatio-Temporal Knowledge Bases *J. Artif. Intell. Res.*, pp. 743-798, 2016

Francesco Parisi, John Grant,

On repairing and querying inconsistent probabilistic spatio-temporal databases *Int. J. Approx. Reasoning*, pp. 41-74, 2017

Combinatorial optimization: algorithms and complexity. Prentice-Hall, Inc., 1982.