
Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Computing Extensions of
Dynamic Abstract Argumentation Frameworks

with Second-Order Attacks

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi

{g.alfano, greco, fparisi}@dimes.unical.it
Department of Informatics, Modeling, Electronics and System Engineering

University of Calabria
Italy

22nd International Database Engineering & Applications Symposium
June 18-20, 2018

Villa San Giovanni, Italy

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Motivation

Argumentation in AI

A general way for representing arguments and relationships between
them
It allows representing dialogues, making decisions, and handling
inconsistency and uncertainty
Extended Abstract Argumentation Framework (EAF)

Example (a simple EAF)

a = The week-end will be dry in Rome since
AccuWeather forecasts sunshine

b = The week-end will be wet in Rome since
The Weather Channel forecasts rain

c = The Weather Channel is more trustworthy
than AccuWeather

a

c

b

Semantics for Extended Argumentation Frameworks: “reasonable” sets of
arguments, called extensions. We focus on preferred and stable semantics.

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Motivation

Argumentation in AI

A general way for representing arguments and relationships between
them
It allows representing dialogues, making decisions, and handling
inconsistency and uncertainty
Extended Abstract Argumentation Framework (EAF)

Example (a simple EAF)

a = The week-end will be dry in Rome since
AccuWeather forecasts sunshine

b = The week-end will be wet in Rome since
The Weather Channel forecasts rain

c = The Weather Channel is more trustworthy
than AccuWeather

a

c

b

Semantics for Extended Argumentation Frameworks: “reasonable” sets of
arguments, called extensions. We focus on preferred and stable semantics.

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Motivation

Dynamic Argumentation Frameworks

Many argumentation frameworks are highly dynamic in practice.

Example (a simple EAF)

a = The week-end will be dry in Rome since
AccuWeather forecasts sunshine

b = The week-end will be wet in Rome since
The Weather Channel forecasts rain

c = The Weather Channel is more trustworthy
than AccuWeather

a

c

b

−(c→→ (a→ b))

Should we recompute the semantics from scratch?

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Motivation

Contributions

1) We identify early-termination conditions.

2) Following the meta-argumentation approach proposed
in [BoellaGTV10], we define a reduction of the problem of
determining an extension of an updated EAF to that of
determining an extension of a corresponding updated Dung’s
argumentation framework.

3) We define an incremental algorithm for computing extensions
of dynamic EAFs by leveraging on the incremental technique
proposed in [Alfano,Greco,Parisi IJCAI 2017].

4) Experimental analysis showing that our incremental
approach for EAFs outperforms by two orders of magnitude
the computation from scratch, where the fastest solvers from
the last edition of the ICCMA are used.

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Outline

1 Introduction
Motivation

2 Preliminaries
Basic Concepts
Updates

3 Incremental Technique
Overview of the approach
Irrelevant Updates
Incremental Algorithm

4 Experiments

5 Conclusions and Future Work
References

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Basic Concepts

Extended Abstract Argumentation Frameworks

An Extended Argumentation Framework (EAF for short) is a triple
〈A,Σ,∆〉, where

A ⊆ Arg is a (finite) set whose elements are referred to as arguments,

Σ ⊆ A× A is a binary relation over A whose elements are called attacks,

∆ is a binary relation over A× Σ whose elements are called second-order
attacks, and

A Dung’s argumentation framework (AF) [Dung 1995] is an EAF of the
form 〈A,Σ, ∅〉.

Example (EAF)
A = {a, b, c, d , e}
Σ = {(a, b), (b, c), (c, d), (d , c),

(d , e), (e, e)}
∆ = {(a, (d , c))}

ba d ec

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Basic Concepts

Semantics for Extended Abstract Argumentation(1/2)

A semantics identifies “reasonable” sets of arguments, called extensions.
The semantics of EAFs can be given in terms of meta-argumentation
frameworks (i.e., Dung’s AFs) where additional (meta-)arguments and attacks
are considered to model second-order attacks.

Definition (Meta-AF)

The meta-AF for EA = 〈A,Σ,∆〉 isM = 〈Am,Σm〉 where:
Am = A ∪ {Xa,b,Ya,b | (a,b) ∈ Σ} ∪ {Xa,(b,c),Ya,(b,c) |(a, (b, c)) ∈ ∆}
Σm ={(a,Xa,b), (Xa,b,Ya,b), (Ya,b,b) |(a,b) ∈ Σ}∪
{(a,Xa,(b,c)), (Xa,(b,c),Ya,(b,c)), (Ya,(b,c), Yb,c) | (a, (b, c)) ∈ ∆}

Example (Meta-AF of our running example)

c Xc,d Yc,d d

Yd,c Xd,c

Xe,ee

Ye,e

b Xb,c Yb,ca Xa,b Ya,b

Xa,(d,c) Ya,(d,c)

Xd,e Yd,e

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Basic Concepts

Semantics for Extended Abstract Argumentation(1/2)

A semantics identifies “reasonable” sets of arguments, called extensions.
The semantics of EAFs can be given in terms of meta-argumentation
frameworks (i.e., Dung’s AFs) where additional (meta-)arguments and attacks
are considered to model second-order attacks.

Definition (Meta-AF)

The meta-AF for EA = 〈A,Σ,∆〉 isM = 〈Am,Σm〉 where:
Am = A ∪ {Xa,b,Ya,b | (a,b) ∈ Σ} ∪ {Xa,(b,c),Ya,(b,c) |(a, (b, c)) ∈ ∆}
Σm ={(a,Xa,b), (Xa,b,Ya,b), (Ya,b,b) |(a,b) ∈ Σ}∪
{(a,Xa,(b,c)), (Xa,(b,c),Ya,(b,c)), (Ya,(b,c), Yb,c) | (a, (b, c)) ∈ ∆}

Example (Meta-AF of our running example)

c Xc,d Yc,d d

Yd,c Xd,c

Xe,ee

Ye,e

b Xb,c Yb,ca Xa,b Ya,b

Xa,(d,c) Ya,(d,c)

Xd,e Yd,e

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Basic Concepts

Semantics for Extended Abstract Argumentation(2/2)

A semantics identifies “reasonable” sets of arguments, called extensions.
The semantics of EAFs can be given in terms of meta-argumentation
frameworks (i.e., Dung’s AFs) where additional (meta-)arguments and attacks
are considered to model second-order attacks.

Example

preferred extensions: {{a, c}} stable extension: {{a, c}}

ba d ec

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Basic Concepts

Semantics for Extended Abstract Argumentation(2/2)

A semantics identifies “reasonable” sets of arguments, called extensions.
The semantics of EAFs can be given in terms of meta-argumentation
frameworks (i.e., Dung’s AFs) where additional (meta-)arguments and attacks
are considered to model second-order attacks.

Example

preferred extensions: {{a, c}} stable extension: {{a, c}}

ba d ec

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Basic Concepts

Extensions and labellings

Semantics can be also defined in terms of labelling.
Function L : A→ {IN, OUT, UN} assigns a label to each argument

L(a) = IN means a is accepted
L(a) = OUT means a is rejected
L(a) = UN means that a is undecided

Example (Preferred extension and labelling)

Preferred
extension:
{a, c}

bba c d e

Preferred
labelling:
{a, c} are IN (green nodes)
{b,d} are OUT (red nodes)
{e} are UN (orange nodes)

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Updates

Updates

An update u for an EAF EA0 allows us to change EA0 into an EAF EA by
adding or removing an argument, an attack, or a second-order attack.
If E0 is an extension for EA0 and EA is obtained by adding (resp.
removing) the set S of isolated arguments, then E = E0 ∪ S (resp.
E = E0 \ S)
We focus on the addition (+) and deletion (−) of an attack (a→ b) or a
second-order attack (a � (b → c)).
u(EA0) denotes the application of update
u = ±(a→ b) or ± (a � (b → c)) to EA0.

Example (Extensions/labellings after adding the isolated argument g)

preferred extension:
{a, c} ∪ {f}

bba c d e

f
stable extension:
{a, c} ∪ {f}

bba c d e

f

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Updates

Updates

An update u for an EAF EA0 allows us to change EA0 into an EAF EA by
adding or removing an argument, an attack, or a second-order attack.
If E0 is an extension for EA0 and EA is obtained by adding (resp.
removing) the set S of isolated arguments, then E = E0 ∪ S (resp.
E = E0 \ S)
We focus on the addition (+) and deletion (−) of an attack (a→ b) or a
second-order attack (a � (b → c)).
u(EA0) denotes the application of update
u = ±(a→ b) or ± (a � (b → c)) to EA0.

Example (Extensions/labellings after removing −(a � (d → c)))

preferred extension:
{{a, c}, {a, d}}

bba c d e

−(a, (d, c))

stable extension:
{a, d}

bba c d e

−(a, (d, c))

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Outline

1 Introduction
Motivation

2 Preliminaries
Basic Concepts
Updates

3 Incremental Technique
Overview of the approach
Irrelevant Updates
Incremental Algorithm

4 Experiments

5 Conclusions and Future Work
References

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Overview of the approach

Overview of the approach

	

	 	

𝒞ℳ#	 𝐸#%	

	
	
	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
							
	
	
	
	
	
	
	
	
	

Merger	
R-AF	Builder	

ArgSemSat	

SOLVERS	

Meta	
Solver	 OUTPUT	

R-AF	𝐴' 		
𝐸' 	

𝐸#	

𝐸%	

𝑈	

goDIAMOND	

INPUT	
ℰ𝒜#	

𝑈%	

bba c d e a dc

u = +(a !! (d ! c))

𝐸	

bba c d e

Yd,c Xd,c

bba c d e

bba c d e

Yd,c Xd,c

a

+um
Yd,c

bba c d e

bba c d e

Yd,c Xd,c

a c d e

Yd,c Xd,c

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Irrelevant Updates

Extension preservation for addition/deletion of an
attack

Cases for which E0 is still an extension of the updated EAF after a
positive update.

update L0(b)

+(a → b) IN UN OUT

L0(a)
IN pr, st
UN pr

OUT pr,st pr,st

update L0(b)

+(a � (b → c)) IN UN OUT

L0(a)
IN pr, st
UN pr

OUT pr,st pr,st

Example (For u = +(a � (d → c)) the initial preferred extension E0 = {a, c}
is preserved (L0(a) = IN and L0(d) = OUT))

bba c d e

Preferred extension: {a, c}

bba c d e

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Incremental Algorithm

The Compact Meta-Argumentation Framework

Our definition of meta-AF builds on that proposed in [BoellaGTV10] and
considers additional meta-arguments that will allow us to simulate addition
updates to be performed on EAF EA0 by means of updates performed on the
corresponding meta-AF CM(EA0,u). In particular, the meta-AF contains
meta-arguments Xc,d ,Yc,d for encoding second-order attacks in ∆ toward
attacks (c,d) ∈ Σ.

Example (Compact Meta-AF CM0 for the BAF EA0 w.r.t. the update
u = +(a � (d → c)).)

bba c d e

+(a, (d, c))

bba c d e

+um
Yd,c Xd,c

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Incremental Algorithm

Updates for the Compact Meta-AF

Let EA = 〈A,Σ,∆〉 be an EAF, and u an update for EA. Update um for the
meta-AF CM(EA,u) = 〈Am,Σm〉 is as follows:

um =


+(c → d) if u = +(c → d)

−(c → d)) if u = −(c → d))

+(e→ Yg,h) if u = +(e � (g → h))

−(e→ Yg,h) if u = −(e � (g → h))

Example (for u = +(a � (d → c)) is um = +(a,Yd,c))

bba c d e

+um
Yd,c Xd,c

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Incremental Algorithm

Incremental Algorithm

Algorithm Boost-EAF(EA0,u,E0,S,SolverS)
Input: EAF EA0 = 〈A0,Σ0 ∆0〉,

update u of the form u = ±(a→ b) or u = ±(c � (d → e)),
an initial S-extension E0 for EA0,
semantics S ∈ {pr,st},
function SolverS (A) returning an S-extension for AF A if it exists, ⊥ otherwise;

Output: An S-extension E for u(EA0) if it exists, ⊥ otherwise;
1: if checkProp(EA0, u,E0,S) then
2: return E0; // Extension preserved
3: LetM0 =CM(EA0, u) be the compact meta-AF for EA0 w.r.t. u; // Build the compact meta-AF

4: Let um be the update forM0 corresponding to u;
5: Let Em

0 be the initial S-extension forM0 corresponding to E0;
6: Let Em = Incr-Alg(M0, um,S,Em

0 , SolverS); // Compute an S-extension for the meta-AF by
calling Incr-Alg;

7: if (Em 6= ⊥) then
8: return E = (Em ∩ A0); // The final extension will exclude meta arguments
9: else

10: return ⊥; // A stable extension not always exists

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Outline

1 Introduction
Motivation

2 Preliminaries
Basic Concepts
Updates

3 Incremental Technique
Overview of the approach
Irrelevant Updates
Incremental Algorithm

4 Experiments

5 Conclusions and Future Work
References

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Experimental validation

Methodology

Datasets: Generated EAFs by starting from AFs used as benchmarks at
ICCMA’17 for the tracks SE-pr and SE-st. Specifically, we used :

- B1 consisting in AFs with : |A| ∈ [2,50K] and |Σ| ∈ [1,1.6M].
- B2 consisting in AFs with : |A| ∈ [35,200K] and |Σ| ∈ [73,4M].

Generated set of EAFs EA0 = 〈A,Σ,∆〉 from AF used as ICCMA’17
benchmarks, given a percentage s ∈ {0%,10%,20%} of second-order attacks
as follows. We selected s × |Σ| attacks in Σ in a random way, and for each
attack (x , y) selected, we added in ∆ a second-order attack from a randomly
selected argument in A to (x , y).

Methodology
The average run time of our Algorithm Boost-EAF to compute an S-extension
was compared with the average run time of ArgSemSAT if S = pr
(goDIAMOND if S = st) to compute an S-extension for um(CM(EA0,u)) from
scratch.

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Experimental validation

Methodology

Datasets: Generated EAFs by starting from AFs used as benchmarks at
ICCMA’17 for the tracks SE-pr and SE-st. Specifically, we used :

- B1 consisting in AFs with : |A| ∈ [2,50K] and |Σ| ∈ [1,1.6M].
- B2 consisting in AFs with : |A| ∈ [35,200K] and |Σ| ∈ [73,4M].

Generated set of EAFs EA0 = 〈A,Σ,∆〉 from AF used as ICCMA’17
benchmarks, given a percentage s ∈ {0%,10%,20%} of second-order attacks
as follows. We selected s × |Σ| attacks in Σ in a random way, and for each
attack (x , y) selected, we added in ∆ a second-order attack from a randomly
selected argument in A to (x , y).

Methodology
The average run time of our Algorithm Boost-EAF to compute an S-extension
was compared with the average run time of ArgSemSAT if S = pr
(goDIAMOND if S = st) to compute an S-extension for um(CM(EA0,u)) from
scratch.

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Experimental validation

B1 Dataset

10−2

100

102

104

101 102 103 104 105

N. of Attacks

R
un

ni
ng

 ti
m

e(
m

s)

ArgSemSAT
Boost−EAF

10−2

100

102

104

101 102 103 104 105

N. of Attacks
R

un
ni

ng
 ti

m
e(

m
s)

ArgSemSAT
Boost−EAF

10−2

100

102

104

101 102 103 104 105

N. of Attacks

R
un

ni
ng

 ti
m

e(
m

s)

ArgSemSAT
Boost−EAF

(a) S = pr, s = 0%. (b) S = pr, s = 10%. (c) S = pr, s = 20%.

10−2

100

102

104

101 102 103 104 105

N. of Attacks

R
un

ni
ng

 ti
m

e(
m

s)

Boost−EAF
goDIAMOND

10−2

100

102

104

101 102 103 104 105

N. of Attacks

R
un

ni
ng

 ti
m

e(
m

s)

Boost−EAF
goDIAMOND

10−2

100

102

104

101 102 103 104 105

N. of Attacks

R
un

ni
ng

 ti
m

e(
m

s)

Boost−EAF
goDIAMOND

(d) S = st, s = 0%. (e) S = st, s = 10%. (f) S = st, s = 20%.

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Experimental validation

B2 Dataset

10−2

100

102

104

106

102 103 104 105 106

N. of Attacks

R
un

ni
ng

 ti
m

e(
m

s)

ArgSemSAT
Boost−EAF

10−2

100

102

104

106

102 103 104 105 106

N. of Attacks
R

un
ni

ng
 ti

m
e(

m
s)

ArgSemSAT
Boost−EAF

10−2

100

102

104

106

102 103 104 105 106

N. of Attacks

R
un

ni
ng

 ti
m

e(
m

s)

ArgSemSAT
Boost−EAF

(a) S = pr, s = 0%. (b) S = pr, s = 10%. (c) S = pr, s = 20%.

10−2

100

102

104

106

102 103 104 105 106

N. of Attacks

R
un

ni
ng

 ti
m

e(
m

s)

Boost−EAF
goDIAMOND

10−2

100

102

104

106

102 103 104 105 106

N. of Attacks

R
un

ni
ng

 ti
m

e(
m

s)

Boost−EAF
goDIAMOND

10−2

100

102

104

106

102 103 104 105 106

N. of Attacks

R
un

ni
ng

 ti
m

e(
m

s)

Boost−EAF
goDIAMOND

(d) S = st, s = 0%. (e) S = st, s = 10%. (f) S = st, s = 20%.

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Experimental validation

Results

The incremental algorithm outperforms the competitors that compute
extensions from scratch by two orders of magnitude.
The time saved by the incremental computation is higher for the dataset
B2(s), where solvers takes much more time due to the complexer
structures of the AFs in B2.
Improvements obtained for the stable semantics are larger than preferred
one due to different external solvers used.
Improvements slightly decrease when increasing the percentage s of
second-order attacks.
However the incremental technique remains much faster than the
computation from scratch in all cases.

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Outline

1 Introduction
Motivation

2 Preliminaries
Basic Concepts
Updates

3 Incremental Technique
Overview of the approach
Irrelevant Updates
Incremental Algorithm

4 Experiments

5 Conclusions and Future Work
References

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Conclusions and Future Work

Conclusions and Future Work

We introduced a technique for the incremental computation of extensions
of dynamic EAFs.
We introduced a translation where updates and initial extensions of EAFs
are taken into account.
We exploited the incremental algorithm recently proposed
in [Alfano,Greco,Parisi IJCAI 2017] and computed extensions of the
meta-AFs, from which the updated extensions of EAFs are obtained.
Experiments showed that our incremental technique is on average 100
times faster than the computation from scratch.

FW) We plan to investigate on extending our technique to deal with sets of
updates performed simultaneously.

FW) Also, we plan to extend our technique to deal with other approaches that
make use of meta-argumentation to deal with second-order attacks.

FW) Finally, we envisage the use of approaches based on incremental
computation also in the context of structured argumentation.

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Conclusions and Future Work

Conclusions and Future Work

We introduced a technique for the incremental computation of extensions
of dynamic EAFs.
We introduced a translation where updates and initial extensions of EAFs
are taken into account.
We exploited the incremental algorithm recently proposed
in [Alfano,Greco,Parisi IJCAI 2017] and computed extensions of the
meta-AFs, from which the updated extensions of EAFs are obtained.
Experiments showed that our incremental technique is on average 100
times faster than the computation from scratch.

FW) We plan to investigate on extending our technique to deal with sets of
updates performed simultaneously.

FW) Also, we plan to extend our technique to deal with other approaches that
make use of meta-argumentation to deal with second-order attacks.

FW) Finally, we envisage the use of approaches based on incremental
computation also in the context of structured argumentation.

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

Thank you!

... any����question argument?

Introduction Preliminaries Incremental Technique Experiments Conclusions and Future Work

References

Selected References

Phan Minh Dung.

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77(2):321–358, 1995.

Baroni, P., Giacomin, M., Liao, B.

On topology-related properties of abstract argumentation semantics. A correction and extension to dynamics of argumentation systems: A
division-based method.
Artificial Intelligence, 212:104–115, 2014.

Wolfgang Dvorák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran.

Complexity-sensitive decision procedures for abstract argumentation.
Artificial Intelligence, 206:53–78, 2014.

Guido Boella and Dov M. Gabbay and Leendert W. N. van der Torre and Serena Villata.

Support in Abstract Argumentation.
In COMMA, 2010, 111–122.

Gianvincenzo Alfano and Sergio Greco and Francesco Parisi.

Efficient Computation of Extensions for Dynamic Abstract Argumentation Frameworks: An Incremental Approach.
In IJCAI, pages 49–55, 2017.

Matthias Thimm and Serena Villata.

The first international competition on computational models of argumentation: Results and analysis
Artificial Intelligence, 252:267–294, 2017.

	Introduction
	Motivation

	Preliminaries
	Basic Concepts
	Updates

	Incremental Technique
	Overview of the approach
	Irrelevant Updates
	Incremental Algorithm

	Experiments
	Conclusions and Future Work
	References

