Measuring Inconsistency in a General Information Space

John Grant ${ }^{1} \quad$ Francesco Parisi ${ }^{2}$

${ }^{1}$ Department of Computer Science and UMIACS, University of Maryland, College Park, USA, grant@cs.umd.edu
${ }^{2}$ Department of Informatics, Modeling, Electronics and System Engineering (DIMES),
University of Calabria, Italy, fparisi@dimes.unical.it
$11^{\text {th }}$ International Symposium on
Foundations of Information and Knowledge Systems (FoIKS)
February 17-20, 2020
Dortmund, Germany

Inconsistency in real-world information systems (1/3)

- Real-world applications often need to deal with inconsistent information
- E.g., relational databases are often inconsistent

Relation Asset

SN	DateLoaned	Employee	DateReturned
999	$2015-02-01$	123456789	$2016-03-15$
999	$2015-02-01$	123456789	$2018-12-31$
999	$2013-06-15$	222222222	$2017-12-31$
888	$2016-12-01$	222222222	$2013-12-01$
555	$2014-07-01$	333333333	$2013-06-20$
666	$2014-07-01$	333333333	$2015-09-10$
777	$2014-07-01$	333333333	$2014-05-21$

Inconsistency in real-world information systems (1/3)

- Real-world applications often need to deal with inconsistent information
- E.g., relational databases are often inconsistent

Relation Asset

SN	DateLoaned	Employee	DateReturned
999	$2015-02-01$	123456789	$2016-03-15$
999	$2015-02-01$	123456789	$2018-12-31$
999	$2013-06-15$	222222222	$2017-12-31$
888	$2016-12-01$	2222222222	$2013-12-01$
555	$2014-07-01$	333333333	$2013-06-20$
666	$2014-07-01$	333333333	$2015-09-10$
777	$2014-07-01$	333333333	$2014-05-21$

- c_{1} : For every asset, the loan date must predate the return date
- c_{2} : The serial number is a key for Asset
- c_{3} : For every date and employee there can be at most 2 assets loaned

Inconsistency in real-world information systems (1/3)

- Real-world applications often need to deal with inconsistent information
- E.g., relational databases are often inconsistent

Relation Asset

SN	DateLoaned	Employee	DateReturned
999	$2015-02-01$	123456789	$2016-03-15$
999	$2015-02-01$	123456789	$2018-12-31$
999	$2013-06-15$	222222222	$2017-12-31$
888	$2016-12-01$	222222222	$2013-12-01$
555	$2014-07-01$	33333333	$2013-06-20$
666	$2014-07-01$	333333333	$2015-09-10$
777	$2014-07-01$	33333333	$2014-05-21$

- c_{1} : For every asset, the loan date must predate the return date
- C_{2} : The serial number is a key for Asset
c_{3} : For every date and employee there can be at most 2 assets loaned

Inconsistency in real-world information systems (1/3)

- Real-world applications often need to deal with inconsistent information
- E.g., relational databases are often inconsistent

Relation Asset

SN	DateLoaned	Employee	DateReturned
999	$2015-02-01$	123456789	$2016-03-15$
999	$2015-02-01$	123456789	$2018-12-31$
999	$2013-06-15$	222222222	$2017-12-31$
888	$2016-12-01$	222222222	$2013-12-01$
555	$2014-07-01$	333333333	$2013-06-20$
666	$2014-07-01$	333333333	$2015-09-10$
777	$2014-07-01$	33333333	$2014-05-21$

- c_{1} : For every asset, the loan date must predate the return date
- c_{2} : The serial number is a key for Asset

Inconsistency in real-world information systems (1/3)

- Real-world applications often need to deal with inconsistent information
- E.g., relational databases are often inconsistent

Relation Asset

SN	DateLoaned	Employee	DateReturned
999	$2015-02-01$	123456789	$2016-03-15$
999	$2015-02-01$	123456789	$2018-12-31$
999	$2013-06-15$	222222222	$2017-12-31$
888	$2016-12-01$	222222222	$2013-12-01$
555	$2014-07-01$	333333333	$2013-06-20$
666	$2014-07-01$	33333333	$2015-09-10$
777	$2014-07-01$	33333333	$2014-05-21$

- c_{1} : For every asset, the loan date must predate the return date
- c_{2} : The serial number is a key for Asset
- c_{3} : For every date and employee there can be at most 2 assets loaned

Inconsistency in real-world information systems (2/3)

- As another example, graph databases may be inconsistent too

- c_{1} : Every person must have an associated age value
- c_{2} : Every photo must have an associated resolution
- c_{3} : The taken before relationship cannot be cyclic
- c_{4} : A given photo cannot be posted by different persons

Inconsistency in real-world information systems (3/3)

- An inconsistent Blocks-world

- c_{1} : No blue block can be on top of another blue block.
- c_{2} : There cannot be a yellow block that has a red block below it and a red block above it.
- c_{3} : There cannot be a red block on the table (i.e. at the bottom of a stack).
- c_{4} : No stack has both a green block and a blue block.
- c_{5} : At least one of the blocks is purple.
- c_{6} : There must be a blue block in at least 3 stacks.

Living with inconsistency (and measuring it)

- Inconsistency in real-world information systems can not be easily avoided
- Many inconsistency-tolerant approaches have been developed to live with inconsistency
- There are several proposals for mechanisms to handle inconsistent data
- A key issue in such situations is measuring the amount of inconsistency
- Measuring inconsistency allow us to assess its nature and understand the degree of the dirtiness of data
- Data quality is more and more important nowadays, the global market of data quality tools is expected to grow from USD 610.2 Million in 2017 to USD 1,376.7 Million by 2022 [MarketsandMarkets, 2019].

How to measure inconsistency of real word data?

- There are several ways to measure the amount of inconsistency in a knowledge base
- but most of this work applies only to knowledge bases formulated as sets of formulas in propositional logic
- Not really applicable to the way that information is actually stored (e.g., the 3 examples discussed before)
- We aim at extending inconsistency measuring to real world information

Dealing with general information spaces

- We define the concept of general information space which encompasses various types of databases and scenarios in Al systems
- We show how to transform any general information space to an inconsistency equivalent propositional knowledge base
- Apply propositional inconsistency measures to find the inconsistency of the general information space
- We demonstrate the transformation on 3 general information spaces (a relational database, a graph database, and a Blocks world scenario), where we apply several inconsistency measures after performing the transformation
- Our approach lifts the idea of inconsistency measure from propositional knowledge bases to a range of different frameworks used for storing real world data

Outline

(1) Introduction

- Motivation
- Contribution
(2) Background
- Inconsistency Measures for Propositional Knowledge Bases
(3) Proposed Aprroach
- General Information Spaces
- Transforming a General Information Space to a Propositional Knowledge Base
(4) Examples of Instantiation
- A Relational Database as a General Information Space
- A Graph Database as a General Information Space
- A Blocks World Configuration as a General Information Space
(5) Conclusions and Future Work

General idea of an inconsistency measure

- The idea of an inconsistency measure is to assign a nonnegative number to a knowledge base (KB) that measures its inconsistency
- Propositional language of formulas, e.g.,

$$
K_{e x}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \neg a_{1} \vee \neg a_{2}, \neg a_{2} \vee \neg a_{3}, a_{4} \wedge a_{5}\right\}
$$

Definition (Inconsistency Measure)

Let \mathcal{K} be the of all propositional knowledge bases. A function $I: \mathcal{K} \rightarrow \mathbb{R}_{\infty}^{\geq 0}$ is an inconsistency measure if the following conditions hold for all $K, K^{\prime} \in \mathcal{K}$:
(1) Consistency. $I(K)=0$ iff K is consistent.
(2) Monotony. If $K \subseteq K^{\prime}$, then $I(K) \leq I\left(K^{\prime}\right)$.

- Consistency and Monotony are called (rationality) postulates
- Many other desirable properties for inconsistency measures have been investigated
- Consistency and Monotony are a minimal set for absolute measures (Monotony does not hold for relative measures)

Notation needed to define some concrete measures

- For a knowledge base K,
- $\mathrm{MI}(K)$ is the set of Minimal Inconsistent Subsets (MISs) of K
- If $\operatorname{Ml}(K)=\left\{M_{1}, \ldots, M_{n}\right\}$, then $\operatorname{Problematic}(K)=M_{1} \cup \ldots \cup M_{n}$ it the set of problematic formulas (involved in at least one inconsistency)
- Free $(K)=K \backslash \operatorname{Problematic}(K)$ is the set of free formulas (not involved in an essential way in any inconsistency)

Example

For $K_{e x}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \neg a_{1} \vee \neg a_{2}, \neg a_{2} \vee \neg a_{3}, a_{4} \wedge a_{5}\right\}$,
$\operatorname{MI}\left(K_{e x}\right)=\left\{\left\{a_{1}, a_{2}, \neg a_{1} \vee \neg a_{2}\right\},\left\{a_{2}, a_{3}, \neg a_{2} \vee \neg a_{3}\right\}\right\}$, and
Problematic $\left(K_{e x}\right)=\left\{a_{1}, a_{2}, a_{3}, \neg a_{1} \vee \neg a_{2}, \neg a_{2} \vee \neg a_{3}\right\}$,
while a_{4} and $a_{4} \wedge a_{5}$ are free formulas

The first 2 measures: I_{B} and I_{M}

Definition (Propositional Inconsistency Measures)

For a knowledge base K, the inconsistency measures I_{B} and I_{M} are such that:

- $I_{B}(K)=1$ if K is inconsistent and $I_{B}(K)=0$ if K is consistent.
- $I_{M}(K)=|\mathrm{Ml}(K)|$.
- I_{B} is also called the drastic measure [Hunter and Konieczny, 2008]: it simply distinguishes between consistent and inconsistent KBs.
- I_{M} counts the number of minimal inconsistent subsets [Hunter and Konieczny, 2008].

Example

For $K_{e x}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \neg a_{1} \vee \neg a_{2}, \neg a_{2} \vee \neg a_{3}, a_{4} \wedge a_{5}\right\}$, we have that:

- $I_{B}\left(K_{e x}\right)=1$ as it is inconsistent
- $I_{M}\left(K_{e x}\right)=2$ as there are 2 minimal inconsistent subsets $\left(\operatorname{MI}\left(K_{e x}\right)=\left\{\left\{a_{1}, a_{2}, \neg a_{1} \vee \neg a_{2}\right\},\left\{a_{2}, a_{3}, \neg a_{2} \vee \neg a_{3}\right\}\right\}\right)$

The next 2 measures: $I_{\#}$ and I_{P}

Definition (Propositional Inconsistency Measures)

For a knowledge base K, the inconsistency measures $I_{\#}$ and I_{P} are such that:

- $I_{\#}(K)=\left\{\begin{array}{l}0 \\ \sum_{X \in \mathrm{MI}(K)} \frac{1}{|X|}\end{array}\right.$ if K is consistent, otherwise.
- $I_{P}(K)=|\operatorname{Problematic}(K)|$.
- $I_{\#}$ also counts the number of minimal inconsistent subsets, but it gives larger sets a smaller weight [Hunter and Konieczny, 2008]
- I_{P} counts the number of formulas that contribute essentially to one or more inconsistencies [Grant and Hunter, 2011].

Example

For $K_{e x}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \neg a_{1} \vee \neg a_{2}, \neg a_{2} \vee \neg a_{3}, a_{4} \wedge a_{5}\right\}$, we have that:

- $I_{\#}\left(K_{e x}\right)=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$ as both MISs consist of 3 formulas
- $I_{P}\left(K_{e x}\right)=5$ as there are 5 problematic formulas

Other 2 measures: I_{H} and $I_{n c}$

Definition (Propositional Inconsistency Measures)

For a knowledge base K, the inconsistency measures I_{H} and $I_{n c}$ are such that:

- $I_{H}(K)=\min \{|X| \mid X \subseteq K$ and $\forall M \in \operatorname{Ml}(K)(X \cap M \neq \varnothing)\}$.
- $I_{n c}(K)=|K|-\max \left\{n\left|\forall K^{\prime} \subseteq K:\left|K^{\prime}\right|=n\right.\right.$ implies that K^{\prime} is consistent $\}$.
- I_{H} counts the minimal number of formulas whose deletion makes the set consistent [Grant and Hunter, 2013]
- $I_{n c}$ uses the largest number such that all sets with that many formulas are consistent [Doder et al., 2010].

Example

For $K_{e x}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \neg a_{1} \vee \neg a_{2}, \neg a_{2} \vee \neg a_{3}, a_{4} \wedge a_{5}\right\}$, we have that:

- $I_{H}\left(K_{e x}\right)=1$ as deleting a_{2} suffices to make $K_{e x}$ consistent;
- $I_{n c}\left(K_{e x}\right)=7-2=5$ as 2 is the largest number such that all subsets of size 2 are consistent;

A measure based on 3 -valued logic: $I_{C}(1 / 2)$

- A classical interpretation i for K assigns each atom a that appears in a formula of K the truth value T or F, that is, $i: \operatorname{Atoms}(K) \rightarrow\{T, F\}$
- I_{C} uses Priest's 3-valued logic (3VL), 3 truth values: T (True), F (False), and B (Both), where B indicates inconsistency

Formula	Truth value								
ϕ	T	T	T	B	B	B	F	F	F
ψ	T	B	F	T	B	F	T	B	F
$\phi \vee \psi$	T	T	T	T	B	B	T	B	F
$\phi \wedge \psi$	T	B	F	B	B	F	F	F	F
$\neg \phi$	F	F	F	B	B	B	T	T	T

Truth values on columns 1,3,7, and 9, give the classical semantics, and the other columns give the extended semantics.

- An interpretation i satisfies a formula iff the truth-value of the formula for i is T or B.

A measure based on 3 -valued logic: $I_{C}(2 / 2)$

Definition (Propositional Inconsistency Measure I_{C})

For a knowledge base K, the inconsistency measure I_{C} is such that:

- $I_{C}(K)=\min \left\{\left|i^{-1}(B)\right|\right.$ such that i satisfies every formula in $\left.K\right\}$.
- I_{C} counts the minimal number of atoms that must be assigned the truth-value B in the three-valued logic by an interpretation that satisfies every formula in the KB [Grant and Hunter, 2011].

Example

For $K_{e x}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \neg a_{1} \vee \neg a_{2}, \neg a_{2} \vee \neg a_{3}, a_{4} \wedge a_{5}\right\}$, we have that: $I_{C}\left(K_{e x}\right)=1$ as the following interpretation satisfies all the formulas:
$i\left(a_{1}\right)=i\left(a_{3}\right)=i\left(a_{4}\right)=i\left(a_{5}\right)=T, i\left(a_{2}\right)=B$.

Many other measures

- Many other propositional inconsistency measures have been defined
- A survey on the topic of inconsistency measurement can be found in the book [Grant and Martinez, 2018]
- The second chapter of the book provides a comprehensive survey of the inconsistency measures defined for propositional knowledge bases
- Our approach could use any of the inconsistency measures that have been formulated for propositional knowledge bases
- We will mainly focus on measures involving in some way the minimal inconsistent subsets, as they are particularly relevant in view of the transformation
- As an example of measure not directly defined using minimal inconsistent subset, we consider I_{C} (using 3VL logic)

Outline

(1) Introduction

- Motivation
- Contribution
(2) Background
- Inconsistency Measures for Propositional Knowledge Bases
(3) Proposed Aprroach
- General Information Spaces
- Transforming a General Information Space to a Propositional Knowledge Base
(4) Examples of Instantiation
- A Relational Database as a General Information Space
- A Graph Database as a General Information Space
- A Blocks World Configuration as a General Information Space
(5) Conclusions and Future Work

Concept of General Information Space

- Lift the idea of inconsistency measure from propositional KBs to more complex cases that are useful in Al and databases

Definition (General Information Space)

A general information space $S=\langle F, U, C\rangle$ is a triple where

- F is the framework for the information,
- U is a set of information units, and
- C is a set of requirements that U must satisfy, where the following hold:
(Consistency of individual information units). The set of information units, U, simply gives some information and each unit is itself consistent
A2 (Consistency of requirements). There are no inconsistencies among requirements. All inconsistencies arise from the interaction of U and C
A3 (Procedure for finding violations of the requirements). For every
requirement, there has to be a procedure that finds all violations of that requirement

Concept of General Information Space

- Lift the idea of inconsistency measure from propositional KBs to more complex cases that are useful in Al and databases

Definition (General Information Space)

A general information space $S=\langle F, U, C\rangle$ is a triple where

- F is the framework for the information,
- U is a set of information units, and
- C is a set of requirements that U must satisfy,
where the following hold:
A1 (Consistency of individual information units). The set of information units, U, simply gives some information and each unit is itself consistent
(Consistency of requirements). There are no inconsistencies among requirements. All inconsistencies arise from the interaction of U and C
\square requirement, there has to be a procedure that finds all violations of that requirement

Concept of General Information Space

- Lift the idea of inconsistency measure from propositional KBs to more complex cases that are useful in Al and databases

Definition (General Information Space)

A general information space $S=\langle F, U, C\rangle$ is a triple where

- F is the framework for the information,
- U is a set of information units, and
- C is a set of requirements that U must satisfy,
where the following hold:
A1 (Consistency of individual information units). The set of information units, U, simply gives some information and each unit is itself consistent
A2 (Consistency of requirements). There are no inconsistencies among requirements. All inconsistencies arise from the interaction of U and C
> (Procedure for finding violations of the requirements). For every requirement, there has to be a procedure that finds all violations of that requirement

Concept of General Information Space

- Lift the idea of inconsistency measure from propositional KBs to more complex cases that are useful in Al and databases

Definition (General Information Space)

A general information space $S=\langle F, U, C\rangle$ is a triple where

- F is the framework for the information,
- U is a set of information units, and
- C is a set of requirements that U must satisfy,
where the following hold:
A1 (Consistency of individual information units). The set of information units, U, simply gives some information and each unit is itself consistent
A2 (Consistency of requirements). There are no inconsistencies among requirements. All inconsistencies arise from the interaction of U and C
A3 (Procedure for finding violations of the requirements). For every requirement, there has to be a procedure that finds all violations of that requirement

A first example of General Information Space

- A relational database is an example of a general information space
- The framework is the database schema as well as the language used to describe the database
- The information units are the tuples
- The set of requirements is the set of integrity constraints
- Assumption A1, A2, and A3 hold in many real world scenarios
- A1 for databases: tuples are units of information that are usually assumed to be consistent when considered alone (without interacting with the integrity constraints)
- A2 for databases: integrity constraints are usually satisfiable (there exists a database instance that satisfies them)
- A3 for databases: procedures for checking inconsistency are well-known for large classes of integrity constraints

A first example of General Information Space

- A relational database is an example of a general information space
- The framework is the database schema as well as the language used to describe the database
- The information units are the tuples
- The set of requirements is the set of integrity constraints
- Assumption A1, A2, and A3 hold in many real world scenarios
- A1 for databases: tuples are units of information that are usually assumed to be consistent when considered alone (without interacting with the integrity constraints)
- A2 for databases: integrity constraints are usually satisfiable (there exists a database instance that satisfies them)
- A3 for databases: procedures for checking inconsistency are well-known for large classes of integrity constraints

Arity of a requirement (1/2)

- In many cases a positive number, called the arity, can be associated with each requirement
- It indicates the minimal number of information units that together violate the requirement and thereby cause an inconsistency
- In some cases, where the constraint is inconsistent with respect to the set of information units, the arity is set to 0

Example

Consider a relational database with a binary relation R_{1}.

- The arity of the constraint $\neg R_{1}(1,2)$ (saying that tuple $(1,2)$ cannot belong to R_{1}) is 1
- The arity of the functional dependency
 causing an inconsistency.

Arity of a requirement (1/2)

- In many cases a positive number, called the arity, can be associated with each requirement
- It indicates the minimal number of information units that together violate the requirement and thereby cause an inconsistency
- In some cases, where the constraint is inconsistent with respect to the set of information units, the arity is set to 0

Example

Consider a relational database with a binary relation R_{1}.

- The arity of the constraint $\neg R_{1}(1,2)$ (saying that tuple $(1,2)$ cannot belong to R_{1}) is 1
- The arity of the functional dependency $\forall x_{1} x_{2} x_{3}\left[R_{1}\left(x_{1}, x_{2}\right) \wedge R_{1}\left(x_{1}, x_{3}\right) \rightarrow x_{2}=x_{3}\right]$ is 2
It would be violated, for instance, by the two tuples: $(1,2)$ and $(1,3)$ in R_{1} causing an inconsistency.

Arity of a requirement (2/2)

Example

Consider a database a binary relation R_{1} and a ternary relation R_{2}.

- Inclusion dependency: $\forall x_{1} x_{2}\left[R_{1}\left(x_{1}, x_{2}\right) \rightarrow \exists x_{3} x_{4}\left(R_{2}\left(x_{2}, x_{3}, x_{4}\right)\right)\right]$. A violation is caused by a single tuple in R_{1} whose second element is not in the first column of R_{2}. This means that the arity is 1

```
- \exists\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\mp@subsup{R}{2}{}(1,\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\mathrm{ states that there must be a tuple in }\mp@subsup{R}{2}{}\mathrm{ relation whose}
first element is 1
This requirement is purely existential: no deletion from the database
would negate the violation.
    Hence the arity of such a constraint is 0.
```


Arity of a requirement (2/2)

Example

Consider a database a binary relation R_{1} and a ternary relation R_{2}.

- Inclusion dependency: $\forall x_{1} x_{2}\left[R_{1}\left(x_{1}, x_{2}\right) \rightarrow \exists x_{3} x_{4}\left(R_{2}\left(x_{2}, x_{3}, x_{4}\right)\right)\right]$. A violation is caused by a single tuple in R_{1} whose second element is not in the first column of R_{2}. This means that the arity is 1
- $\exists x_{1} x_{2} R_{2}\left(1, x_{1}, x_{2}\right)$ states that there must be a tuple in R_{2} relation whose first element is 1
This requirement is purely existential: no deletion from the database would negate the violation. Hence the arity of such a constraint is 0 .

Inconsistency of a general information space

- A requirement violation causes an inconsistency for S
- An inconsistency of S consists of one of two cases:
(1) The arity of the requirement c is a positive number k. In this case an inconsistency of S is a set of k information units, $\left\{u_{1}, \ldots, u_{k}\right\}$, that violates c.
We write such an inconsistency as $\left\{u_{1}, \ldots, u_{k}, c\right\}$
(2) The arity of the requirement c is 0 .

If c is violated by S, there is an inconsistency written as $\{c, \neg c\}$

- $\operatorname{Inc}(S)$ is the set of inconsistencies of S

From a General Information Space to a Propositional KB

- Any general information space $S=\langle F, U, C\rangle$ can be transformed to a propositional $\mathrm{KB} K_{S}$ in such a way that all the violations of the requirements are inconsistencies in the $K B$
- The transformation loses some information: there is no way to go back from $\mathrm{KB} K_{S}$ to the original general information space S
- But the transformation is appropriate if we are interested in measuring inconsistency
- To measure the inconsistency of $S=\langle F, U, C\rangle$ according to an inconsistency measure I_{x}, apply I_{x} to the transformed space, i.e., $I_{x}(S)=I_{x}\left(K_{S}\right)$

Transformation (1/2)

Definition (Transformation (1/2))

The transformation from a general information space $S=\langle F, U, C\rangle$ to a propositional $\mathrm{KB} K_{S}$ is as follows.

- Let $A_{U}=\left\{a_{1}, \ldots, a_{|U|}\right\}$ be a set of $|U|$ propositional atoms.
- Define a bijective function $f: U \rightarrow A_{U}$ that assigns a distinct propositional atom to each information unit in U.
- Let $B_{C}=\left\{b_{1}, \ldots, b_{|C|}\right\}$ be another set of $|C|$ propositional atoms.
- Define a bijective function $h: C \rightarrow B_{C}$ that assigns a distinct propositional atom to each requirement in C.
- Let \mathcal{F}_{S} be the set of propositional formulas using $A_{U} \cup B_{C}$
to be continued.

Transformation (1/2)

Definition (Transformation (1/2))

The transformation from a general information space $S=\langle F, U, C\rangle$ to a propositional $\mathrm{KB} K_{S}$ is as follows.

- Let $A_{U}=\left\{a_{1}, \ldots, a_{|U|}\right\}$ be a set of $|U|$ propositional atoms.
- Define a bijective function $f: U \rightarrow A_{U}$ that assigns a distinct propositional atom to each information unit in U.
- Let $B_{C}=\left\{b_{1}, \ldots, b_{|C|}\right\}$ be another set of $|C|$ propositional atoms.
- Define a bijective function $h: C \rightarrow B_{C}$ that assigns a distinct propositional atom to each requirement in C.
- Let \mathcal{F}_{S} be the set of propositional formulas using $A_{U} \cup B_{C}$.
...to be continued...

Applying the (first part of the) transformation

Relation Asset

Atom	SN	DateLoaned	Employee	DateReturned	Tuple
a_{1}	999	2015-02-01	123456789	2016-03-15	t_{1}
a_{2}	999	2015-02-01	123456789	2018-12-31	t_{2}
a_{3}	999	2013-06-15	222222222	2017-12-31	t_{3}
a_{4}	888	2016-12-01	222222222	2013-12-01	t_{4}
a_{5}	555	2014-07-01	333333333	2013-06-20	t_{5}
a_{6}	666	2014-07-01	333333333	2015-09-10	t_{6}
a_{7}	777	2014-07-01	333333333	2014-05-21	t_{7}

- $A_{U}=\left\{a_{1}, \ldots, a_{7}\right\}$ is a set of atoms corresponding to the 7 tuples
- $f\left(t_{i}\right)=a_{i}$ for all $i, 1 \leq i \leq 7$, assigns a distinct propositional atom to each information unit
- $B_{C}=\left\{b_{1}, \ldots, b_{3}\right\}$ is a set of atoms corresponding to the 3 constraints
- $h\left(c_{i}\right)=b_{i}$ for all $i, 1 \leq i \leq 3$, assigns a distinct atom to each requirement
- \mathcal{F}_{S} is the set of propositional logic formulas using $A_{U} \cup B_{C}$

Transformation (2/2)

Definition (Transformation (2/2))

...continued

- Define a function $g: C \rightarrow \mathcal{F}_{S}$ as follows:

For each requirement $c \in C$ do as follows.

1) If there is no violation of the requirement, then set $g(c)=h(c)$.

> If the arity of c is greater than 0 , then a minimal inconsistency is formed by
> one or more information units together with c. Find all such sets, say
> $M_{c}=\left\{U_{1}, \ldots, U_{k}\right\}$ and suppose that $\left|U_{i}\right|=n$. Let $U_{i}=\left\{u_{i}^{1}, \ldots, u_{i}^{n}\right\}$ (where
> each u_{i}^{j} is an information unit). Define $\rho\left(U_{i}\right)=\neg f\left(u_{i}^{1}\right) \vee \ldots \vee \neg f\left(u_{i}^{n}\right)$ which is
> a propositional logic formula. Then, define

3) When the arity of c is 0 , define $g(c)=\neg h(c) \wedge h(c)$.

Define $K_{S}=\{f(u) \mid u \in U\} \cup\{a(c) \mid c \in C\}$

Transformation (2/2)

Definition (Transformation (2/2))

...continued

- Define a function $g: C \rightarrow \mathcal{F}_{S}$ as follows:

For each requirement $c \in C$ do as follows.

1) If there is no violation of the requirement, then set $g(c)=h(c)$.
2) If the arity of c is greater than 0 , then a minimal inconsistency is formed by one or more information units together with c. Find all such sets, say
$M_{c}=\left\{U_{1}, \ldots, U_{k}\right\}$ and suppose that $\left|U_{i}\right|=n$. Let $U_{i}=\left\{u_{i}^{1}, \ldots, u_{i}^{n}\right\}$ (where each u_{i}^{j} is an information unit). Define $\rho\left(U_{i}\right)=\neg f\left(u_{i}^{1}\right) \vee \ldots \vee \neg f\left(u_{i}^{n}\right)$ which is a propositional logic formula. Then, define

$$
g(c)=\left(\bigwedge_{U_{i} \in M_{c}} \rho\left(U_{i}\right)\right) \wedge h(c) .
$$

3) When the arity of c is 0 , define $g(c)=\neg h(c) \wedge h(c)$.

Transformation (2/2)

Definition (Transformation (2/2))

...continued

- Define a function $g: C \rightarrow \mathcal{F}_{S}$ as follows:

For each requirement $c \in C$ do as follows.

1) If there is no violation of the requirement, then set $g(c)=h(c)$.
2) If the arity of c is greater than 0 , then a minimal inconsistency is formed by one or more information units together with c. Find all such sets, say
$M_{c}=\left\{U_{1}, \ldots, U_{k}\right\}$ and suppose that $\left|U_{i}\right|=n$. Let $U_{i}=\left\{u_{i}^{1}, \ldots, u_{i}^{n}\right\}$ (where each u_{i}^{j} is an information unit). Define $\rho\left(U_{i}\right)=\neg f\left(u_{i}^{1}\right) \vee \ldots \vee \neg f\left(u_{i}^{n}\right)$ which is a propositional logic formula. Then, define

$$
g(c)=\left(\bigwedge_{U_{i} \in M_{c}} \rho\left(U_{i}\right)\right) \wedge h(c) .
$$

3) When the arity of c is 0 , define $g(c)=\neg h(c) \wedge h(c)$.

- Define $K_{S}=\{f(u) \mid u \in U\} \cup\{g(c) \mid c \in C\}$.

Example of the requirements mapping (1/3)

Asset

Atom	SN	DateLoaned	Employee	DateReturned	Tuple
a_{1}	999	2015-02-01	123456789	2016-03-15	t_{1}
a_{2}	999	2015-02-01	123456789	2018-12-31	t_{2}
a_{3}	999	2013-06-15	222222222	2017-12-31	t_{3}
a_{4}	888	2016-12-01	222222222	2013-12-01	t_{4}
a_{5}	555	2014-07-01	333333333	2013-06-20	t_{5}
a_{6}	666	2014-07-01	333333333	2015-09-10	t_{6}
a_{7}	777	2014-07-01	333333333	2014-05-21	t_{7}

- $c_{1}=\forall x_{1} \ldots x_{4}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow x_{2} \leq x_{4}\right]$,
i.e. for every asset, the loan date must predate the return date
- The arity of c_{1} is 1
- The 3 tuples t_{4}, t_{5}, and t_{7} each violate c_{1}
- Hence, $g\left(c_{1}\right)=\neg a_{4}$

Example of the requirements mapping (1/3)

Asset

Atom	SN	DateLoaned	Employee	DateReturned	Tuple
a_{1}	999	2015-02-01	123456789	2016-03-15	t_{1}
a_{2}	999	2015-02-01	123456789	2018-12-31	t_{2}
a_{3}	999	2013-06-15	222222222	2017-12-31	t_{3}
a_{4}	888	2016-12-01	222222222	2013-12-01	t_{4}
a_{5}	555	2014-07-01	333333333	2013-06-20	t_{5}
a_{6}	666	2014-07-01	333333333	2015-09-10	t_{6}
a_{7}	777	2014-07-01	333333333	2014-05-21	t_{7}

- $c_{1}=\forall x_{1} \ldots x_{4}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow x_{2} \leq x_{4}\right]$,
i.e. for every asset, the loan date must predate the return date
- The arity of c_{1} is 1
- The 3 tuples t_{4}, t_{5}, and t_{7} each violate c_{1}
- Hence, $g\left(c_{1}\right)=\neg a_{4} \wedge \neg a_{5} \wedge \neg a_{7} \wedge b_{1}$.

Example of the requirements mapping (2/3)

Asset

Atom	SN	DateLoaned	Employee	DateReturned	Tuple
a_{1}	999	2015-02-01	123456789	2016-03-15	t_{1}
a_{2}	999	2015-02-01	123456789	2018-12-31	t_{2}
a_{3}	999	2013-06-15	222222222	2017-12-31	t_{3}
a_{4}	888	2016-12-01	222222222	2013-12-01	t_{4}
a_{5}	555	2014-07-01	333333333	2013-06-20	t_{5}
a_{6}	666	2014-07-01	333333333	2015-09-10	t_{6}
a_{7}	777	2014-07-01	333333333	2014-05-21	t_{7}

- $c_{2}=\forall x_{1} \ldots x_{7}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \wedge \operatorname{Asset}\left(x_{1}, x_{5}, x_{6}, x_{7}\right) \rightarrow\left(x_{2}=x_{5} \wedge x_{3}=\right.\right.$ $\left.\left.x_{6} \wedge x_{4}=x_{7}\right)\right]$, i.e. the serial number is a key for Asset

Example of the requirements mapping (2/3)

Asset

Atom	SN	DateLoaned	Employee	DateReturned	Tuple
a_{1}	999	2015-02-01	123456789	2016-03-15	t_{1}
a_{2}	999	2015-02-01	123456789	2018-12-31	t_{2}
a_{3}	999	2013-06-15	222222222	2017-12-31	t_{3}
a_{4}	888	2016-12-01	222222222	2013-12-01	t_{4}
a_{5}	555	2014-07-01	333333333	2013-06-20	t_{5}
a_{6}	666	2014-07-01	333333333	2015-09-10	t_{6}
a_{7}	777	2014-07-01	333333333	2014-05-21	t_{7}

- $c_{2}=\forall x_{1} \ldots x_{7}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \wedge \operatorname{Asset}\left(x_{1}, x_{5}, x_{6}, x_{7}\right) \rightarrow\left(x_{2}=x_{5} \wedge x_{3}=\right.\right.$ $\left.x_{6} \wedge x_{4}=x_{7}\right)$], i.e. the serial number is a key for Asset
- The arity of c_{2} is 2
- The 3 tuples t_{1}, t_{2}, and t_{3} all have the same serial number but are not identical
- Hence, $g\left(c_{2}\right)=\left(\neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge\left(\neg a_{2} \vee \neg a_{3}\right) \wedge b_{2}$

Example of the requirements mapping (3/3)

Atom	Asset				Tuple
	SN	DateLoaned	Employee	DateReturned	
a_{1}	999	2015-02-01	123456789	2016-03-15	t_{1}
a_{2}	999	2015-02-01	123456789	2018-12-31	t_{2}
a_{3}	999	2013-06-15	222222222	2017-12-31	t_{3}
a_{4}	888	2016-12-01	222222222	2013-12-01	t_{4}
a_{5}	555	2014-07-01	333333333	2013-06-20	t_{5}
a_{6}	666	2014-07-01	333333333	2015-09-10	t_{6}
a_{7}	777	2014-07-01	333333333	2014-05-21	t_{7}

- $c_{3}=\forall x_{1} \ldots x_{8}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \wedge \operatorname{Asset}\left(x_{5}, x_{2}, x_{3}, x_{6}\right) \wedge\right.$ $\left.\operatorname{Asset}\left(x_{7}, x_{2}, x_{3}, x_{8}\right) \rightarrow\left(x_{1}=x_{5} \vee x_{1}=x_{7} \vee x_{5}=x_{7}\right)\right]$,
i.e., the numerical dependency DateLoaned, Employee \rightarrow^{2} SN, meaning that for every date and employee there can be at most 2 assets loaned

Example of the requirements mapping (3/3)

Atom	Asset				Tuple
	SN	DateLoaned	Employee	DateReturned	
a_{1}	999	2015-02-01	123456789	2016-03-15	t_{1}
a_{2}	999	2015-02-01	123456789	2018-12-31	t_{2}
a_{3}	999	2013-06-15	222222222	2017-12-31	t_{3}
a_{4}	888	2016-12-01	222222222	2013-12-01	t_{4}
a_{5}	555	2014-07-01	333333333	2013-06-20	t_{5}
a_{6}	666	2014-07-01	333333333	2015-09-10	t_{6}
a_{7}	777	2014-07-01	333333333	2014-05-21	t_{7}

- $c_{3}=\forall x_{1} \ldots x_{8}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \wedge \operatorname{Asset}\left(x_{5}, x_{2}, x_{3}, x_{6}\right) \wedge\right.$
$\left.\operatorname{Asset}\left(x_{7}, x_{2}, x_{3}, x_{8}\right) \rightarrow\left(x_{1}=x_{5} \vee x_{1}=x_{7} \vee x_{5}=x_{7}\right)\right]$,
i.e., the numerical dependency DateLoaned, Employee \rightarrow^{2} SN, meaning that for every date and employee there can be at most 2 assets loaned
- The arity of c_{3} is 3
- t_{5}, t_{6}, and t_{7} together violate this constraint
- Hence, $g\left(c_{3}\right)=\left(\neg a_{5} \vee \neg a_{6} \vee \neg a_{7}\right) \wedge b_{3}$

Resulting knowledge base

Atom	Asset				Tuple
	SN	DateLoaned	Employee	DateReturned	
a_{1}	999	2015-02-01	123456789	2016-03-15	t_{1}
a_{2}	999	2015-02-01	123456789	2018-12-31	t_{2}
a_{3}	999	2013-06-15	222222222	2017-12-31	t_{3}
a_{4}	888	2016-12-01	222222222	2013-12-01	t_{4}
a_{5}	555	2014-07-01	333333333	2013-06-20	t_{5}
a_{6}	666	2014-07-01	333333333	2015-09-10	t_{6}
a_{7}	777	2014-07-01	333333333	2014-05-21	t_{7}

- $c_{1}=\forall x_{1} \ldots x_{4}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow x_{2} \leq x_{4}\right]$
- $c_{2}=\forall x_{1} \ldots x_{7}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \wedge \operatorname{Asset}\left(x_{1}, x_{5}, x_{6}, x_{7}\right) \rightarrow\left(x_{2}=x_{5} \wedge x_{3}=x_{6} \wedge x_{4}=x_{7}\right)\right]$
- $c_{3}=\forall x_{1} \ldots x_{8}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \wedge \operatorname{Asset}\left(x_{5}, x_{2}, x_{3}, x_{6}\right) \wedge \operatorname{Asset}\left(x_{7}, x_{2}, x_{3}, x_{8}\right) \rightarrow\right.$

$$
\left.\left(x_{1}=x_{5} \vee x_{1}=x_{7} \vee x_{5}=x_{7}\right)\right]
$$

$K_{S}=\left\{a_{1}, \ldots, a_{13}\right.$,
$\neg a_{4} \wedge \neg a_{5} \wedge \neg a_{7} \wedge b_{1}$,
$\left(\neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge\left(\neg a_{2} \vee \neg a_{3}\right) \wedge b_{2}$,
$\left.\left(\neg a_{5} \vee \neg a_{6} \vee \neg a_{7}\right) \wedge b_{3}\right\}$

Inconsistency equivalence

- We transform any general information space to an inconsistency equivalent propositional knowledge base
- Equivalence between the violation of the requirements C for S and the minimal inconsistent subsets of K_{S} :

Theorem

A general information space S and its transformation to a propositional knowledge base K_{S} are equivalent for inconsistencies in the sense that there is a bijection $m: \operatorname{lnc}(S) \rightarrow \mathrm{MI}\left(K_{S}\right)$.
Furthermore, for $M \in \operatorname{Inc}(S),|M|=|m(M)|$.

Outline

Introduction- Motivation
- ContributionBackground
- Inconsistency Measures for Propositional Knowledge Bases
(3) Proposed Aprroach
- General Information Spaces
- Transforming a General Information Space to a Propositional Knowledge Base

4. Examples of Instantiation

- A Relational Database as a General Information Space
- A Graph Database as a General Information Space
- A Blocks World Configuration as a General Information Space
(5) Conclusions and Future Work

Database as General Information Space

- For a relational database instance D over the database scheme $\mathcal{D S}$ with a set \mathcal{C} of integrity constraints,
- The components of $S=\langle F, U, C\rangle$ are as follows:
- The framework F is the database scheme $\mathcal{D S}$ and the (function-free) first-order language using a set of uninterpreted constants and predicate symbols for relation names, as well as domains of the attributes for the evaluation of constants
- The set U of information units is the instance D (the set of the tuples in the relation instances), and
- the set C of requirements is the set \mathcal{C} of integrity constraints

A more complex database example

Atom	Asset				Tuple
	SN	DateLoaned	Employee	DateReturned	
a_{1}	999	2015-02-01	123456789	2016-03-15	t_{1}
a_{2}	999	2015-02-01	123456789	2018-12-31	t_{2}
a_{3}	999	2013-06-15	222222222	2017-12-31	t_{3}
a_{4}	888	2016-12-01	222222222	2013-12-01	t_{4}
a_{5}	555	2014-07-01	333333333	2013-06-20	t_{5}
a_{6}	666	2014-07-01	333333333	2015-09-10	t_{6}
a_{7}	777	2014-07-01	333333333	2014-05-21	t_{7}

Employee			
Atom	ID	Name	HiringDate
	Tuple		
a_{8}	333333333	Robert	$1980-01-01$
a_{9}	t_{8}		
a_{9}	444444444	William	$1975-06-01$
t_{10}	123456789	William	$1975-06-01$
	t_{10}		

Family

Atom	ID	Child	Project	Tuple
a_{11}	123456789	Steve	Q1	t_{11}
a_{12}	123456789	Mary	Q2	t_{12}
a_{13}	123456789	Steve	Q2	t_{13}

A Relational Database as a General Information Space

Additional requirements

- $c_{1}=\forall x_{1} \ldots x_{4}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow x_{2} \leq x_{4}\right]$,
i.e. for every asset, the loan date must predate the return date
- $c_{2}=\forall x_{1} \ldots x_{7}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \wedge \operatorname{Asset}\left(x_{1}, x_{5}, x_{6}, x_{7}\right) \rightarrow\left(x_{2}=x_{5} \wedge x_{3}=x_{6} \wedge x_{4}=x_{7}\right)\right]$, i.e. the serial number is a key for Asset
- $c_{3}=\forall x_{1} \ldots x_{8}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \wedge \operatorname{Asset}\left(x_{5}, x_{2}, x_{3}, x_{6}\right) \wedge \operatorname{Asset}\left(x_{7}, x_{2}, x_{3}, x_{8}\right) \rightarrow\right.$ $\left.\left(x_{1}=x_{5} \vee x_{1}=x_{7} \vee x_{5}=x_{7}\right)\right]$,
i.e., the numerical dependency DateLoaned, Employee $\rightarrow^{2} S N$ whose meaning is that for every date and employee there can be at most 2 assets loaned

- $c_{5}=\forall x_{1} \ldots x_{4}$ [Employee $\left(x_{1}, x_{2}, x_{3}\right) \wedge$ Employee $\left.\left(x_{4}, x_{2}, x_{3}\right) \rightarrow x_{1}=x_{4}\right]$,
i.e., the pair of attributes Name and HiringDate also form a key for Employee
\qquad i.e., the inclusion dependency Asset[Employee] \subseteq Employee[ID]
\qquad

Additional requirements

- $c_{1}=\forall x_{1} \ldots x_{4}\left[A \operatorname{sset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow x_{2} \leq x_{4}\right]$,
i.e. for every asset, the loan date must predate the return date
- $c_{2}=\forall x_{1} \ldots x_{7}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \wedge \operatorname{Asset}\left(x_{1}, x_{5}, x_{6}, x_{7}\right) \rightarrow\left(x_{2}=x_{5} \wedge x_{3}=x_{6} \wedge x_{4}=x_{7}\right)\right]$, i.e. the serial number is a key for Asset
- $c_{3}=\forall x_{1} \ldots x_{8}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \wedge \operatorname{Asset}\left(x_{5}, x_{2}, x_{3}, x_{6}\right) \wedge \operatorname{Asset}\left(x_{7}, x_{2}, x_{3}, x_{8}\right) \rightarrow\right.$

$$
\left.\left(x_{1}=x_{5} \vee x_{1}=x_{7} \vee x_{5}=x_{7}\right)\right],
$$

i.e., the numerical dependency DateLoaned, Employee $\rightarrow^{2} S N$ whose meaning is that for every date and employee there can be at most 2 assets loaned

- $c_{4}=\forall x_{1} \ldots x_{5}\left[\right.$ Employee $\left.\left(x_{1}, x_{2}, x_{3}\right) \wedge \operatorname{Employee}\left(x_{1}, x_{4}, x_{5}\right) \rightarrow\left(x_{2}=x_{4} \wedge x_{3}=x_{5}\right)\right]$, i.e., ID is a key for Employee
- $c_{5}=\forall x_{1} \ldots x_{4}\left[\right.$ Employee $\left.\left(x_{1}, x_{2}, x_{3}\right) \wedge \operatorname{Employee}\left(x_{4}, x_{2}, x_{3}\right) \rightarrow x_{1}=x_{4}\right]$, i.e., the pair of attributes Name and HiringDate also form a key for Employee
- $c_{6}=\forall x_{1} \ldots x_{6}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow \exists x_{5}, x_{6}\right.$ Employee $\left.\left(x_{3}, x_{5}, x_{6}\right)\right]$ i.e., the inclusion dependency Asset[Employee] \subseteq Employee[ID]
- $c_{7}=\forall x_{1} \ldots x_{5}\left[\operatorname{Family}\left(x_{1}, x_{2}, x_{3}\right) \wedge \operatorname{Family}\left(x_{1}, x_{4}, x_{5}\right) \rightarrow \operatorname{Family}\left(x_{1}, x_{2}, x_{5}\right)\right]$, i.e. the multivalued dependency Family: ID $\rightarrow \rightarrow$ Child.
- $c_{8}=\exists x_{1} \ldots x_{6}\left[\right.$ Family $\left(x_{1}, x_{2}, x_{3}\right) \wedge$ Family $\left.\left.\left(x_{4}, x_{5}, x_{6}\right) \wedge x_{1} \neq x_{4}\right)\right]$ i.e., there must be at least two distinct employees referenced in the Family relation

Applying the transformation

- $A_{U}=\left\{a_{1}, \ldots, a_{13}\right\}$ is a a set of propositional atoms corresponding to the 13 tuples
- $f\left(t_{i}\right)=a_{i}$ for all $i, 1 \leq i \leq 13$; it assigns a distinct propositional atom to each information unit
- $B_{C}=\left\{b_{1}, \ldots, b_{8}\right\}$ is a set of propositional atoms corresponding to the 8 constraints
- $h\left(c_{i}\right)=b_{i}$ for all $i, 1 \leq i \leq 8$; it assigns a distinct propositional atom to each requirement
- \mathcal{F}_{S} is the set of propositional logic formulas using $A_{U} \cup B_{C}$

We have already seen the mapping for the first 3 constraints. Now we show the mapping for the other constraints

Mapping a satisfied requirement

Employee

Atom	ID	Name	HiringDate	Tuple
a_{8}	333333333	Robert	1980-01-01	t_{8}
a_{9}	444444444	William	1975-06-01	t_{9}
a_{10}	123456789	William	1975-06-01	t_{10}

- $c_{4}=\forall x_{1} \ldots x_{5}$ [Employee $\left(x_{1}, x_{2}, x_{3}\right) \wedge$ Employee $\left(x_{1}\right.$, $\left.\left.x_{4}, x_{5}\right) \rightarrow\left(x_{2}=x_{4} \wedge x_{3}=x_{5}\right)\right]$, stating that ID is a key for Employee
- This constraint is satisfied
- Hence, $g\left(c_{4}\right)=b_{4}$

Mapping a requirement encoding a key constraint

Employee

Atom	ID	Name	HiringDate	Tuple
a_{8}	333333333	Robert	1980-01-01	t_{8}
a_{9}	444444444	William	1975-06-01	t_{9}
a_{10}	123456789	William	1975-06-01	t_{10}

- $c_{5}=\forall x_{1} \ldots x_{4}\left[\right.$ Employee $\left(x_{1}, x_{2}, x_{3}\right) \wedge$ Employee $\left.\left(x_{4}, x_{2}, x_{3}\right) \rightarrow x_{1}=x_{4}\right]$, that is, the pair of attributes Name and HiringDate also form a key for Employee
- The arity of c_{5} is 2
- It is violated by the pair t_{9} and t_{10}
- Hence, $g\left(c_{5}\right)=\left(\neg a_{9} \vee \neg a_{10}\right) \wedge b_{5}$

Mapping an inclusion dependency

- $c_{6}=\forall x_{1} \ldots x_{6}\left[\operatorname{Asset}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow \exists x_{5}, x_{6}\right.$ Employee $\left.\left(x_{3}, x_{5}, x_{6}\right)\right]$ i.e., the inclusion dependency Asset[Employee] \subseteq Employee $[I D]$.
- The arity of c_{6} is 1 . It is violated separately by t_{3} and t_{4}
- Hence, $g\left(c_{6}\right)=\neg a_{3} \wedge \neg a_{4} \wedge b_{6}$

Mapping a multivalued dependency

	Family		
Atom	ID	Child	Project
	Tuple		
n_{11}	123456789	Steve	Q1
\boldsymbol{t}_{11}			
a_{12}	123456789	Mary	Q2
t_{12}			
a_{13}	123456789	Steve	Q2
	t_{13}		

- $c_{7}=\forall x_{1} \ldots x_{5}\left[\operatorname{Family}\left(x_{1}, x_{2}, x_{3}\right) \wedge \operatorname{Family}\left(x_{1}, x_{4}, x_{5}\right) \rightarrow \operatorname{Family}\left(x_{1}, x_{2}, x_{5}\right)\right]$, i.e. the multivalued dependency [Fagin, 1977] Family: ID $\rightarrow \rightarrow$ Child.
- The arity of c_{7} is 2
- It is violated by the pair t_{11} and t_{12}
- Hence, $g\left(c_{7}\right)=\left(\neg a_{11} \vee \neg a_{12}\right) \wedge b_{7}$

Mapping a purely existential constraint

Family			
Atom			ID
	Child	Project	Tuple
a_{11}	123456789	Steve	Q1
t_{11}			
a_{12}	123456789	Mary	Q2
t_{12}			
a_{13}	123456789	Steve	Q2
	t_{13}		

- $c_{8}=\exists x_{1} \ldots x_{6}\left[\operatorname{Family}\left(x_{1}, x_{2}, x_{3}\right) \wedge\right.$ Family $\left.\left.\left(x_{4}, x_{5}, x_{6}\right) \wedge x_{1} \neq x_{4}\right)\right]$ stating that there must be at least two employees referenced in the Family relation
- The arity of c_{8} is 0 and it is violated by the set of information units
- Hence, $g\left(c_{8}\right)=\neg b_{8} \wedge b_{8}$

Resulting knowledge base for the database consisting of 13 tuples and with 8 constraints

$$
\begin{aligned}
K_{S}= & \left\{a_{1}, \ldots, a_{13}, \quad / / 13\right. \text { tuples } \\
& \neg a_{4} \wedge \neg a_{5} \wedge \neg a_{7} \wedge b_{1}, \quad / / \text { intra-tuple constraint } \\
& \left(\neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge\left(\neg a_{2} \vee \neg a_{3}\right) \wedge b_{2}, \quad / / \text { key constraint } \\
& \left(\neg a_{5} \vee \neg a_{6} \vee \neg a_{7}\right) \wedge b_{3}, \quad / / \text { numerical dependency } \\
& b_{4}, \\
& \left(\neg a_{9} \vee \neg a_{10}\right) \wedge b_{5}, \quad / / \text { satisfied constraint } \quad \text { key constraint } \\
& \neg a_{3} \wedge \neg a_{4} \wedge b_{6}, \quad / / \text { inclusion dependency } \\
& \left(\neg a_{11} \vee \neg a_{12}\right) \wedge b_{7}, \quad / / \text { multivalued dependency } \\
& \left.\neg b_{8} \wedge b_{8}\right\} . \quad / / \text { purely existential constraint }
\end{aligned}
$$

The Calculation of the Inconsistency Measures (1/2)

- Minimal inconsistent subsets for the knowledge base K_{S} resulting from the transformation
- $\operatorname{MI}\left(K_{S}\right)=\left\{\left\{a_{4}, \neg a_{4} \wedge \neg a_{5} \wedge \neg a_{7} \wedge b_{1}\right\}\right.$,
$\left\{a_{5}, \neg a_{4} \wedge \neg a_{5} \wedge \neg a_{7} \wedge b_{1}\right\}$,
$\left\{a_{7}, \neg a_{4} \wedge \neg a_{5} \wedge \neg a_{7} \wedge b_{1}\right\}$,
$\left\{a_{1}, a_{2},\left(\neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge\left(\neg a_{2} \vee \neg a_{3}\right) \wedge b_{2}\right\}$,
$\left\{a_{1}, a_{3},\left(\neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge\left(\neg a_{2} \vee \neg a_{3}\right) \wedge b_{2}\right\}$, $\left\{a_{2}, a_{3},\left(\neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge\left(\neg a_{2} \vee \neg a_{3}\right) \wedge b_{2}\right\}$,
$\left\{a_{5}, a_{6}, a_{7},\left(\neg a_{5} \vee \neg a_{6} \vee \neg a_{7}\right) \wedge b_{3}\right\}$,
$\left\{a_{9}, a_{10},\left(\neg a_{9} \vee \neg a_{10}\right) \wedge b_{5}\right\}$,
$\left\{a_{3}, \neg a_{3} \wedge \neg a_{4} \wedge b_{6}\right\}$,
$\left\{a_{4}, \neg a_{3} \wedge \neg a_{4} \wedge b_{6}\right\}$,
$\left\{a_{11}, a_{12},\left(\neg a_{11} \vee \neg a_{12}\right) \wedge b_{7}\right\}$, $\left.\left\{\neg b_{8} \wedge b_{8}\right\}\right\}$

The Calculation of the Inconsistency Measures (2/2)

- $I_{B}(S)=1$ as K_{S} is inconsistent.
- $I_{M}(S)=12$ as there are 12 minimal inconsistent subsets for K_{S}.
- $I_{\#}(S)=1+5 \times \frac{1}{2}+5 \times \frac{1}{3}+\frac{1}{4}=\frac{65}{12}$ as there is one minimal inconsistent subset of size 1,5 of size 2,5 of size 3 , and 1 of size 4 in K_{S}.
- $I_{P}(S)=11+7=18$ as 11 atoms (i.e., tuples) plus 7 propositional formulas (i.e., constraints) are problematic in K_{S}.
- $I_{H}(S)=7$ as the deletion of the 7 formulas of $g\left(c_{i}\right)$ for all $i, 1 \leq i \leq 3$ and $5 \leq i \leq 8$ makes K_{S} consistent and there is no set of smaller cardinality that accomplishes the same.
- $I_{n c}(S)=21$ as the set $\left\{\neg b_{8} \wedge b_{8}\right\}$ has size 1 and is inconsistent.
- $I_{C}(S)=8$ as there must be at least 8 atoms, for example $a_{2}, a_{3}, a_{4}, a_{5}$, a_{7}, a_{9}, a_{11}, and b_{8}, that must be given the value B for a 3 -valued interpretation in order to satisfy all the formulas.

Graph Database as a General Information Space

- Components of $S=\langle F, U, C\rangle$:
- The framework F consists of basic information about the vertices and the edges of the graph, that is, the sets of vertex names, edge labels, and vertex properties
- Each vertex property has an associated domain. For instance, the domain of type includes person (circles) and media (rectangles)

Data units

- The data units are the vertices and the edges

```
\(u_{1}\) : (Photo 1, 12MP)
\(u_{3}\) : (Photo 3, 8MP)
\(u_{5}\) : (Mark)
\(u_{7}\) : (James, 26)
\(u_{9}\) : (Daniel, knows, Mark)
\(u_{11}\) : (Mark, likes, Photo 1)
\(u_{13}\) : (Mark, knows, Paul)
\(u_{15}\) : (Paul, knows, Mark)
\(u_{17}\) : (Paul, posted, Photo 3)
\(u_{19}\) : (James, likes, Paul)
\(u_{21}\) : (Photo 1, taken before, Photo 2)
```

u_{1} : (Photo 1, 12MP)
u_{3} : (Photo 3, 8MP)
u_{5} : (Mark)
u_{7} : (James, 26)
u_{9} : (Daniel, knows, Mark)
u_{13} : (Mark, knows, Paul)
u_{15} : (Paul, knows, Mark)
u_{2} : (Photo 2, 16MP)
u_{4} : (Daniel, 35)
u_{6} : (Paul)
u_{8} : (Daniel, posted, Photo 1)
u_{10} : (Daniel, knows, Paul)
u_{12} : (Mark, posted, Photo 2)
u_{14} : (Mark, likes, James)
u_{16} : (Paul, likes, Photo 2)
u_{4} : (Daniel, 35)
u_{6} : (Paul)
u_{8} : (Daniel, posted, Photo 1)
u_{10} : (Daniel, knows, Paul)
u_{12} : (Mark, posted, Photo 2)
u_{14} : (Mark, likes, James)
u_{16} : (Paul, likes, Photo 2)
u_{18} : (Paul, knows, James)
u_{20} : (James, posted, Photo 3)
$u_{22}:($ Photo 2, taken before, Photo 1)

Requirements

- c_{1} : Every person (circular vertex) must have an associated age value
- c_{2} : Every media (rectangular vertex) must have an associated resolution
- c_{3} : There may not be a cycle on rectangular vertices
- c_{4} : There cannot be 2 edges with the label "posted" going to the same rectangular vertex
- c_{5} : For every edge between circular vertices that has the label "likes" there must be another edge with the label "knows"

A Graph Database as a General Information Space

Transformation to a Propositional Knowledge Base

- $A_{U}=\left\{a_{1}, \ldots, a_{22}\right\}$ corresponding to the 7 vertices and 15 edges
- $f\left(u_{i}\right)=a_{i}$ for all $i, 1 \leq i \leq 22$
- $B_{C}=\left\{b_{1}, \ldots, b_{5}\right\}$ corresponding to the 5 constraints
- $h\left(c_{i}\right)=b_{i}$ for all $i, 1 \leq i \leq 5$
- \mathcal{F}_{S} is the set of propositional formulas using $A_{U} \cup B_{C}$

A Graph Database as a General Information Space

Mapping the constraints

- c_{1} : Every person (circular vertex) must have an associated age value The arity of c_{1} is 1 .
The two nodes u_{5} (Mark) and u_{6} (Paul) each violate c_{1}. Hence, $g\left(c_{1}\right)=\neg a_{5} \wedge \neg a_{6} \wedge b_{1}$.
- c_{2} : Every media (rectangular vertex) must have an associated resolution c_{2} is satisfied. Hence, $g\left(c_{2}\right)=b_{2}$.

A Graph Database as a General Information Space

Mapping the constraints

- c_{1} : Every person (circular vertex) must have an associated age value The arity of c_{1} is 1 .
The two nodes u_{5} (Mark) and u_{6} (Paul) each violate c_{1}.
Hence, $g\left(c_{1}\right)=\neg a_{5} \wedge \neg a_{6} \wedge b_{1}$.
- c_{2} : Every media (rectangular vertex) must have an associated resolution c_{2} is satisfied. Hence, $g\left(c_{2}\right)=b_{2}$.

A Graph Database as a General Information Space

Mapping a circular path constraint

- c_{3} : There may not be a cycle on rectangular vertices
- This constraint does not have a fixed arity because a cycle does not have a fixed number of elements
- However, if it is violated its arity is greater than zero
- It is violated by the pair of edges u_{21} (Photo 1, taken before, Photo 2) and u_{22} (Photo 2, taken before, Photo 1)
- Hence, $g\left(c_{3}\right)=\left(\neg a_{21} \vee \neg a_{22}\right) \wedge b_{3}$.

A Graph Database as a General Information Space

Mapping a path denial constraints

- c_{4} : There cannot be 2 edges with the label "posted" going to the same rectangular vertex
- The arity of c_{4} is 2
- It is violated by the pair of edges u_{17} (Paul, posted, Photo 3) and u_{20} (James, posted, Photo 3)
- Hence, $g\left(c_{4}\right)=\left(\neg a_{17} \vee \neg a_{20}\right) \wedge b_{4}$

A Graph Database as a General Information Space

Mapping an existential path constraints

- c_{5} : For every edge between circular vertices that has the label "likes" there must be another edge with the label "knows"
- The arity of c_{5} is 1
- The two edges u_{14} (Mark, likes, James) and u_{19} (James, likes, Paul) each violate C_{5}
- Hence, $g\left(c_{5}\right)=\neg a_{14} \wedge \neg a_{19} \wedge b_{5}$

Resulting knowledge base

$$
\begin{array}{rlr}
K_{S}= & \left\{a_{1}, \ldots, a_{22}, \quad \text { // } 22\right. \text { vertices and edges } \\
& \neg a_{5} \wedge \neg a_{6} \wedge b_{1}, \quad \text { // existential property constraint } \\
& b_{2}, & \text { satisfied constraint } \\
& \left(\neg a_{21} \vee \neg a_{22}\right) \wedge b_{3}, \quad \text { // circular path constraint } \\
& \left(\neg a_{17} \vee \neg a_{20}\right) \wedge b_{4}, \quad \text { // denial constraint } \\
& \left.\neg a_{14} \wedge \neg a_{19} \wedge b_{5}\right\} . & / / \text { existential path constraint }
\end{array}
$$

$$
\begin{aligned}
\operatorname{MI}\left(K_{S}\right)= & \left\{\left\{a_{5}, \neg a_{5} \wedge \neg a_{6} \wedge b_{1}\right\},\right. \\
& \left\{a_{6}, \neg a_{5} \wedge \neg a_{6} \wedge b_{1}\right\}, \\
& \left\{a_{21}, a_{22},\left(\neg a_{21} \vee \neg a_{22}\right) \wedge b_{3}\right\}, \\
& \left\{a_{17}, a_{20},\left(\neg a_{17} \vee \neg a_{20}\right) \wedge b_{4}\right\}, \\
& \left\{a_{14}, \neg a_{14} \wedge \neg a_{19} \wedge b_{5}\right\}, \\
& \left.\left\{a_{19}, \neg a_{14} \wedge \neg a_{19} \wedge b_{5}\right\}\right\}
\end{aligned}
$$

The Calculation of the Inconsistency Measures

- $I_{B}(S)=1$ as K_{S} is inconsistent.
- $I_{M}(S)=6$ as there are 6 minimal inconsistent subsets for K_{S}.
- $I_{\#}(S)=4 \times \frac{1}{2}+2 \times \frac{1}{3}=\frac{8}{3}$ as there are 4 minimal inconsistent subsets of size 2 and 2 minimal inconsistent subsets of size 3 for K_{S}.
- $I_{P}(S)=8+4=12$ as 8 atoms (i.e., vertices and edges) plus 4 propositional formulas (i.e., the transformations of the constraints) are problematic in K_{S}.
- $I_{H}(S)=4$ as the deletion of the 4 formulas: $g\left(c_{1}\right), g\left(c_{3}\right), g\left(c_{4}\right)$, and $g\left(c_{5}\right)$ makes K_{S} consistent and there is no smaller cardinality set that accomplishes the same.
- $I_{n c}(S)=27-1=26$ as there is a minimal inconsistent subset of size 2 .
- $I_{C}(S)=6$ as a 3-valued interpretation must give at least $a_{5}, a_{6}, a_{14}, a_{19}$, one of a_{21} and a_{22}, and one of a_{17} and a_{20} the value B to satisfy all the formulas.

Components of a Blocks World Configuration

- The framework indicates that there is a finite number of colored blocks of the same size in stacks on a table, which is large enough to hold all (i.e., the number of stacks can be equal to number of blocks)
- Data units are the stack and the colors of the block in them
- $s t_{i, j}$: color means that the block in stack i in the $j^{\text {th }}$ position has that color

$s t_{11}:$ green	$s t_{12}:$ blue	$s t_{13}:$ blue	
$s t_{21}:$ red	$s t_{22}:$ yellow	$s t_{23}: b l u e$	$s t_{24}:$ red
$s t_{31}:$ yellow	$s t_{32}:$ red	$s t_{33}:$ blue	

Requirements for our Blocks World

- c_{1} : No blue block can be on top of another blue block.
- c_{2} : There cannot be a yellow block that has a red block below it and a red block above it.
- c_{3} : There cannot be a red block on the table (i.e. at the bottom of a stack).
- C_{4} : No stack has both a green block and a blue block.
- c_{5} : At least one of the blocks is purple.
- c_{6} : There must be a blue block in at least 3 stacks.

Transformation (1/4)

- $A_{U}=\left\{a_{1}, \ldots, a_{11}\right\}$ corresponding to the 11 blocks
- $f\left(s t_{11}\right)=a_{1}, f\left(s t_{12}\right)=a_{2}, f\left(s t_{13}\right)=a_{3}, f\left(s t_{21}\right)=a_{4}, f\left(s t_{22}\right)=a_{5}$, $f\left(s t_{23}\right)=a_{6}, f\left(s t_{24}\right)=a_{7}, f\left(s t_{31}\right)=a_{8}, f\left(s t_{32}\right)=a_{9}, f\left(s t_{33}\right)=a_{10}$, $f\left(s t_{41}\right)=a_{11}$,
- $B_{C}=\left\{b_{1}, \ldots, b_{6}\right\}$ corresponding to the 6 constraints.
- $h\left(c_{i}\right)=b_{i}$ for all $i, 1 \leq i \leq 6$.
- \mathcal{F}_{S} is the set of propositional formulas using $A_{U} \cup B_{C}$.

Transformation (2/4)

- c_{1} : No blue block can be on top of another blue block The arity of c_{1} is 2.
The two blocks $s t_{12}$ and $s t_{13}$ together violate c_{1}. Hence, $g\left(c_{1}\right)=\left(\neg a_{2} \vee \neg a_{3}\right) \wedge b_{1}$
- c_{2} : There cannot be a yellow block that has a red block below it and a red block above it
The arity of c_{2} is 3 .
The 3 blocks that together violate this constraint are $s t_{21}, s t_{22}$, and $s t_{24}$. Hence, $g\left(c_{2}\right)=\left(\neg a_{4} \vee \neg a_{5} \vee \neg a_{7}\right) \wedge b_{2}$

A Blocks World Configuration as a General Information Space

Transformation (2/4)

- c_{1} : No blue block can be on top of another blue block

The arity of c_{1} is 2.
The two blocks $s t_{12}$ and $s t_{13}$ together violate c_{1}.
Hence, $g\left(c_{1}\right)=\left(\neg a_{2} \vee \neg a_{3}\right) \wedge b_{1}$

- c_{2} : There cannot be a yellow block that has a red block below it and a red block above it
The arity of c_{2} is 3 .
The 3 blocks that together violate this constraint are $s t_{21}, s t_{22}$, and $s t_{24}$.
Hence, $g\left(c_{2}\right)=\left(\neg a_{4} \vee \neg a_{5} \vee \neg a_{7}\right) \wedge b_{2}$

Transformation (3/4)

- c_{3} : There cannot be a red block on the table (i.e. at the bottom of a stack). The arity of c_{3} is 1 .
The blocks $s t_{21}$ and $s t_{41}$ both violate this constraint.
Hence, $g\left(c_{3}\right)=\neg a_{4} \wedge \neg a_{11} \wedge b_{3}$
- c_{4} : No stack has both a green block and a blue block.

The arity of c_{4} is 2
The blocks $s t_{11}$ and $s t_{12}$ as well as the blocks $s t_{11}$ and $s t_{13}$ violate this constraint

Hence, $g\left(c_{4}\right)=\left(\neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge b_{4}$

A Blocks World Configuration as a General Information Space

Transformation (3/4)

- c_{3} : There cannot be a red block on the table (i.e. at the bottom of a stack). The arity of c_{3} is 1 .
The blocks $s t_{21}$ and $s t_{41}$ both violate this constraint.
Hence, $g\left(c_{3}\right)=\neg a_{4} \wedge \neg a_{11} \wedge b_{3}$
- c_{4} : No stack has both a green block and a blue block.

The arity of c_{4} is 2
The blocks $s t_{11}$ and $s t_{12}$ as well as the blocks $s t_{11}$ and $s t_{13}$ violate this constraint
Hence, $g\left(c_{4}\right)=\left(\neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge b_{4}$

Transformation (4/4)

- c_{5} : At least one of the blocks is purple The arity of c_{5} is 0 .
There is no purple block in any stack.
Hence, $g\left(c_{5}\right)=\neg b_{5} \wedge b_{5}$
- c_{6} : There must be a blue block in at least 3 stacks

This constraint is satisfied. Hence, $g\left(c_{6}\right)=b_{6}$

Transformation (4/4)

- c_{5} : At least one of the blocks is purple The arity of c_{5} is 0 .
There is no purple block in any stack.
Hence, $g\left(c_{5}\right)=\neg b_{5} \wedge b_{5}$
- c_{6} : There must be a blue block in at least 3 stacks

This constraint is satisfied. Hence, $g\left(c_{6}\right)=b_{6}$

A Blocks World Configuration as a General Information Space

Resulting knowledge base

$$
\begin{aligned}
K_{S}= & \left\{a_{1}, \ldots, a_{11},\right. \\
& \left(\neg a_{2} \vee \neg a_{3}\right) \wedge b_{1}, \\
& \left(\neg a_{4} \vee \neg a_{5} \vee \neg a_{7}\right) \wedge b_{2}, \\
& \neg a_{4} \wedge \neg a_{11} \wedge b_{3}, \\
& \left(\neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge b_{4}, \\
& \neg b_{5} \wedge b_{5}, \\
& \left.b_{6}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{MI}\left(K_{S}\right)= & \left\{\left\{a_{2}, a_{3},\left(\neg a_{2} \vee \neg a_{3}\right) \wedge b_{1}\right\},\right. \\
& \left\{a_{4}, a_{5}, a_{7},\left(\neg a_{4} \vee \neg a_{5} \vee \neg a_{7}\right) \wedge b_{2}\right\}, \\
& \left\{a_{4}, \neg a_{4} \wedge \neg \neg a_{11} \wedge b_{3}\right\}, \\
& \left\{a_{11}, \neg a_{4} \wedge \neg a_{11} \wedge b_{3}\right\}, \\
& \left\{a_{1}, a_{2},\left(\neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge b_{4}\right\}, \\
& \left\{a_{1}, a_{3},\left(\neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge b_{4}\right\}, \\
& \left.\left\{\neg b_{5} \wedge b_{5}\right\}\right\}
\end{aligned}
$$

The Calculation of the Inconsistency Measures

- $I_{B}(S)=1$ as K_{S} is inconsistent.
- $I_{M}(S)=7$ as there are 7 minimal inconsistent subsets for K_{S}.
- $I_{\#}(S)=1+2 \times \frac{1}{2}+3 \times \frac{1}{3}+1 \times \frac{1}{4}=\frac{13}{4}$ as there is 1 minimal inconsistent subset of size 1, 2 minimal inconsistent subsets of size 2,3 minimal inconsistent subsets of size 3 , and 1 minimal inconsistent subset of size 4 for K_{S}.
- $I_{P}(S)=7+5=12$ as 7 atoms (i.e., colored block locations) plus 5 propositional formulas (i.e., the transformations of the requirements) are problematic in K_{S}.
- $I_{H}(S)=5$ as the deletion of the 5 formulas: $g\left(c_{1}\right), g\left(c_{2}\right), g\left(c_{3}\right), g\left(c_{4}\right)$, and $g\left(c_{5}\right)$ makes K_{S} consistent and there is no smaller cardinality set that accomplishes the same.
- $I_{n c}(S)=17$ as there is a minimal inconsistent subset of size 1 .
- $I_{C}(S)=5$ as a 3-valued interpretation that satisfies all the formulas must give a_{4}, a_{11}, b_{5}, and at least 2 other atoms, for example, a_{1} and a_{2} the value B.

Outline

O

Introduction

- Motivation
- Contribution
(2) Background
- Inconsistency Measures for Propositional Knowledge Bases
(3) Proposed Aprroach
- General Information Spaces
- Transforming a General Information Space to a Propositional Knowledge Base
(4) Examples of Instantiation
- A Relational Database as a General Information Space
- A Graph Database as a General Information Space
- A Blocks World Configuration as a General Information Space
(5) Conclusions and Future Work

Conclusions and future work

- Inconsistency in real-world information systems can not be easily avoided
- We proposed a general approach for measuring inconsistency which encompasses various ways in which information is stored
- Since the transformation creates a propositional KB, all propositional (absolute) inconsistency measures ever proposed are applicable

$$
\begin{align*}
& \text { We do not deal with more general information spaces, such as those } \\
& \text { having additional concepts such as probabilities or fuzzyness } \\
& \text { It would be interesting to look into broadening the concept of general } \\
& \text { information space } \\
& \text { Consider relative inconsistency measures (where the ratio of } \\
& \text { inconsistency may decrease with the addition of consistent information) } \\
& \text { Investigate the complexity of the transformation (it depends on what we } \\
& \text { consider as the size of the information space) } \\
& \text { Restricting the information space (e.g. F=relational databases, C=denial } \\
& \text { constraints only) to get specific measures, postulate analysis and } \tag{someresults@ECAI2020}
\end{align*}
$$

Conclusions and future work

- Inconsistency in real-world information systems can not be easily avoided
- We proposed a general approach for measuring inconsistency which encompasses various ways in which information is stored
- Since the transformation creates a propositional KB, all propositional (absolute) inconsistency measures ever proposed are applicable
- We do not deal with more general information spaces, such as those having additional concepts such as probabilities or fuzzyness
FW1 It would be interesting to look into broadening the concept of general information space
FW2 Consider relative inconsistency measures (where the ratio of inconsistency may decrease with the addition of consistent information)

Conclusions and future work

- Inconsistency in real-world information systems can not be easily avoided
- We proposed a general approach for measuring inconsistency which encompasses various ways in which information is stored
- Since the transformation creates a propositional KB, all propositional (absolute) inconsistency measures ever proposed are applicable
- We do not deal with more general information spaces, such as those having additional concepts such as probabilities or fuzzyness
FW1 It would be interesting to look into broadening the concept of general information space
FW2 Consider relative inconsistency measures (where the ratio of inconsistency may decrease with the addition of consistent information)
FW3 Investigate the complexity of the transformation (it depends on what we consider as the size of the information space)
FW4 Restricting the information space (e.g. F=relational databases, C=denial constraints only) to get specific measures, postulate analysis and complexity results (some results @ ECAI 2020)

ECAI 2020 paper: On Measuring Inconsistency in Relational Databases with Denial Constraints

- Measuring the inconsistency by blaming database tuples only (integrity constraints are assumed to be irrefutable statements)

Measure(s)	$\mathbf{L V} \mathbf{V}_{\mathcal{I}}(D, v)$	$\mathbf{U} \mathbf{V}_{\mathcal{I}}(D, v)$	$\mathbf{E V}_{\mathcal{I}}(D, v)$	$\mathbf{I M}_{\mathcal{I}}(D)$
$\mathcal{I}_{B}, \mathcal{I}_{M}, \mathcal{I}_{\#}, \mathcal{I}_{P}$	P	P	P	$F P$
\mathcal{I}_{A}	$C P$	$C P$	$C P$	$\# P$-complete*
$\mathcal{I}_{H}, \mathcal{I}_{C}$	coNP-complete	$N P$-complete	D^{p}-complete	$F P^{N P l o g}{ }^{n]}$-complete
\mathcal{I}_{η}	coNP-complete	$N P$-complete	D^{p}	$F P^{N P}$

Table: Data Complexity of Lower Value (LV), Upper Value (UV), Exact Value (EV), and Inconsistency Measurement (IM) problems.

ECAI 2020 paper: On Measuring Inconsistency in Relational Databases with Denial Constraints

- Measuring the inconsistency by blaming database tuples only (integrity constraints are assumed to be irrefutable statements)

Table: Postulates satisfaction for database inconsistency measures.

	Database Inconsistency Measures							
	\mathcal{I}_{B}	\mathcal{I}_{M}	$\mathcal{I}_{\text {\# }}$	\mathcal{I}_{P}	$\mathcal{I}_{\text {A }}$	\mathcal{I}_{H}	\mathcal{I}_{C}	\mathcal{I}_{η}
Free-Tuple Independence	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(V)	\checkmark
Penalty	x	\checkmark	\checkmark	\checkmark	x	x	x	x
Super-Additivity	x	\checkmark	\checkmark	\checkmark	(V)	\checkmark	0	x
MI-Separability	X	\checkmark	\checkmark	X	X	X	X	x
MI-Normalization	\checkmark	\checkmark	x	x	X	\checkmark	(V)	x
Equal Conflict	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(V)	\checkmark

\checkmark : satisfied for database measures (and satisfied for the corresponding propositional measure in the knowledge base setting).
(V): satisfied for database measures but not for the corresponding propositional measure in the knowledge base setting.
\boldsymbol{x} : not satisfied for database measures (and not satisfied for propositional measures).

Thank you!

... any question?

囯 Doder，D．，Raskovic，M．，Markovic，Z．，and Ognjanovic，Z．（2010）． Measures of inconsistency and defaults． Int．J．Approx．Reasoning，51（7）：832－845．

圊 Fagin，R．（1977）．
Multivalued dependencies and a new normal form for relational databases．
ACM Trans．Database Syst．，2（3）：262－278．
囲 Grant，J．and Hunter，A．（2011）．
Measuring consistency gain and information loss in stepwise inconsistency resolution．
In Proc．of European Conf．Symbolic and Quant．Approaches to Reasoning with Uncertainty（ECSQARU），pages 362－373．
围 Grant，J．and Hunter，A．（2013）．
Distance－based measures of inconsistency．
In Proc．of ECSQARU，pages 230－241．
围 Grant，J．and Martinez，M．V．（2018）．
Measuring Inconsistency in Information．
College Publications．

圊 Hunter, A. and Konieczny, S. (2008).
Measuring inconsistency through minimal inconsistent sets.
In Proc. of International Conference on Principles of Knowledge Representation and Reasoning (KR), pages 358-366.
R MarketsandMarkets (2019).

Data quality tools market by data type.

https://www.marketsandmarkets.com/Market-Reports/
data-quality-tools-market-22437870.html.

