Measuring Inconsistency in a General Information Space

John Grant¹ Francesco Parisi²

¹Department of Computer Science and UMIACS, University of Maryland, College Park, USA, grant@cs.umd.edu ²Department of Informatics, Modeling, Electronics and System Engineering (DIMES), University of Calabria, Italy, fparisi@dimes.unical.it

11th International Symposium on Foundations of Information and Knowledge Systems (FoIKS) February 17-20, 2020

Dortmund, Germany

• Real-world applications often need to deal with inconsistent information

• E.g., relational databases are often inconsistent

SN	DateLoaned	Employee	DateReturned
999	2015-02-01	123456789	2016-03-15
999	2015-02-01	123456789	2018-12-31
999	2013-06-15	222222222	2017-12-31
	2016-12-01	222222222	2013-12-01
	2014-07-01		2013-06-20
666	2014-07-01		2015-09-10
777	2014-07-01		2014-05-21

- c1 : For every asset, the loan date must predate the return date
- c2 : The serial number is a key for Asset
- c₃ : For every date and employee there can be at most 2 assets loaned

- Real-world applications often need to deal with inconsistent information
- E.g., relational databases are often inconsistent

SN	DateLoaned	Employee	DateReturned
999	2015-02-01	123456789	2016-03-15
999	2015-02-01	123456789	2018-12-31
999	2013-06-15	222222222	2017-12-31
888	2016-12-01	222222222	2013-12-01
555	2014-07-01	333333333	2013-06-20
666	2014-07-01	333333333	2015-09-10
777	2014-07-01	333333333	2014-05-21

- c_1 : For every asset, the loan date must predate the return date
- c_2 : The serial number is a key for Asset
- c_3 : For every date and employee there can be at most 2 assets loaned

- Real-world applications often need to deal with inconsistent information
- E.g., relational databases are often inconsistent

SN	DateLoaned	Employee	DateReturned
999	2015-02-01	123456789	2016-03-15
999	2015-02-01	123456789	2018-12-31
999	2013-06-15	222222222	2017-12-31
888	2016-12-01	222222222	2013-12-01
555	2014-07-01	333333333	2013-06-20
666	2014-07-01	333333333	2015-09-10
777	2014-07-01	333333333	2014-05-21

- c_1 : For every asset, the loan date must predate the return date
- c₂ : The serial number is a key for Asset
- c₃ : For every date and employee there can be at most 2 assets loaned

- Real-world applications often need to deal with inconsistent information
- E.g., relational databases are often inconsistent

SN	DateLoaned	Employee	DateReturned
999	2015-02-01	123456789	2016-03-15
999	2015-02-01	123456789	2018-12-31
999	2013-06-15	222222222	2017-12-31
888	2016-12-01	222222222	2013-12-01
555	2014-07-01	333333333	2013-06-20
666	2014-07-01	333333333	2015-09-10
777	2014-07-01	333333333	2014-05-21

- c_1 : For every asset, the loan date must predate the return date
- c₂ : The serial number is a key for Asset
- c₃ : For every date and employee there can be at most 2 assets loaned

- Real-world applications often need to deal with inconsistent information
- E.g., relational databases are often inconsistent

SN	DateLoaned	Employee	DateReturned
999	2015-02-01	123456789	2016-03-15
999	2015-02-01	123456789	2018-12-31
999	2013-06-15	222222222	2017-12-31
888	2016-12-01	222222222	2013-12-01
555	2014-07-01	333333333	2013-06-20
666	2014-07-01	333333333	2015-09-10
777	2014-07-01	333333333	2014-05-21

- c₁ : For every asset, the loan date must predate the return date
- c₂ : The serial number is a key for Asset
- c_3 : For every date and employee there can be at most 2 assets loaned

• As another example, graph databases may be inconsistent too

- c1: Every person must have an associated age value
- c2: Every photo must have an associated resolution
- c3: The taken before relationship cannot be cyclic
- c4: A given photo cannot be posted by different persons

An inconsistent Blocks-world

- c₁: No blue block can be on top of another blue block.
- *c*₂: There cannot be a yellow block that has a red block below it and a red block above it.
- c_3 : There cannot be a red block on the table (i.e. at the bottom of a stack).
- c₄: No stack has both a green block and a blue block.
- *c*₅: At least one of the blocks is purple.
- c₆: There must be a blue block in at least 3 stacks.

Living with inconsistency (and measuring it)

- Inconsistency in real-world information systems can not be easily avoided
- Many inconsistency-tolerant approaches have been developed to live with inconsistency
- There are several proposals for mechanisms to handle inconsistent data
- A key issue in such situations is measuring the amount of inconsistency
- Measuring inconsistency allow us to assess its nature and understand the degree of the dirtiness of data
- Data quality is more and more important nowadays, the global market of data quality tools is expected to grow from USD 610.2 Million in 2017 to USD 1,376.7 Million by 2022 [MarketsandMarkets, 2019].

How to measure inconsistency of real word data?

- There are several ways to measure the amount of inconsistency in a knowledge base
- but most of this work applies only to knowledge bases formulated as sets of formulas in propositional logic
- Not really applicable to the way that information is actually stored (e.g., the 3 examples discussed before)
- We aim at extending inconsistency measuring to real world information

Dealing with general information spaces

- We define the concept of *general information space* which encompasses various types of databases and scenarios in AI systems
- We show how to transform any general information space to an *inconsistency equivalent* propositional knowledge base
- Apply propositional inconsistency measures to find the inconsistency of the general information space
- We demonstrate the transformation on 3 general information spaces (a relational database, a graph database, and a Blocks world scenario), where we apply several inconsistency measures after performing the transformation
- Our approach lifts the idea of inconsistency measure from propositional knowledge bases to a *range of different frameworks* used for storing real world data

Outline

- Motivation
- Contribution

Background

Background

Inconsistency Measures for Propositional Knowledge Bases

- General Information Spaces
- Transforming a General Information Space to a Propositional
- - A Relational Database as a General Information Space
 - A Graph Database as a General Information Space
 - A Blocks World Configuration as a General Information Space

Conclusions and Future Work

Inconsistency Measures for Propositional Knowledge Bases

Background

Introduction

General idea of an inconsistency measure

- The idea of an inconsistency measure is to assign a nonnegative number to a knowledge base (KB) that measures its inconsistency
- Propositional language of formulas, e.g.,

 $\mathcal{K}_{ex} = \{a_1, \ a_2, \ a_3, \ a_4, \ \neg a_1 \lor \neg a_2, \ \neg a_2 \lor \neg a_3, \ a_4 \land a_5\}$

Definition (Inconsistency Measure)

Let \mathcal{K} be the of all propositional knowledge bases. A function $I: \mathcal{K} \to \mathbb{R}_{\infty}^{\geq 0}$ is an *inconsistency measure* if the following conditions hold for all $K, K' \in \mathcal{K}$:


```
2 Monotony. If K \subseteq K', then I(K) \leq I(K').
```

- Consistency and Monotony are called (rationality) postulates
- Many other desirable properties for inconsistency measures have been investigated
- Consistency and Monotony are a minimal set for absolute measures (Monotony does not hold for relative measures)

Inconsistency Measures for Propositional Knowledge Bases

Background

00000000

Notation needed to define some concrete measures

- For a knowledge base K,
- MI(K) is the set of Minimal Inconsistent Subsets (MISs) of K
- If MI(K) = {M₁,..., M_n}, then Problematic(K) = M₁ ∪ ... ∪ M_n it the set of problematic formulas (involved in at least one inconsistency)
- Free(K) = K \ Problematic(K) is the set of *free* formulas (not involved in an essential way in any inconsistency)

Example

Introduction

For
$$K_{ex} = \{a_1, a_2, a_3, a_4, \neg a_1 \lor \neg a_2, \neg a_2 \lor \neg a_3, a_4 \land a_5\}$$
,
 $MI(K_{ex}) = \{\{a_1, a_2, \neg a_1 \lor \neg a_2\}, \{a_2, a_3, \neg a_2 \lor \neg a_3\}\}$, and
Problematic $(K_{ex}) = \{a_1, a_2, a_3, \neg a_1 \lor \neg a_2, \neg a_2 \lor \neg a_3\}$,
while a_4 and $a_4 \land a_5$ are free formulas

Examples of Instantiation

Conclusions and Future Work

Inconsistency Measures for Propositional Knowledge Bases

Background

000000000

The first 2 measures: I_B and I_M

Definition (Propositional Inconsistency Measures)

For a knowledge base K, the inconsistency measures I_B and I_M are such that:

- $I_B(K) = 1$ if K is inconsistent and $I_B(K) = 0$ if K is consistent.
- $I_M(K) = |\mathsf{MI}(K)|.$
- *I_B* is also called the *drastic measure* [Hunter and Konieczny, 2008]: it simply distinguishes between consistent and inconsistent KBs.
- *I_M* counts the number of minimal inconsistent subsets [Hunter and Konieczny, 2008].

Example

Introduction

For $K_{ex} = \{a_1, a_2, a_3, a_4, \neg a_1 \lor \neg a_2, \neg a_2 \lor \neg a_3, a_4 \land a_5\}$, we have that:

- $I_B(K_{ex}) = 1$ as it is inconsistent
- $I_M(K_{ex}) = 2$ as there are 2 minimal inconsistent subsets (MI($K_{ex}) = \{\{a_1, a_2, \neg a_1 \lor \neg a_2\}, \{a_2, a_3, \neg a_2 \lor \neg a_3\}\}$)

Examples of Instantiation

Conclusions and Future Work

Inconsistency Measures for Propositional Knowledge Bases

Background

The next 2 measures: $I_{\#}$ and I_P

Definition (Propositional Inconsistency Measures)

For a knowledge base K, the inconsistency measures $I_{\#}$ and I_P are such that:

•
$$I_{\#}(K) = \begin{cases} 0 & \text{if } K \text{ is consistent} \\ \sum_{X \in \mathsf{MI}(K)} \frac{1}{|X|} & \text{otherwise.} \end{cases}$$

•
$$I_P(K) = |Problematic(K)|$$
.

- *I*_# also counts the number of minimal inconsistent subsets, but it gives larger sets a smaller weight [Hunter and Konieczny, 2008]
- *I_P* counts the number of formulas that contribute essentially to one or more inconsistencies [Grant and Hunter, 2011].

Example

Introduction

For $K_{ex} = \{a_1, a_2, a_3, a_4, \neg a_1 \lor \neg a_2, \neg a_2 \lor \neg a_3, a_4 \land a_5\}$, we have that:

- $I_{\#}(K_{ex}) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ as both MISs consist of 3 formulas
- $I_P(K_{ex}) = 5$ as there are 5 problematic formulas

Introduction

000000000

Examples of Instantiation

Conclusions and Future Work

Inconsistency Measures for Propositional Knowledge Bases

Background

Other 2 measures: I_H and I_{nc}

Definition (Propositional Inconsistency Measures)

For a knowledge base K, the inconsistency measures I_H and I_{nc} are such that:

- $I_H(K) = \min\{|X| \mid X \subseteq K \text{ and } \forall M \in MI(K)(X \cap M \neq \emptyset)\}.$
- $I_{nc}(K) = |K| \max\{n \mid \forall K' \subseteq K : |K'| = n \text{ implies that } K' \text{ is consistent } \}.$
- I_H counts the minimal number of formulas whose deletion makes the set consistent [Grant and Hunter, 2013]
- Inc uses the largest number such that all sets with that many formulas are consistent [Doder et al., 2010].

Example

For $K_{ex} = \{a_1, a_2, a_3, a_4, \neg a_1 \lor \neg a_2, \neg a_2 \lor \neg a_3, a_4 \land a_5\}$, we have that:

- $I_H(K_{ex}) = 1$ as deleting a_2 suffices to make K_{ex} consistent;
- $I_{nc}(K_{ex}) = 7 2 = 5$ as 2 is the largest number such that all subsets of size 2 are consistent:

Inconsistency Measures for Propositional Knowledge Bases

Background

000000000

Introduction

A measure based on 3-valued logic: I_C (1/2)

- A classical interpretation *i* for *K* assigns each atom *a* that appears in a formula of *K* the truth value *T* or *F*, that is, *i* : Atoms(*K*) → {*T*, *F*}
- *I_C* uses Priest's 3-valued logic (3VL), 3 truth values: *T* (*True*), *F* (*False*), and *B* (*Both*), where *B* indicates inconsistency

Formula	Truth value								
ϕ	Т	T	T	В	B	B	F	F	F
ψ	Т	В	F	T	B	F	T	В	F
$\phi \lor \psi$	Т	T	T	T	B	B	T	В	F
$\phi \wedge \psi$	Т	В	F	B	B	F	F	F	F
$\neg \phi$	F	F	F	B	B	B	T	T	Τ

Truth values on columns 1, 3, 7, and 9, give the classical semantics, and the other columns give the extended semantics.

• An interpretation *i* satisfies a formula iff the truth-value of the formula for *i* is *T* or *B*.

Introduction Background

Background Proposed Aprroach

Examples of Instantiation

Conclusions and Future Work

Inconsistency Measures for Propositional Knowledge Bases

A measure based on 3-valued logic: I_C (2/2)

Definition (Propositional Inconsistency Measure I_C)

For a knowledge base K, the inconsistency measure I_C is such that:

- $I_C(K) = min\{|i^{-1}(B)|$ such that i satisfies every formula in $K\}$.
- *I_C* counts the minimal number of atoms that must be assigned the truth-value *B* in the three-valued logic by an interpretation that satisfies every formula in the KB [Grant and Hunter, 2011].

Example

For $K_{ex} = \{a_1, a_2, a_3, a_4, \neg a_1 \lor \neg a_2, \neg a_2 \lor \neg a_3, a_4 \land a_5\}$, we have that: $I_C(K_{ex}) = 1$ as the following interpretation satisfies all the formulas: $i(a_1) = i(a_3) = i(a_4) = i(a_5) = T$, $i(a_2) = B$.

Conclusions and Future Work

Inconsistency Measures for Propositional Knowledge Bases

Introduction

Many other measures

- Many other propositional inconsistency measures have been defined
- A survey on the topic of inconsistency measurement can be found in the book [Grant and Martinez, 2018]
- The second chapter of the book provides a comprehensive survey of the inconsistency measures defined for propositional knowledge bases
- Our approach could use any of the inconsistency measures that have been formulated for propositional knowledge bases
- We will mainly focus on measures involving in some way the minimal inconsistent subsets, as they are particularly relevant in view of the transformation
- As an example of measure not directly defined using minimal inconsistent subset, we consider *I_C* (using 3VL logic)

Outline

- Motivation
- Contribution

Background

Inconsistency Measures for Propositional Knowledge Bases

Proposed Aprroach

- General Information Spaces
- Transforming a General Information Space to a Propositional Knowledge Base

- A Relational Database as a General Information Space
- A Graph Database as a General Information Space
- A Blocks World Configuration as a General Information Space

Conclusions and Future Work

General Information Spaces

Background

Introduction

Concept of General Information Space

 Lift the idea of inconsistency measure from propositional KBs to more complex cases that are useful in AI and databases

Definition (General Information Space)

- A general information space $S = \langle F, U, C \rangle$ is a triple where
 - F is the framework for the information,
 - U is a set of information units, and
 - C is a set of requirements that U must satisfy,

- A1 (*Consistency of individual information units*). The set of information units, *U*, simply gives some information and each unit is itself consistent
- A2 (*Consistency of requirements*). There are no inconsistencies among requirements. All inconsistencies arise from the interaction of *U* and *C*
- A3 (*Procedure for finding violations of the requirements*). For every requirement, there has to be a procedure that finds all violations of that requirement

Conclusions and Future Work

General Information Spaces

Background

Introduction

Concept of General Information Space

 Lift the idea of inconsistency measure from propositional KBs to more complex cases that are useful in AI and databases

Definition (General Information Space)

- A general information space $S = \langle F, U, C \rangle$ is a triple where
 - F is the framework for the information,
 - U is a set of information units, and
 - C is a set of requirements that U must satisfy,

- A1 (*Consistency of individual information units*). The set of information units, *U*, simply gives some information and each unit is itself consistent
- A2 (*Consistency of requirements*). There are no inconsistencies among requirements. All inconsistencies arise from the interaction of *U* and *C*
- A3 (*Procedure for finding violations of the requirements*). For every requirement, there has to be a procedure that finds all violations of that requirement

Conclusions and Future Work

General Information Spaces

Background

Introduction

Concept of General Information Space

 Lift the idea of inconsistency measure from propositional KBs to more complex cases that are useful in AI and databases

Definition (General Information Space)

- A general information space $S = \langle F, U, C \rangle$ is a triple where
 - F is the framework for the information,
 - U is a set of information units, and
 - C is a set of requirements that U must satisfy,

- A1 (*Consistency of individual information units*). The set of information units, *U*, simply gives some information and each unit is itself consistent
- A2 (*Consistency of requirements*). There are no inconsistencies among requirements. All inconsistencies arise from the interaction of *U* and *C*
- A3 (*Procedure for finding violations of the requirements*). For every requirement, there has to be a procedure that finds all violations of that requirement

Conclusions and Future Work

General Information Spaces

Background

Introduction

Concept of General Information Space

 Lift the idea of inconsistency measure from propositional KBs to more complex cases that are useful in AI and databases

Definition (General Information Space)

- A general information space $S = \langle F, U, C \rangle$ is a triple where
 - F is the framework for the information,
 - U is a set of information units, and
 - C is a set of requirements that U must satisfy,

- A1 (*Consistency of individual information units*). The set of information units, *U*, simply gives some information and each unit is itself consistent
- A2 (*Consistency of requirements*). There are no inconsistencies among requirements. All inconsistencies arise from the interaction of *U* and *C*
- A3 (*Procedure for finding violations of the requirements*). For every requirement, there has to be a procedure that finds all violations of that requirement

Background

Introduction

A first example of General Information Space

- A relational database is an example of a general information space
- The framework is the database schema as well as the language used to describe the database
- The information units are the tuples
- The set of requirements is the set of integrity constraints
- Assumption A1, A2, and A3 hold in many real world scenarios
- A1 for databases: tuples are units of information that are usually assumed to be consistent when considered alone (without interacting with the integrity constraints)
- A2 for databases: integrity constraints are usually satisfiable (there exists a database instance that satisfies them)
- A3 for databases: procedures for checking inconsistency are well-known for large classes of integrity constraints

Background

Introduction

A first example of General Information Space

- A relational database is an example of a general information space
- The framework is the database schema as well as the language used to describe the database
- The information units are the tuples

000000

- The set of requirements is the set of integrity constraints
- Assumption A1, A2, and A3 hold in many real world scenarios
- A1 for databases: tuples are units of information that are usually assumed to be consistent when considered alone (without interacting with the integrity constraints)
- A2 for databases: integrity constraints are usually satisfiable (there exists a database instance that satisfies them)
- A3 for databases: procedures for checking inconsistency are well-known for large classes of integrity constraints

Background

Introduction

Arity of a requirement (1/2)

- In many cases a *positive* number, called the *arity*, can be associated with each requirement
- It indicates the minimal number of information units that together violate the requirement and thereby cause an inconsistency
- In some cases, where the constraint is inconsistent with respect to the set of information units, the arity is set to 0

Example

Consider a relational database with a binary relation R_1 .

 The arity of the constraint ¬R₁(1,2) (saying that tuple (1,2) cannot belong to R₁) is 1

```
• The arity of the functional dependency

\forall x_1 x_2 x_3 [R_1(x_1, x_2) \land R_1(x_1, x_3) \rightarrow x_2 = x_3] is 2

It would be violated, for instance, by the two tuples: (1,2) and (1,3) in R_1

causing an inconsistency.
```

Background

Introduction

Arity of a requirement (1/2)

- In many cases a *positive* number, called the *arity*, can be associated with each requirement
- It indicates the minimal number of information units that together violate the requirement and thereby cause an inconsistency
- In some cases, where the constraint is inconsistent with respect to the set of information units, the arity is set to 0

Example

Consider a relational database with a binary relation R_1 .

- The arity of the constraint ¬R₁(1,2) (saying that tuple (1,2) cannot belong to R₁) is 1
- The arity of the functional dependency $\forall x_1x_2x_3[R_1(x_1, x_2) \land R_1(x_1, x_3) \rightarrow x_2 = x_3]$ is 2 It would be violated, for instance, by the two tuples: (1,2) and (1,3) in R_1 causing an inconsistency.

Introduction 000000 Proposed Aprroach

Examples of Instantiation

Conclusions and Future Work

General Information Spaces

Background

Arity of a requirement (2/2)

Example

Consider a database a binary relation R_1 and a ternary relation R_2 .

Inclusion dependency: ∀x₁x₂[R₁(x₁, x₂) → ∃x₃x₄(R₂(x₂, x₃, x₄))].
 A violation is caused by a single tuple in R₁ whose second element is not in the first column of R₂. This means that the arity is 1

• $\exists x_1 x_2 R_2(1, x_1, x_2)$ states that *there must be* a tuple in R_2 relation whose first element is 1 This requirement is *purely existential*: no deletion from the database would negate the violation. Hence the arity of such a constraint is 0. Introduction 000000 Proposed Aprroach

Examples of Instantiation

Conclusions and Future Work

General Information Spaces

Background

Arity of a requirement (2/2)

Example

Consider a database a binary relation R_1 and a ternary relation R_2 .

Inclusion dependency: ∀x₁x₂[R₁(x₁, x₂) → ∃x₃x₄(R₂(x₂, x₃, x₄))].
 A violation is caused by a single tuple in R₁ whose second element is not in the first column of R₂. This means that the arity is 1

• $\exists x_1 x_2 R_2(1, x_1, x_2)$ states that *there must be* a tuple in R_2 relation whose first element is 1 This requirement is *purely existential*: no deletion from the database would negate the violation. Hence the arity of such a constraint is 0.

Conclusions and Future Work

General Information Spaces

Introduction

Inconsistency of a general information space

- A requirement violation causes an inconsistency for S
- An *inconsistency* of *S* consists of one of two cases:
- (1) The arity of the requirement *c* is a positive number *k*.
 In this case an inconsistency of *S* is a set of *k* information units, {*u*₁,..., *u_k*}, that violates *c*.
 We write such an inconsistency as {*u*₁,..., *u_k*, *c*}
- (2) The arity of the requirement *c* is 0.
 If *c* is violated by *S*, there is an inconsistency written as {*c*, ¬*c*}
 - Inc(S) is the set of inconsistencies of S

- Any general information space S = (F, U, C) can be transformed to a propositional KB K_S in such a way that all the violations of the requirements are inconsistencies in the KB
- The transformation loses some information: there is no way to go back from KB K_S to the original general information space S
- But the transformation is appropriate if we are interested in measuring inconsistency
- To measure the inconsistency of S = ⟨F, U, C⟩ according to an inconsistency measure I_x, apply I_x to the transformed space, i.e., I_x(S) = I_x(K_S)

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Transformation (1/2)

Definition (Transformation (1/2))

The transformation from a general information space $S = \langle F, U, C \rangle$ to a propositional KB K_S is as follows.

- Let $A_U = \{a_1, \dots, a_{|U|}\}$ be a set of |U| propositional atoms.
- Define a bijective function *f* : *U* → *A*_U that assigns a distinct propositional atom to each information unit in *U*.
- Let $B_C = \{b_1, \dots, b_{|C|}\}$ be another set of |C| propositional atoms.
- Define a bijective function h : C → B_C that assigns a distinct propositional atom to each requirement in C.
- Let *F_S* be the set of propositional formulas using *A_U* ∪ *B_C*.
 ...to be continued...

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Transformation (1/2)

Introduction

Definition (Transformation (1/2))

The transformation from a general information space $S = \langle F, U, C \rangle$ to a propositional KB K_S is as follows.

- Let $A_U = \{a_1, \dots, a_{|U|}\}$ be a set of |U| propositional atoms.
- Define a bijective function *f* : *U* → *A*_U that assigns a distinct propositional atom to each information unit in *U*.
- Let $B_C = \{b_1, \dots, b_{|C|}\}$ be another set of |C| propositional atoms.
- Define a bijective function *h* : *C* → *B_C* that assigns a distinct propositional atom to each requirement in *C*.
- Let *F_S* be the set of propositional formulas using *A_U* ∪ *B_C*.
 ...to be continued...

Background Proposed Aprroach Examples of Instantiation

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Introduction

Applying the (first part of the) transformation

Relation Asset								
Atom	SN	DateLoaned	Employee	DateReturned	Tuple			
a ₁	999	2015-02-01	123456789	2016-03-15	<i>t</i> ₁			
a_2	999	2015-02-01	123456789	2018-12-31	t ₂			
a ₃	999	2013-06-15	222222222	2017-12-31	t ₃			
a_4	888	2016-12-01	222222222	2013-12-01	t4			
a_5	555	2014-07-01	333333333	2013-06-20	t ₅			
a_6	666	2014-07-01	333333333	2015-09-10	t ₆			
a_7	777	2014-07-01	333333333	2014-05-21	t7			

• $A_U = \{a_1, \ldots, a_7\}$ is a set of atoms corresponding to the 7 tuples

- $f(t_i) = a_i$ for all $i, 1 \le i \le 7$, assigns a distinct propositional atom to each information unit
- $B_C = \{b_1, \ldots, b_3\}$ is a set of atoms corresponding to the 3 constraints
- $h(c_i) = b_i$ for all $i, 1 \le i \le 3$, assigns a distinct atom to each requirement
- \mathcal{F}_S is the set of propositional logic formulas using $A_U \cup B_C$
Proposed Aprroach Examples of I

Examples of Instantiation

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Transformation (2/2)

Background

Definition (Transformation (2/2))

...continued

Introduction

- Define a function $g: C \to \mathcal{F}_S$ as follows: For each requirement $c \in C$ do as follows.
 - 1) If there is no violation of the requirement, then set g(c) = h(c).
 - 2) If the arity of *c* is greater than 0, then a minimal inconsistency is formed by one or more information units together with *c*. Find all such sets, say M_c = {U₁,..., U_k} and suppose that |U_i| = n. Let U_i = {u_i¹,..., u_iⁿ} (where each u_i^j is an information unit). Define ρ(U_i) = ¬f(u_i¹) ∨ ... ∨ ¬f(u_iⁿ) which is a propositional logic formula. Then, define

$$g(c) = (\bigwedge_{U_i \in M_c} \rho(U_i)) \wedge h(c).$$

3) When the arity of *c* is 0, define g(c) = ¬h(c) ∧ h(c).
● Define K_S = {f(u) | u ∈ U} ∪ {g(c) | c ∈ C}.

Proposed Aprroach Examples of Instantiation

Examples of Instantiation

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Transformation (2/2)

Background

Definition (Transformation (2/2))

...continued

Introduction

- Define a function $g: C \to \mathcal{F}_S$ as follows: For each requirement $c \in C$ do as follows.
 - 1) If there is no violation of the requirement, then set g(c) = h(c).
 - 2) If the arity of *c* is greater than 0, then a minimal inconsistency is formed by one or more information units together with *c*. Find all such sets, say *M_c* = {*U*₁,..., *U_k*} and suppose that |*U_i*| = *n*. Let *U_i* = {*u_i¹*,..., *u_iⁿ*} (where each *u_iⁱ* is an information unit). Define ρ(*U_i*) = ¬*f*(*u_i¹*) ∨ ... ∨ ¬*f*(*u_iⁿ*) which is a propositional logic formula. Then, define

$$g(c) = (\bigwedge_{U_i \in M_c} \rho(U_i)) \wedge h(c).$$

3) When the arity of *c* is 0, define $g(c) = \neg h(c) \land h(c)$.

• Define $K_S = \{f(u) \mid u \in U\} \cup \{g(c) \mid c \in C\}.$

Proposed Aprroach Examples of Instantiation

Examples of Instantiation

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Transformation (2/2)

Background

Definition (Transformation (2/2))

...continued

Introduction

- Define a function $g: C \to \mathcal{F}_S$ as follows: For each requirement $c \in C$ do as follows.
 - 1) If there is no violation of the requirement, then set g(c) = h(c).
 - 2) If the arity of *c* is greater than 0, then a minimal inconsistency is formed by one or more information units together with *c*. Find all such sets, say *M_c* = {*U*₁,..., *U_k*} and suppose that |*U_i*| = *n*. Let *U_i* = {*u_i¹*,..., *u_iⁿ*} (where each *u_i^j* is an information unit). Define ρ(*U_i*) = ¬*f*(*u_i¹*) ∨ ... ∨ ¬*f*(*u_iⁿ*) which is a propositional logic formula. Then, define

$$g(c) = (\bigwedge_{U_i \in M_c} \rho(U_i)) \wedge h(c).$$

- 3) When the arity of *c* is 0, define $g(c) = \neg h(c) \land h(c)$.
- Define $K_{S} = \{f(u) \mid u \in U\} \cup \{g(c) \mid c \in C\}.$

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Example of the requirements mapping (1/3)

			Assel		
Atom	SN	DateLoaned	Employee	DateReturned	Tuple
a_1	999	2015-02-01	123456789	2016-03-15	t ₁
a_2	999	2015-02-01	123456789	2018-12-31	t ₂
a_3	999	2013-06-15	222222222	2017-12-31	t ₃
a_4	888	2016-12-01	222222222	2013-12-01	<i>t</i> 4
a_5	555	2014-07-01	333333333	2013-06-20	t ₅
a_6	666	2014-07-01	333333333	2015-09-10	t ₆
a_7	777	2014-07-01	333333333	2014-05-21	t7

A - - - 4

• $c_1 = \forall x_1 \dots x_4 [Asset(x_1, x_2, x_3, x_4) \rightarrow x_2 \le x_4],$ i.e. for every asset, the loan date must predate the return date

- The arity of c₁ is 1
- The 3 tuples t₄, t₅, and t₇ each violate c₁
- Hence, $g(c_1) = \neg a_4 \land \neg a_5 \land \neg a_7 \land b_1$.

Introduction Background Proposed Aprroach Examples of Instantiation

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Example of the requirements mapping (1/3)

			Assel		
Atom	SN	DateLoaned	Employee	DateReturned	Tuple
<i>a</i> 1	999	2015-02-01	123456789	2016-03-15	<i>t</i> 1
a_2	999	2015-02-01	123456789	2018-12-31	t ₂
a_3	999	2013-06-15	222222222	2017-12-31	t ₃
a_4	888	2016-12-01	222222222	2013-12-01	t_4
a_5	555	2014-07-01	333333333	2013-06-20	<i>t</i> 5
a_6	666	2014-07-01	333333333	2015-09-10	t ₆
a_7	777	2014-07-01	333333333	2014-05-21	t7

1000+

• $C_1 = \forall x_1 \dots x_4 [Asset(x_1, x_2, x_3, x_4) \rightarrow x_2 \leq x_4],$

i.e. for every asset, the loan date must predate the return date

- The arity of c_1 is 1
- The 3 tuples t_4 , t_5 , and t_7 each violate c_1 ۲

• Hence,
$$g(c_1) = \neg a_4 \land \neg a_5 \land \neg a_7 \land b_1$$
.

Background Proposed Aprroach

Examples of Instantiation

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Introduction

Example of the requirements mapping (2/3)

			/10001		
Atom	SN	DateLoaned	Employee	DateReturned	Tuple
a ₁	999	2015-02-01	123456789	2016-03-15	<i>t</i> ₁
a_2	999	2015-02-01	123456789	2018-12-31	t ₂
a_3	999	2013-06-15	222222222	2017-12-31	t ₃
a_4	888	2016-12-01	222222222	2013-12-01	t ₄
a_5	555	2014-07-01	333333333	2013-06-20	t ₅
a_6	666	2014-07-01	333333333	2015-09-10	t ₆
a_7	777	2014-07-01	333333333	2014-05-21	t ₇

- $c_2 = \forall x_1 \dots x_7 [Asset(x_1, x_2, x_3, x_4) \land Asset(x_1, x_5, x_6, x_7) \rightarrow (x_2 = x_5 \land x_3 = x_6 \land x_4 = x_7)]$, i.e. the serial number is a key for *Asset*
- The arity of *c*₂ is 2
- The 3 tuples *t*₁, *t*₂, and *t*₃ all have the same serial number but are not identical
- Hence, $g(c_2) = (\neg a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg a_3) \land (\neg a_2 \lor \neg a_3) \land b_2$

Background Proposed Aprroach

Examples of Instantiation

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Introduction

Example of the requirements mapping (2/3)

			/10001		
Atom	SN	DateLoaned	Employee	DateReturned	Tuple
a_1	999	2015-02-01	123456789	2016-03-15	<i>t</i> ₁
a_2	999	2015-02-01	123456789	2018-12-31	t ₂
a_3	999	2013-06-15	222222222	2017-12-31	t ₃
a_4	888	2016-12-01	222222222	2013-12-01	t4
a_5	555	2014-07-01	333333333	2013-06-20	t ₅
a_6	666	2014-07-01	333333333	2015-09-10	t ₆
a_7	777	2014-07-01	333333333	2014-05-21	t ₇

- $c_2 = \forall x_1 \dots x_7 [Asset(x_1, x_2, x_3, x_4) \land Asset(x_1, x_5, x_6, x_7) \rightarrow (x_2 = x_5 \land x_3 = x_6 \land x_4 = x_7)]$, i.e. the serial number is a key for *Asset*
- The arity of c_2 is 2
- The 3 tuples *t*₁, *t*₂, and *t*₃ all have the same serial number but are not identical

• Hence,
$$g(c_2) = (\neg a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg a_3) \land (\neg a_2 \lor \neg a_3) \land b_2$$

Examples of Instantiation

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Introduction

Example of the requirements mapping (3/3)

			/10001		
Atom	SN	DateLoaned	Employee	DateReturned	Tuple
<i>a</i> 1	999	2015-02-01	123456789	2016-03-15	<i>t</i> ₁
a_2	999	2015-02-01	123456789	2018-12-31	t ₂
a_3	999	2013-06-15	222222222	2017-12-31	t ₃
a_4	888	2016-12-01	222222222	2013-12-01	t_4
a_5	555	2014-07-01	333333333	2013-06-20	t_5
a_6	666	2014-07-01	333333333	2015-09-10	t ₆
a_7	777	2014-07-01	333333333	2014-05-21	t ₇

- c₃ = ∀x₁...x₈[Asset(x₁, x₂, x₃, x₄)∧ Asset(x₅, x₂, x₃, x₆)∧ Asset(x₇, x₂, x₃, x₈) → (x₁ = x₅ ∨ x₁ = x₇ ∨ x₅ = x₇)], i.e., the numerical dependency *DateLoaned*, *Employee* →²*SN*, meaning that for every date and employee there can be at most 2 assets loaned
 The arity of ∞ is 3
- t_5 , t_6 , and t_7 together violate this constraint
- Hence, $g(c_3) = (\neg a_5 \lor \neg a_6 \lor \neg a_7) \land b_3$

Background Proposed Aprroach Examples of I

Examples of Instantiation

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Introduction

Example of the requirements mapping (3/3)

		710001		
SN	DateLoaned	Employee	DateReturned	Tuple
999	2015-02-01	123456789	2016-03-15	t_1
999	2015-02-01	123456789	2018-12-31	t ₂
999	2013-06-15	222222222	2017-12-31	t ₃
888	2016-12-01	222222222	2013-12-01	t_4
555	2014-07-01	333333333	2013-06-20	<i>t</i> 5
666	2014-07-01	333333333	2015-09-10	t ₆
777	2014-07-01	333333333	2014-05-21	t ₇
	SN 999 999 888 555 666 777	SNDateLoaned9992015-02-019992013-06-159882016-12-015552014-07-016662014-07-017772014-07-01	SNDateLoanedEmployee9992015-02-011234567899992015-02-011234567899992013-06-15222222228882016-12-01222222225552014-07-013333333336662014-07-0133333333337772014-07-013333333333	SNDateLoanedEmployeeDateReturned9992015-02-011234567892016-03-159992015-02-011234567892018-12-319992013-06-15222222222017-12-318882016-12-012222222222013-12-015552014-07-013333333332013-06-206662014-07-013333333332015-09-107772014-07-013333333332014-05-21

- c₃ = ∀x₁... x₈[Asset(x₁, x₂, x₃, x₄) ∧ Asset(x₅, x₂, x₃, x₆) ∧ Asset(x₇, x₂, x₃, x₈) → (x₁ = x₅ ∨ x₁ = x₇ ∨ x₅ = x₇)], i.e., the numerical dependency *DateLoaned*, *Employee* →²*SN*, meaning that for every date and employee there can be at most 2 assets loaned
- The arity of c₃ is 3
- t₅, t₆, and t₇ together violate this constraint
- Hence, $g(c_3) = (\neg a_5 \lor \neg a_6 \lor \neg a_7) \land b_3$

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Resulting knowledge base

			Asset		
Atom	SN	DateLoaned	Employee	DateReturned	Tuple
a ₁	999	2015-02-01	123456789	2016-03-15	t ₁
a_2	999	2015-02-01	123456789	2018-12-31	t ₂
a ₃	999	2013-06-15	222222222	2017-12-31	t ₃
a_4	888	2016-12-01	222222222	2013-12-01	t_4
a_5	555	2014-07-01	333333333	2013-06-20	t ₅
<i>a</i> ₆	666	2014-07-01	333333333	2015-09-10	t ₆
a 7	777	2014-07-01	333333333	2014-05-21	t7

•
$$c_1 = \forall x_1 \dots x_4 [Asset(x_1, x_2, x_3, x_4) \to x_2 \le x_4]$$

• $c_2 = \forall x_1 \dots x_7 [Asset(x_1, x_2, x_3, x_4) \land Asset(x_1, x_5, x_6, x_7) \to (x_2 = x_5 \land x_3 = x_6 \land x_4 = x_7)]$
• $c_3 = \forall x_1 \dots x_8 [Asset(x_1, x_2, x_3, x_4) \land Asset(x_5, x_2, x_3, x_6) \land Asset(x_7, x_2, x_3, x_6) \to (x_1 = x_5 \lor x_1 = x_7 \lor x_5 = x_7)]$

$$\begin{array}{l} \mathcal{K}_S = \{a_1, \ldots, a_{13}, \\ \neg a_4 \wedge \neg a_5 \wedge \neg a_7 \wedge b_1, \\ (\neg a_1 \vee \neg a_2) \wedge (\neg a_1 \vee \neg a_3) \wedge (\neg a_2 \vee \neg a_3) \wedge b_2, \\ (\neg a_5 \vee \neg a_6 \vee \neg a_7) \wedge b_3 \} \end{array}$$

Conclusions and Future Work

Transforming a General Information Space to a Propositional Knowledge Base

Inconsistency equivalence

- We transform any general information space to an *inconsistency* equivalent propositional knowledge base
- Equivalence between the violation of the requirements *C* for *S* and the minimal inconsistent subsets of *K*_S:

Theorem

A general information space *S* and its transformation to a propositional knowledge base K_S are equivalent for inconsistencies in the sense that there is a bijection $m : \text{Inc}(S) \to \text{MI}(K_S)$. Furthermore, for $M \in \text{Inc}(S), |M| = |m(M)|$. Introduction

Background

Examples of Instantiation Conclusions and Future Work

Outline

- Motivation
- Contribution
- - Inconsistency Measures for Propositional Knowledge Bases
- - General Information Spaces
 - Transforming a General Information Space to a Propositional
- Examples of Instantiation
 - A Relational Database as a General Information Space
 - A Graph Database as a General Information Space
 - A Blocks World Configuration as a General Information Space

Conclusions and Future Work

A Relational Database as a General Information Space

Background

Introduction

Database as General Information Space

- For a relational database instance *D* over the database scheme *DS* with a set *C* of integrity constraints,
- The components of $S = \langle F, U, C \rangle$ are as follows:
- The framework *F* is the database scheme *DS* and the (function-free) first-order language using a set of uninterpreted constants and predicate symbols for relation names, as well as domains of the attributes for the evaluation of constants
- The set *U* of information units is the instance *D* (the set of the tuples in the relation instances), and
- the set C of requirements is the set C of integrity constraints

ground Proposed Aprroach

Examples of Instantiation

Conclusions and Future Work

A Relational Database as a General Information Space

Introduction

A more complex database example

			Asset		_
Atom	SN	DateLoaned	Employee	DateReturned	Tuple
<i>a</i> 1	999	2015-02-01	123456789	2016-03-15	t ₁
a_2	999	2015-02-01	123456789	2018-12-31	t ₂
a_3	999	2013-06-15	222222222	2017-12-31	t ₃
a_4	888	2016-12-01	222222222	2013-12-01	t ₄
a_5	555	2014-07-01	333333333	2013-06-20	t5
a_6	666	2014-07-01	333333333	2015-09-10	t ₆
a 7	777	2014-07-01	333333333	2014-05-21] t ₇

Employee				Family				_	
Atom	ID	Name	HiringDate	Tuple	Atom	ID	Child	Project	Tuple
a_8	333333333	Robert	1980-01-01	t ₈	a ₁₁	123456789	Steve	Q1	t ₁₁
a_9	44444444	William	1975-06-01	t9	a ₁₂	123456789	Mary	Q2	t ₁₂
a_{10}	123456789	William	1975-06-01	t ₁₀	a ₁₃	123456789	Steve	Q2	t ₁₃

Examples of Instantiation

Conclusions and Future Work

A Relational Database as a General Information Space

Additional requirements

- c₁ = ∀x₁ ... x₄[Asset(x₁, x₂, x₃, x₄) → x₂ ≤ x₄],
 i.e. for every asset, the loan date must predate the return date
- *c*₂ = ∀*x*₁... *x*₇[*Asset*(*x*₁, *x*₂, *x*₃, *x*₄)∧*Asset*(*x*₁, *x*₅, *x*₆, *x*₇) → (*x*₂ = *x*₅ ∧ *x*₃ = *x*₆ ∧ *x*₄ = *x*₇)], i.e. the serial number is a key for *Asset*
- $c_3 = \forall x_1 \dots x_8 [Asset(x_1, x_2, x_3, x_4) \land Asset(x_5, x_2, x_3, x_6) \land Asset(x_7, x_2, x_3, x_8) \rightarrow (x_1 = x_5 \lor x_1 = x_7 \lor x_5 = x_7)],$
 - i.e., the numerical dependency *DateLoaned*, *Employee* $\rightarrow^2 SN$ whose meaning is that for every date and employee there can be at most 2 assets loaned
- $c_4 = \forall x_1 \dots x_5 [$ *Employee* $(x_1, x_2, x_3) \land$ *Employee* $(x_1, x_4, x_5) \rightarrow (x_2 = x_4 \land x_3 = x_5)]$, i.e., *ID* is a key for *Employee*
- $c_5 = \forall x_1 \dots x_4$ [*Employee*(x_1, x_2, x_3) \land *Employee*(x_4, x_2, x_3) $\rightarrow x_1 = x_4$], i.e., the pair of attributes *Name* and *HiringDate* also form a key for *Employee*
- $c_6 = \forall x_1 \dots x_6[Asset(x_1, x_2, x_3, x_4) \rightarrow \exists x_5, x_6 Employee(x_3, x_5, x_6)]$ i.e., the inclusion dependency $Asset[Employee] \subseteq Employee[ID]$
- $c_7 = \forall x_1 \dots x_5[$ Family $(x_1, x_2, x_3) \land$ Family $(x_1, x_4, x_5) \rightarrow$ Family $(x_1, x_2, x_5)]$, i.e. the multivalued dependency Family: $ID \rightarrow \rightarrow$ Child.
- $c_8 = \exists x_1 \dots x_6 [Family(x_1, x_2, x_3) \land Family(x_4, x_5, x_6) \land x_1 \neq x_4)]$ i.e., there must be at least two distinct employees referenced in the *Family* relation

Examples of Instantiation

Conclusions and Future Work

A Relational Database as a General Information Space

Additional requirements

- c₁ = ∀x₁ ... x₄[Asset(x₁, x₂, x₃, x₄) → x₂ ≤ x₄],
 i.e. for every asset, the loan date must predate the return date
- *c*₂ = ∀*x*₁... *x*₇[*Asset*(*x*₁, *x*₂, *x*₃, *x*₄)∧*Asset*(*x*₁, *x*₅, *x*₆, *x*₇) → (*x*₂ = *x*₅ ∧ *x*₃ = *x*₆ ∧ *x*₄ = *x*₇)], i.e. the serial number is a key for *Asset*
- $c_3 = \forall x_1 \dots x_8 [Asset(x_1, x_2, x_3, x_4) \land Asset(x_5, x_2, x_3, x_6) \land Asset(x_7, x_2, x_3, x_8) \rightarrow (x_1 = x_5 \lor x_1 = x_7 \lor x_5 = x_7)],$

i.e., the numerical dependency *DateLoaned*, *Employee* $\rightarrow^2 SN$ whose meaning is that for every date and employee there can be at most 2 assets loaned

- c₄ = ∀x₁...x₅[*Employee*(x₁, x₂, x₃)∧ *Employee*(x₁, x₄, x₅) → (x₂ = x₄ ∧ x₃ = x₅)], i.e., *ID* is a key for *Employee*
- c₅ = ∀x₁...x₄[*Employee*(x₁, x₂, x₃)∧ *Employee*(x₄, x₂, x₃) → x₁ = x₄], i.e., the pair of attributes *Name* and *HiringDate* also form a key for *Employee*
- $c_6 = \forall x_1 \dots x_6[Asset(x_1, x_2, x_3, x_4) \rightarrow \exists x_5, x_6 Employee(x_3, x_5, x_6)]$ i.e., the inclusion dependency $Asset[Employee] \subseteq Employee[ID]$
- c₇ = ∀x₁... x₅[Family(x₁, x₂, x₃)∧ Family(x₁, x₄, x₅) → Family(x₁, x₂, x₅)], i.e. the multivalued dependency Family: ID →→ Child.
- $c_8 = \exists x_1 \dots x_6 [Family(x_1, x_2, x_3) \land Family(x_4, x_5, x_6) \land x_1 \neq x_4)]$ i.e., there must be at least two distinct employees referenced in the *Family* relation

Background Proposed Aprroach I

Examples of Instantiation

Conclusions and Future Work

A Relational Database as a General Information Space

Introduction

Applying the transformation

- $A_U = \{a_1, \ldots, a_{13}\}$ is a set of propositional atoms corresponding to the 13 tuples
- *f*(*t_i*) = *a_i* for all *i*, 1 ≤ *i* ≤ 13; it assigns a distinct propositional atom to each information unit
- $B_C = \{b_1, \dots, b_8\}$ is a set of propositional atoms corresponding to the 8 constraints
- *h*(*c_i*) = *b_i* for all *i*, 1 ≤ *i* ≤ 8; it assigns a distinct propositional atom to each requirement
- \mathcal{F}_S is the set of propositional logic formulas using $A_U \cup B_C$

We have already seen the mapping for the first 3 constraints. Now we show the mapping for the other constraints Proposed Aprroach Ex

Examples of Instantiation

Conclusions and Future Work

A Relational Database as a General Information Space

Background

Introduction

Mapping a satisfied requirement

Employee							
Atom	ID	Name	HiringDate	Tuple			
a_8	333333333	Robert	1980-01-01	t ₈			
a_9	44444444	William	1975-06-01	t ₉			
<i>a</i> ₁₀	123456789	William	1975-06-01	<i>t</i> ₁₀			

- $c_4 = \forall x_1 \dots x_5 [$ *Employee* $(x_1, x_2, x_3) \land$ *Employee* $(x_1, x_4, x_5) \rightarrow (x_2 = x_4 \land x_3 = x_5)]$, stating that *ID* is a key for *Employee*
- This constraint is satisfied
- Hence, $g(c_4) = b_4$

Conclusions and Future Work

A Relational Database as a General Information Space

Background

Introduction

Mapping a requirement encoding a key constraint

		Employee	•	
Atom	ID	Name	HiringDate	Tuple
a_8	333333333	Robert	1980-01-01	t ₈
a_9	44444444	William	1975-06-01	t ₉
a_{10}	123456789	William	1975-06-01	<i>t</i> ₁₀

- $c_5 = \forall x_1 \dots x_4$ [*Employee*(x_1, x_2, x_3) \land *Employee*(x_4, x_2, x_3) $\rightarrow x_1 = x_4$], that is, the pair of attributes *Name* and *HiringDate* also form a key for *Employee*
- The arity of *c*₅ is 2
- It is violated by the pair t_9 and t_{10}
- Hence, $g(c_5) = (\neg a_9 \lor \neg a_{10}) \land b_5$

Introduction

Background Proposed Aprroach

Examples of Instantiation

Conclusions and Future Work

A Relational Database as a General Information Space

1

Mapping an inclusion dependency

				Asset				
Atom	SN	DateLoane	d	Empl	loyee	DateF	Returned	Tuple
a ₁	999	2015-02-0*	1	12345	56789	2016	6-03-15	t ₁
a_2	999	2015-02-0	1	12345	56789	2018	8-12-31	t ₂
a_3	999	2013-06-15	5	22222	22222	2017	7-12-31	t ₃
a_4	888	2016-12-0	1	22222	22222	2013	3-12-01	t4
a_5	555	2014-07-0	1	33333	33333	2013	3-06-20	t5
a_6	666	2014-07-0	1	33333	33333	2015	5-09-10	t ₆
a 7	777	2014-07-0	1	33333	33333	2014	4-05-21	t7
			En	nployee				
A	Atom	ID	1	Vame	Hirin	gDate	Tuple	
	<i>a</i> 8	333333333	F	Robert	1980-	-01-01	t ₈	
	a_9	44444444	٧	Villiam	1975-	-06-01	t9	
	a ₁₀	123456789	٧	Villiam	1975-	-06-01	t ₁₀	

- c₆ = ∀x₁... x₆[Asset(x₁, x₂, x₃, x₄) → ∃ x₅, x₆ Employee (x₃, x₅, x₆)] i.e., the inclusion dependency Asset[Employee] ⊆ Employee[ID].
- The arity of c₆ is 1. It is violated separately by t₃ and t₄
- Hence, $g(c_6) = \neg a_3 \land \neg a_4 \land b_6$

Proposed Aprroach Examp

Examples of Instantiation

Conclusions and Future Work

A Relational Database as a General Information Space

Background

Introduction

Mapping a multivalued dependency

Family							
Atom	ID	Child	Project	Tuple			
a ₁₁	123456789	Steve	Q1	t ₁₁			
a ₁₂	123456789	Mary	Q2	t ₁₂			
a ₁₃	123456789	Steve	Q2	t ₁₃			

- $c_7 = \forall x_1 \dots x_5 [Family(x_1, x_2, x_3) \land Family(x_1, x_4, x_5) \rightarrow Family(x_1, x_2, x_5)],$ i.e. the multivalued dependency [Fagin, 1977] Family: $ID \rightarrow \rightarrow Child$.
- The arity of *c*₇ is 2
- It is violated by the pair t₁₁ and t₁₂
- Hence, $g(c_7) = (\neg a_{11} \lor \neg a_{12}) \land b_7$

Proposed Aprroach Exa

Examples of Instantiation

Conclusions and Future Work

A Relational Database as a General Information Space

Background

Introduction

Mapping a purely existential constraint

Family							
Atom	ID	Child	Project	Tuple			
a ₁₁	123456789	Steve	Q1	t ₁₁			
a ₁₂	123456789	Mary	Q2	t ₁₂			
a 13	123456789	Steve	Q2	t ₁₃			

- $c_8 = \exists x_1 \dots x_6$ [*Family*(x_1, x_2, x_3) \land *Family*(x_4, x_5, x_6) $\land x_1 \neq x_4$)] stating that there must be at least two employees referenced in the *Family* relation
- The arity of c₈ is 0 and it is violated by the set of information units
- Hence, $g(c_8) = \neg b_8 \wedge b_8$

Proposed Aprroach

Examples of Instantiation

Conclusions and Future Work

A Relational Database as a General Information Space

Background

Introduction

Resulting knowledge base for the database consisting of 13 tuples and with 8 constraints

$$\begin{split} & \mathcal{K}_S = \{a_1, \ldots, a_{13}, \\ & \neg a_4 \wedge \neg a_5 \wedge \neg a_7 \wedge b_1, \\ & (\neg a_1 \vee \neg a_2) \wedge (\neg a_1 \vee \neg a_3) \wedge (\neg a_2 \vee \neg a_3) \wedge b_2, \\ & (\neg a_5 \vee \neg a_6 \vee \neg a_7) \wedge b_3, \\ & (\neg a_5 \vee \neg a_6 \vee \neg a_7) \wedge b_3, \\ & (\neg a_9 \vee \neg a_{10}) \wedge b_5, \\ & (\neg a_9 \vee \neg a_{10}) \wedge b_5, \\ & (\neg a_1 \vee \neg a_{12}) \wedge b_7, \\ & (\neg a_{11} \vee \neg a_{12}) \wedge b_7, \\ & (\neg b_8 \wedge b_8\}. \\ \end{split}$$

Examples of Instantiation

Conclusions and Future Work

A Relational Database as a General Information Space

Background

Introduction

The Calculation of the Inconsistency Measures (1/2)

 Minimal inconsistent subsets for the knowledge base K_S resulting from the transformation

•
$$\mathsf{MI}(\mathcal{K}_S) = \{ \{a_4, \neg a_4 \land \neg a_5 \land \neg a_7 \land b_1 \}, \\ \{a_5, \neg a_4 \land \neg a_5 \land \neg a_7 \land b_1 \}, \\ \{a_7, \neg a_4 \land \neg a_5 \land \neg a_7 \land b_1 \}, \\ \{a_1, a_2, (\neg a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg a_3) \land (\neg a_2 \lor \neg a_3) \land b_2 \}, \\ \{a_1, a_3, (\neg a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg a_3) \land (\neg a_2 \lor \neg a_3) \land b_2 \}, \\ \{a_2, a_3, (\neg a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg a_3) \land (\neg a_2 \lor \neg a_3) \land b_2 \}, \\ \{a_5, a_6, a_7, (\neg a_5 \lor \neg a_6 \lor \neg a_7) \land b_3 \}, \\ \{a_9, a_{10}, (\neg a_9 \lor \neg a_{10}) \land b_5 \}, \\ \{a_3, \neg a_3 \land \neg a_4 \land b_6 \}, \\ \{a_{11}, a_{12}, (\neg a_{11} \lor \neg a_{12}) \land b_7 \}, \\ \{\neg b_8 \land b_8 \} \}$$

A Relational Database as a General Information Space

Background

Introduction

The Calculation of the Inconsistency Measures (2/2)

Examples of Instantiation

- $I_B(S) = 1$ as K_S is inconsistent.
- $I_{\mathcal{M}}(S) = 12$ as there are 12 minimal inconsistent subsets for K_S .
- $I_{\#}(S) = 1 + 5 \times \frac{1}{2} + 5 \times \frac{1}{2} + \frac{1}{4} = \frac{65}{12}$ as there is one minimal inconsistent subset of size 1, 5 of size 2, 5 of size 3, and 1 of size 4 in K_S .
- $I_P(S) = 11 + 7 = 18$ as 11 atoms (i.e., tuples) plus 7 propositional formulas (i.e., constraints) are problematic in $K_{\rm S}$.
- $I_H(S) = 7$ as the deletion of the 7 formulas of $g(c_i)$ for all i, 1 < i < 3 and $5 \le i \le 8$ makes K_S consistent and there is no set of smaller cardinality that accomplishes the same.
- $I_{nc}(S) = 21$ as the set $\{\neg b_8 \land b_8\}$ has size 1 and is inconsistent.
- $I_C(S) = 8$ as there must be at least 8 atoms, for example a_2 , a_3 , a_4 , a_5 , a_7 , a_9 , a_{11} , and b_8 , that must be given the value B for a 3-valued interpretation in order to satisfy all the formulas.

Examples of Instantiation

Conclusions and Future Work

A Graph Database as a General Information Space

Graph Database as a General Information Space

- Components of $S = \langle F, U, C \rangle$:
- The framework *F* consists of basic information about the vertices and the edges of the graph, that is, the sets of *vertex names*, *edge labels*, and *vertex properties*
- Each vertex property has an associated domain. For instance, the domain of *type* includes person (circles) and media (rectangles)

Conclusions and Future Work

Examples of Instantiation

A Graph Database as a General Information Space

Data units

The data units are the vertices and the edges

- u₁: (Photo 1, 12MP)
- u₃: (Photo 3, 8MP)
- u_5 : (Mark)
- *u*₇ : (James, 26)
- u₉: (Daniel, knows, Mark)
- u_{11} : (Mark, likes, Photo 1)
- u₁₃ : (Mark, knows, Paul)
- u₁₅ : (Paul, knows, Mark)
- u₁₇ : (Paul, posted, Photo 3)
- u₁₉: (James, likes, Paul)
- u₂₁ : (Photo 1, taken before, Photo 2)

- u₂: (Photo 2, 16MP)
- u_4 : (Daniel, 35)
- u₆ : (Paul)
- u₈ : (Daniel, posted, Photo 1)
- u₁₀ : (Daniel, knows, Paul)
- u₁₂ : (Mark, posted, Photo 2)
- u₁₄ : (Mark, likes, James)
- u₁₆ : (Paul, likes, Photo 2)
- u₁₈ : (Paul, knows, James)
- u₂₀ : (James, posted, Photo 3)
- u₂₂ : (Photo 2, taken before, Photo 1)

Examples of Instantiation

Conclusions and Future Work

A Graph Database as a General Information Space

Requirements

- c₁: Every person (circular vertex) must have an associated age value
- c₂: Every media (rectangular vertex) must have an associated resolution
- c₃: There may not be a cycle on rectangular vertices
- *c*₄: There cannot be 2 edges with the label "posted" going to the same rectangular vertex
- c₅: For every edge between circular vertices that has the label "likes" there must be another edge with the label "knows"

A Graph Database as a General Information Space

Transformation to a Propositional Knowledge Base

- *A*_U = {*a*₁,..., *a*₂₂} corresponding to the 7 vertices and 15 edges
 f(*u*_i) = *a*_i for all *i*, 1 ≤ *i* ≤ 22
- $B_C = \{b_1, \ldots, b_5\}$ corresponding to the 5 constraints
- $h(c_i) = b_i$ for all $i, 1 \le i \le 5$
- \mathcal{F}_S is the set of propositional formulas using $A_U \cup B_C$

Examples of Instantiation

Conclusions and Future Work

A Graph Database as a General Information Space

Mapping the constraints

• *c*₁: Every person (circular vertex) must have an associated age value The arity of *c*₁ is 1.

The two nodes u_5 (Mark) and u_6 (Paul) each violate c_1 .

Hence, $g(c_1) = \neg a_5 \land \neg a_6 \land b_1$.

• c_2 : Every media (rectangular vertex) must have an associated resolution c_2 is satisfied. Hence, $g(c_2) = b_2$.

Examples of Instantiation

Conclusions and Future Work

A Graph Database as a General Information Space

Mapping the constraints

• *c*₁: Every person (circular vertex) must have an associated age value The arity of *c*₁ is 1.

The two nodes u_5 (Mark) and u_6 (Paul) each violate c_1 .

Hence, $g(c_1) = \neg a_5 \land \neg a_6 \land b_1$.

• c_2 : Every media (rectangular vertex) must have an associated resolution c_2 is satisfied. Hence, $g(c_2) = b_2$.

Examples of Instantiation

Conclusions and Future Work

A Graph Database as a General Information Space

Mapping a circular path constraint

- c₃: There may not be a cycle on rectangular vertices
- This constraint does not have a fixed arity because a cycle does not have a fixed number of elements
- However, if it is violated its arity is greater than zero
- It is violated by the pair of edges u_{21} (Photo 1, taken before, Photo 2) and u_{22} (Photo 2, taken before, Photo 1)

• Hence,
$$g(c_3) = (\neg a_{21} \lor \neg a_{22}) \land b_3.$$

Examples of Instantiation

Conclusions and Future Work

A Graph Database as a General Information Space

Mapping a path denial constraints

- *c*₄: There cannot be 2 edges with the label "posted" going to the same rectangular vertex
- The arity of c₄ is 2
- It is violated by the pair of edges u₁₇ (Paul, posted, Photo 3) and u₂₀ (James, posted, Photo 3)

• Hence,
$$g(c_4) = (\neg a_{17} \lor \neg a_{20}) \land b_4$$

Examples of Instantiation

Conclusions and Future Work

A Graph Database as a General Information Space

Mapping an existential path constraints

- c₅: For every edge between circular vertices that has the label "likes" there must be another edge with the label "knows"
- The arity of *c*₅ is 1
- The two edges *u*₁₄ (Mark, likes, James) and *u*₁₉ (James, likes, Paul) each violate *c*₅

• Hence,
$$g(c_5) = \neg a_{14} \land \neg a_{19} \land b_5$$

Examples of Instantiation

Conclusions and Future Work

A Graph Database as a General Information Space

Resulting knowledge base

$$\begin{split} &\mathcal{K}_S = \{a_1, \ldots, a_{22}, \\ \neg a_5 \wedge \neg a_6 \wedge b_1, \\ // \text{ existential property constraint} \\ &b_2, \\ (\neg a_{21} \vee \neg a_{22}) \wedge b_3, \\ (\neg a_{17} \vee \neg a_{20}) \wedge b_4, \\ \neg a_{14} \wedge \neg a_{19} \wedge b_5\}. \\ \end{split}$$

$$\mathsf{MI}(\mathcal{K}_{\mathcal{S}}) = \{\{a_{5}, \neg a_{5} \land \neg a_{6} \land b_{1}\}, \\ \{a_{6}, \neg a_{5} \land \neg a_{6} \land b_{1}\}, \\ \{a_{21}, a_{22}, (\neg a_{21} \lor \neg a_{22}) \land b_{3}\}, \\ \{a_{17}, a_{20}, (\neg a_{17} \lor \neg a_{20}) \land b_{4}\}, \\ \{a_{14}, \neg a_{14} \land \neg a_{19} \land b_{5}\}, \\ \{a_{19}, \neg a_{14} \land \neg a_{19} \land b_{5}\}.$$

A Graph Database as a General Information Space

Background

Introduction

The Calculation of the Inconsistency Measures

- $I_B(S) = 1$ as K_S is inconsistent.
- $I_M(S) = 6$ as there are 6 minimal inconsistent subsets for K_S .
- *I*_#(*S*) = 4 × ¹/₂ + 2 × ¹/₃ = ⁸/₃ as there are 4 minimal inconsistent subsets of size 2 and 2 minimal inconsistent subsets of size 3 for *K*_S.
- $I_P(S) = 8 + 4 = 12$ as 8 atoms (i.e., vertices and edges) plus 4 propositional formulas (i.e., the transformations of the constraints) are problematic in K_S .
- $I_H(S) = 4$ as the deletion of the 4 formulas: $g(c_1)$, $g(c_3)$, $g(c_4)$, and $g(c_5)$ makes K_S consistent and there is no smaller cardinality set that accomplishes the same.
- $I_{nc}(S) = 27 1 = 26$ as there is a minimal inconsistent subset of size 2.
- $I_C(S) = 6$ as a 3-valued interpretation must give at least a_5 , a_6 , a_{14} , a_{19} , one of a_{21} and a_{22} , and one of a_{17} and a_{20} the value *B* to satisfy all the formulas.
Components of a Blocks World Configuration

- The framework indicates that there is a finite number of colored blocks of the same size in stacks on a table, which is large enough to hold all (i.e., the number of stacks can be equal to number of blocks)
- Data units are the stack and the colors of the block in them
- st_{i,j}: color means that the block in stack i in the jth position has that color

st ₁₁ : green	st ₁₂ : blue	st ₁₃ : blue	
<i>st</i> ₂₁ : <i>red</i>	st ₂₂ : yellow	<i>st</i> ₂₃ : <i>blue</i>	<i>st</i> ₂₄ : <i>red</i>
st ₃₁ : yellow	<i>st</i> ₃₂ : <i>red</i>	<i>st</i> ₃₃ : <i>blue</i>	
st., · red			

Introduction Background Proposed Aprroach Examples of Instantiation Conclusions and Future Work

A Blocks World Configuration as a General Information Space

Requirements for our Blocks World

- *c*₁: No blue block can be on top of another blue block.
- *c*₂: There cannot be a yellow block that has a red block below it and a red block above it.
- c_3 : There cannot be a red block on the table (i.e. at the bottom of a stack).
- c_4 : No stack has both a green block and a blue block.
- *c*₅: At least one of the blocks is purple.
- c₆: There must be a blue block in at least 3 stacks.

Transformation (1/4)

- $A_U = \{a_1, \ldots, a_{11}\}$ corresponding to the 11 blocks
- $f(st_{11}) = a_1, f(st_{12}) = a_2, f(st_{13}) = a_3, f(st_{21}) = a_4, f(st_{22}) = a_5, f(st_{23}) = a_6, f(st_{24}) = a_7, f(st_{31}) = a_8, f(st_{32}) = a_9, f(st_{33}) = a_{10}, f(st_{41}) = a_{11},$
- $B_C = \{b_1, \ldots, b_6\}$ corresponding to the 6 constraints.
- $h(c_i) = b_i$ for all $i, 1 \le i \le 6$.
- \mathcal{F}_S is the set of propositional formulas using $A_U \cup B_C$.

Examples of Instantiation

Conclusions and Future Work

A Blocks World Configuration as a General Information Space

Transformation (2/4)

• c_1 : No blue block can be on top of another blue block The arity of c_1 is 2.

The two blocks st_{12} and st_{13} together violate c_1 .

Hence, $g(c_1) = (\neg a_2 \lor \neg a_3) \land b_1$

• *c*₂: There cannot be a yellow block that has a red block below it and a red block above it

The arity of c_2 is 3.

The 3 blocks that together violate this constraint are st_{21} , st_{22} , and st_{24} .

Hence, $g(c_2) = (\neg a_4 \lor \neg a_5 \lor \neg a_7) \land b_2$

Examples of Instantiation

Conclusions and Future Work

A Blocks World Configuration as a General Information Space

Transformation (2/4)

• c_1 : No blue block can be on top of another blue block The arity of c_1 is 2.

The two blocks st_{12} and st_{13} together violate c_1 .

Hence, $g(c_1) = (\neg a_2 \lor \neg a_3) \land b_1$

• *c*₂: There cannot be a yellow block that has a red block below it and a red block above it

The arity of c_2 is 3.

The 3 blocks that together violate this constraint are st_{21} , st_{22} , and st_{24} .

Hence, $g(c_2) = (\neg a_4 \lor \neg a_5 \lor \neg a_7) \land b_2$

Introduction Background Proposed Aprroach Examp

Examples of Instantiation

Conclusions and Future Work

A Blocks World Configuration as a General Information Space

Transformation (3/4)

*c*₃: There cannot be a red block on the table (i.e. at the bottom of a stack).
 The arity of *c*₃ is 1.

The blocks st_{21} and st_{41} both violate this constraint.

Hence, $g(c_3) = \neg a_4 \land \neg a_{11} \land b_3$

• c_4 : No stack has both a green block and a blue block.

The blocks st_{11} and st_{12} as well as the blocks st_{11} and st_{13} violate this constraint

Hence, $g(c_4) = (\neg a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg a_3) \land b_4$

zamples of Instantiation

Conclusions and Future Work

A Blocks World Configuration as a General Information Space

Transformation (3/4)

*c*₃: There cannot be a red block on the table (i.e. at the bottom of a stack).
 The arity of *c*₃ is 1.

The blocks st_{21} and st_{41} both violate this constraint.

Hence, $g(c_3) = \neg a_4 \land \neg a_{11} \land b_3$

• c_4 : No stack has both a green block and a blue block. The arity of c_4 is 2

The blocks st_{11} and st_{12} as well as the blocks st_{11} and st_{13} violate this constraint

Hence,
$$g(c_4) = (\neg a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg a_3) \land b_4$$

- c_5 : At least one of the blocks is purple The arity of c_5 is 0. There is no purple block in any stack. Hence, $g(c_5) = \neg b_5 \land b_5$
- c_6 : There must be a blue block in at least 3 stacks This constraint is satisfied. Hence, $g(c_6) = b_6$

*c*₅: At least one of the blocks is purple The arity of *c*₅ is 0.
 There is no purple block in any stack.

Hence, $g(c_5) = \neg b_5 \land b_5$

• c_6 : There must be a blue block in at least 3 stacks This constraint is satisfied. Hence, $g(c_6) = b_6$ ntroduction Background Proposed Aprroach

Examples of Instantiation

Conclusions and Future Work

A Blocks World Configuration as a General Information Space

Resulting knowledge base

$$\begin{split} \mathcal{K}_{S} &= \{a_{1}, \dots, a_{11}, \\ & (\neg a_{2} \lor \neg a_{3}) \land b_{1}, \\ & (\neg a_{4} \lor \neg a_{5} \lor \neg a_{7}) \land b_{2}, \\ & \neg a_{4} \land \neg a_{11} \land b_{3}, \\ & (\neg a_{1} \lor \neg a_{2}) \land (\neg a_{1} \lor \neg a_{3}) \land b_{4}, \\ & \neg b_{5} \land b_{5}, \\ & b_{6}\}. \end{split}$$

$$\mathsf{MI}(\mathcal{K}_S) = \{ \{a_2, a_3, (\neg a_2 \lor \neg a_3) \land b_1 \}, \\ \{a_4, a_5, a_7, (\neg a_4 \lor \neg a_5 \lor \neg a_7) \land b_2 \}, \\ \{a_4, \neg a_4 \land \neg a_{11} \land b_3 \}, \\ \{a_{11}, \neg a_4 \land \neg a_{11} \land b_3 \}, \\ \{a_1, a_2, (\neg a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg a_3) \land b_4 \}, \\ \{a_1, a_3, (\neg a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg a_3) \land b_4 \}, \\ \{\neg b_5 \land b_5 \} \}$$

Examples of Instantiation Con

Conclusions and Future Work

A Blocks World Configuration as a General Information Space

Background

Introduction

The Calculation of the Inconsistency Measures

- $I_B(S) = 1$ as K_S is inconsistent.
- $I_M(S) = 7$ as there are 7 minimal inconsistent subsets for K_S .
- $I_{\#}(S) = 1 + 2 \times \frac{1}{2} + 3 \times \frac{1}{3} + 1 \times \frac{1}{4} = \frac{13}{4}$ as there is 1 minimal inconsistent subset of size 1, 2 minimal inconsistent subsets of size 2, 3 minimal inconsistent subsets of size 3, and 1 minimal inconsistent subset of size 4 for K_S .
- $I_P(S) = 7 + 5 = 12$ as 7 atoms (i.e., colored block locations) plus 5 propositional formulas (i.e., the transformations of the requirements) are problematic in K_S .
- $I_H(S) = 5$ as the deletion of the 5 formulas: $g(c_1)$, $g(c_2)$, $g(c_3)$, $g(c_4)$, and $g(c_5)$ makes K_S consistent and there is no smaller cardinality set that accomplishes the same.
- $I_{nc}(S) = 17$ as there is a minimal inconsistent subset of size 1.
- $I_C(S) = 5$ as a 3-valued interpretation that satisfies all the formulas must give a_4 , a_{11} , b_5 , and at least 2 other atoms, for example, a_1 and a_2 the value B.

Outline

Introduction

- Motivation
- Contribution

Background

2 Backgrour

Inconsistency Measures for Propositional Knowledge Bases

Proposed Aprroach

- General Information Spaces
- Transforming a General Information Space to a Propositional Knowledge Base

Examples of Instantiation

- A Relational Database as a General Information Space
- A Graph Database as a General Information Space
- A Blocks World Configuration as a General Information Space

Conclusions and Future Work

Conclusions and future work

Introduction

- Inconsistency in real-world information systems can not be easily avoided
- We proposed a general approach for measuring inconsistency which encompasses various ways in which information is stored
- Since the transformation creates a propositional KB, all propositional (absolute) inconsistency measures ever proposed are applicable
- We do not deal with more general information spaces, such as those having additional concepts such as probabilities or fuzzyness
- FW1 It would be interesting to look into broadening the concept of general information space
- FW2 Consider relative inconsistency measures (where the ratio of inconsistency may decrease with the addition of consistent information)
- FW3 Investigate the complexity of the transformation (it depends on what we consider as the size of the information space)
- FW4 Restricting the information space (e.g. F=relational databases, C=denial constraints only) to get specific measures, postulate analysis and complexity results (some results @ ECAI 2020)

Conclusions and future work

Introduction

- Inconsistency in real-world information systems can not be easily avoided
- We proposed a general approach for measuring inconsistency which encompasses various ways in which information is stored
- Since the transformation creates a propositional KB, all propositional (absolute) inconsistency measures ever proposed are applicable
- We do not deal with more general information spaces, such as those having additional concepts such as probabilities or fuzzyness
- FW1 It would be interesting to look into broadening the concept of general information space
- FW2 Consider relative inconsistency measures (where the ratio of inconsistency may decrease with the addition of consistent information)
- FW3 Investigate the complexity of the transformation (it depends on what we consider as the size of the information space)
- FW4 Restricting the information space (e.g. F=relational databases, C=denial constraints only) to get specific measures, postulate analysis and complexity results (some results @ ECAI 2020)

Conclusions and future work

Introduction

- Inconsistency in real-world information systems can not be easily avoided
- We proposed a general approach for measuring inconsistency which encompasses various ways in which information is stored
- Since the transformation creates a propositional KB, all propositional (absolute) inconsistency measures ever proposed are applicable
- We do not deal with more general information spaces, such as those having additional concepts such as probabilities or fuzzyness
- FW1 It would be interesting to look into broadening the concept of general information space
- FW2 Consider relative inconsistency measures (where the ratio of inconsistency may decrease with the addition of consistent information)
- FW3 Investigate the complexity of the transformation (it depends on what we consider as the size of the information space)
- FW4 Restricting the information space (e.g. F=relational databases, C=denial constraints only) to get specific measures, postulate analysis and complexity results (some results @ ECAI 2020)

ECAI 2020 paper: On Measuring Inconsistency in Relational Databases with Denial Constraints

Introduction

 Measuring the inconsistency by blaming database tuples only (integrity constraints are assumed to be irrefutable statements)

Measure(s)	$LV_{\mathcal{I}}(D, v)$	$UV_{\mathcal{I}}(D, v)$	$\mathbf{EV}_{\mathcal{I}}(D, v)$	$IM_{\mathcal{I}}(D)$
$\mathcal{I}_{B}, \mathcal{I}_{M}, \mathcal{I}_{\#}, \mathcal{I}_{P}$	P	P	Р	FP
IA	CP	CP	CP	#P-complete*
$\mathcal{I}_{H}, \mathcal{I}_{C}$	coNP-complete	NP-complete	D ^p -complete	FPNP[log n]-complete
\mathcal{I}_{η}	coNP-complete	NP-complete	D ^p	FP ^{NP}

Table: Data Complexity of Lower Value (LV), Upper Value (UV), Exact Value (EV), and Inconsistency Measurement (IM) problems.

ECAI 2020 paper: On Measuring Inconsistency in Relational Databases with Denial Constraints

Introduction

Background

 Measuring the inconsistency by blaming database tuples only (integrity constraints are assumed to be irrefutable statements)

Table: Postulates satisfaction for database inconsistency measures.

	Database Inconsistency Measures							
	\mathcal{I}_{B}	IM	$\mathcal{I}_{\#}$	IP	\mathcal{I}_{A}	\mathcal{I}_{H}	$\mathcal{I}_{\mathcal{C}}$	\mathcal{I}_η
Free-Tuple Independence	1	1	1	1	1	1	Ø	1
Penalty	X	1	1	1	X	X	X	X
Super-Additivity	X	1	1	1	Ø	1	Ø	X
MI-Separability	X	1	1	X	X	X	×	X
MI-Normalization	1	1	X	X	X	1	Ø	X
Equal Conflict	1	1	1	1	1	1	\bigotimes	1

- satisfied for database measures (and satisfied for the corresponding propositional measure in the knowledge base setting).
- Ø: satisfied for database measures but not for the corresponding propositional measure in the knowledge base setting.
 - X: not satisfied for database measures (and not satisfied for propositional measures).

Thank you!

... any question?

References

Doder, D., Raskovic, M., Markovic, Z., and Ognjanovic, Z. (2010). Measures of inconsistency and defaults.

Int. J. Approx. Reasoning, 51(7):832–845.

Fagin, R. (1977).

Multivalued dependencies and a new normal form for relational databases.

ACM Trans. Database Syst., 2(3):262–278.

Grant, J. and Hunter, A. (2011).

Measuring consistency gain and information loss in stepwise inconsistency resolution.

In Proc. of European Conf. Symbolic and Quant. Approaches to Reasoning with Uncertainty (ECSQARU), pages 362–373.

Grant, J. and Hunter, A. (2013). Distance-based measures of inconsistency. In *Proc. of ECSQARU*, pages 230–241.

Grant, J. and Martinez, M. V. (2018). *Measuring Inconsistency in Information*. College Publications.

References

Hunter, A. and Konieczny, S. (2008). Measuring inconsistency through minimal inconsistent sets. In *Proc. of International Conference on Principles of Knowledge Representation and Reasoning (KR)*, pages 358–366.

MarketsandMarkets (2019).

Data quality tools market by data type.

https://www.marketsandmarkets.com/Market-Reports/
data-quality-tools-market-22437870.html.