On the Complexity of Probabilistic Abstract Argumentation

Bettina Fazzinga, Sergio Flesca, Francesco Parisi

> DIMES Department
> University of Calabria Italy

IJCAI 2013
August 3-9, 2013
Beijing, China

Argumentation in Al

- A general way for representing arguments and relationships (rebuttals) between them
- It allows representing dialogues, making decisions, and handling inconsistency and uncertainty

Abstract Argumentation Framework (AAF) [Dung 1995]: arguments are abstract entities (no attention is paid to their internal structure) that may attack and/or be attacked by other arguments

```
Example (a simple AAF)
a= Our friends will have great fun at our party on Saturday
b= Saturday will rain (according to the weather forecasting
service 1)
C =
Saturday will be sunny (according to the weather
forecasting service 2)
```


Argumentation in Al

- A general way for representing arguments and relationships (rebuttals) between them
- It allows representing dialogues, making decisions, and handling inconsistency and uncertainty

Abstract Argumentation Framework (AAF) [Dung 1995]: arguments are abstract entities (no attention is paid to their internal structure) that may attack and/or be attacked by other arguments

Example (a simple AAF)

$a=$ Our friends will have great fun at our party on Saturday
$b=$ Saturday will rain (according to the weather forecasting service 1)
$\mathrm{c}=$ Saturday will be sunny (according to the weather forecasting service 2)

Probabilistic Abstract Argumentation Framework

- Arguments and attacks can be uncertain

Example (modelling uncertainty in our simple AAF)

there is some uncertainty

- about the fact that our friends will have fun at the party
- about the truthfulness of the weather forecasting services
- about the fact that the bad weather forecast actually entails that the party will be disliked by our friends

In a Probabilistic Argumentation Framework (PrAF) [Li et Al. 2011] both arguments and defeats are associated with probabilities

Semantics for Abstract Argumentations

- In the deterministic setting, several semantics (such as admissible, stable, complete, grounded, preferred, and ideal) have been proposed to identify "reasonable" sets of arguments

Example (AAF)

For instance, $\{a, c\}$ is admissible

> - These semantics do make sense in the probabilistic setting too: what is the probability that a set S of arguments is reasonable? (according to given semantics)

Example (PrAF)

the probability that $\{a, c\}$ is admissible is 0.18

Semantics for Abstract Argumentations

- In the deterministic setting, several semantics (such as admissible, stable, complete, grounded, preferred, and ideal) have been proposed to identify "reasonable" sets of arguments

Example (AAF)

For instance, $\{a, c\}$ is admissible

- These semantics do make sense in the probabilistic setting too: what is the probability that a set S of arguments is reasonable? (according to given semantics)

Example (PrAF)

the probability that $\{a, c\}$ is admissible is 0.18

Complexity of Probabilistic Abstract Argumentation

$\mathrm{PrOB}^{\text {sem }}(S)$ is the problem of computing the probability $\mathrm{Pr}^{\text {sem }}(S)$ that a set S of arguments is reasonable according to semantics sem

- $P_{\text {rob }}{ }^{\text {sem }}(S)$ is the probabilistic counterpart of the problem $\operatorname{VER}{ }^{\text {sem }}(S)$ of verifying whether a set S is reasonable according to semantics

sem	VER $^{\text {sem }}(S)$	PrOB $^{\text {sem }}(S)$
admissible	PTIME	$?$
stable	PTIME	$?$
complete	PTIME	$?$
grounded	PTIME	$?$
preferred	coNP-complete	$?$
ideal	coNP-complete	$?$

Complexity of Probabilistic Abstract Argumentation

$\mathrm{Prob}^{s e m}(S)$ is the problem of computing the probability $\mathrm{Pr}^{\text {sem }}(S)$ that a set S of arguments is reasonable according to semantics sem

- $\operatorname{Prob}^{\text {sem }}(S)$ is the probabilistic counterpart of the problem $\operatorname{VER}^{\text {sem }}(S)$ of verifying whether a set S is reasonable according to semantics

sem	$\mathrm{VER}^{\text {sem }}(S)$	$\mathrm{PROB}^{\text {sem }}(S)$
admissible	PTIME	$?$
stable	PTIME	$?$
complete	PTIME	$?$
grounded	PTIME	$?$
preferred	coNP-complete	$?$
ideal	coNP-complete	$?$

Complexity of Probabilistic Abstract Argumentation

$\mathrm{Prob}^{s e m}(S)$ is the problem of computing the probability $\mathrm{Pr}^{\text {sem }}(S)$ that a set S of arguments is reasonable according to semantics sem

- $\operatorname{Prob}^{\text {sem }}(S)$ is the probabilistic counterpart of the problem $\operatorname{VER}^{\text {sem }}(S)$ of verifying whether a set S is reasonable according to semantics

sem	$\mathrm{VER}^{\text {sem }}(S)$	$\mathrm{PrOB}^{\text {sem }}(S)$
admissible	PTIME	PTIME
stable	PTIME	PTIME
complete	PTIME	$?$
grounded	PTIME	$?$
preferred	coNP-complete	$?$
ideal	coNP-complete	$?$

Complexity of Probabilistic Abstract Argumentation

$\mathrm{Prob}^{\text {sem }}(S)$ is the problem of computing the probability $\mathrm{Pr}^{\text {sem }}(S)$ that a set S of arguments is reasonable according to semantics sem

- $\mathrm{Prob}^{\text {sem }}(S)$ is the probabilistic counterpart of the problem $\operatorname{VER}^{\text {sem }}(S)$ of verifying whether a set S is reasonable according to semantics
$\left.\begin{array}{|l|c|c||}\hline \text { sem } & \mathrm{VER}^{\text {sem }}(S) & \mathrm{PROB}^{\text {sem }}(S) \\ \hline \hline \text { admissible } & \text { PTIME } & \text { PTIME } \\ \hline \text { stable } & \text { PTIME } & \text { PTIME } \\ \hline \text { complete } & \text { PTIME } & ? \\ \hline \text { grounded } & P T I M E & ? \\ \hline \text { preferred } & \text { coNP-complete } & F P^{\# P} \text {-complete } \\ \hline \text { ideal } & \text { coNP-complete } & F P^{\# P} \text {-complete } \\ \hline \hline\end{array}\right\}$ both tractable

Complexity of Probabilistic Abstract Argumentation

$\mathrm{PrOB}^{\text {sem }}(S)$ is the problem of computing the probability $\mathrm{Pr}^{\text {sem }}(S)$ that a set S of arguments is reasonable according to semantics sem

- $\operatorname{Prob}^{\text {sem }}(S)$ is the probabilistic counterpart of the problem $\mathrm{VER}^{\text {sem }}(S)$ of verifying whether a set S is reasonable according to semantics

sem	$\mathrm{VER}^{\text {sem }}(S)$	$\mathrm{PROB}^{\text {sem }}(S)$
admissible	PTIME	PTIME
stable	PTIME	PTIME
complete	PTIME	$F P^{\# P}$-complete
grounded	PTIME	$F P^{\# P}$-complete
preferred	coNP-complete	$F P^{\# P}$-complete
ideal	coNP-complete	$F P^{\# P}$-complete

both tractable from tractability to intractability
both intractable

Outline

(9) Introduction

- Motivation
- Contribution
(2) Background
- Abstract Argumentation Framework
- Probabilistic Argumentation Framework
(3) Complexity results
- The problem
- Tractable cases
- Hard cases

4 Conclusions and future work

Basic concepts of Abstract Argumentation

- An abstract argumentation framework consists of a set A of arguments, and a relation $D \subseteq A \times A$, whose elements are defeats (or attacks)

Example (AAF)

$$
\begin{aligned}
& A=\{a, b, c\} \\
& D=\{\langle b, a\rangle,\langle b, c\rangle,\langle c, b\rangle\}
\end{aligned}
$$

- A set $S \subseteq A$ of arguments is conflict-free if there are no $a, b \in S$ such that a defeats b
- An argument a is acceptable w.r.t. $S \subseteq A$ iff $\forall b \in A$ such that b defeats a, there is $c \in S$ such that c defeats b.

Example (conflict-free and acceptable sets)

$\{a\},\{b\},\{a, c\}$ are conflict-free sets;
a is acceptable w.r.t. $\{c\}$

Basic concepts of Abstract Argumentation

- An abstract argumentation framework consists of a set A of arguments, and a relation $D \subseteq A \times A$, whose elements are defeats (or attacks)

Example (AAF)

$$
\begin{aligned}
& A=\{a, b, c\} \\
& D=\{\langle b, a\rangle,\langle b, c\rangle,\langle c, b\rangle\}
\end{aligned}
$$

- A set $S \subseteq A$ of arguments is conflict-free if there are no $a, b \in S$ such that a defeats b
- An argument a is acceptable w.r.t. $S \subseteq A$ iff $\forall b \in A$ such that b defeats a, there is $c \in S$ such that c defeats b.

Example (conflict-free and acceptable sets)

$\{a\},\{b\},\{a, c\}$ are conflict-free sets;
a is acceptable w.r.t. $\{c\}$

Semantics for Abstract Argumentation

- Each semantics identifies "reasonable" sets of arguments

semantics sem	A set $\boldsymbol{S} \subseteq \boldsymbol{A}$ of arguments is reasonable according to sem iff
admissible	\boldsymbol{S} is conflict-free and all its arguments are acceptable w.r.t. \boldsymbol{S}
stable	S is conflict-free and S defeats each argument in $A \backslash S$
complete	S is admissible and S contains all the arguments that are acceptable w.r.t. S
grounded	S is a minimal complete set of arguments
preferred	S is a maximal admissible set of arguments
ideal	S is admissible and S is contained in every preferred set of arguments

Example (semantics for AAF)

admissible sets: $\{a, c\},\{b\},\{c\}, \emptyset$

complete sets: \{
preferred sets:
arounded sets: \emptyset

Semantics for Abstract Argumentation

- Each semantics identifies "reasonable" sets of arguments

semantics sem	A set $S \subseteq A$ of arguments is reasonable according to sem iff
admissible	S is conflict-free and all its arguments are acceptable w.r.t. S
stable	S is conflict-free and S defeats each argument in $A \backslash S$
complete	S is admissible and S contains all the arguments that are acceptable w.r.t. S
grounded	S is a minimal complete set of arguments
preferred	S is a maximal admissible set of arguments
ideal	S is admissible and S is contained in every preferred set of arguments

Example (semantics for AAF)

admissible sets: $\{a, c\},\{b\},\{c\}, \emptyset$
stable sets: $\{a, c\},\{b\}$
complete sets: $\{a$
grounded sets: \emptyset

Semantics for Abstract Argumentation

- Each semantics identifies "reasonable" sets of arguments

semantics sem	A set $S \subseteq A$ of arguments is reasonable according to sem iff
admissible	S is conflict-free and all its arguments are acceptable w.r.t. S
stable	S is conflict-free and S defeats each argument in $A \backslash S$

acceptable w.r.t. S\end{array}\right|\)| complete | S is a minimal complete set of arguments |
| :--- | :--- |
| grounded | S is a maximal admissible set of arguments |
| preferred | S is admissible and S is contained in every preferred set of
 arguments |
| ideal | |

Example (semantics for AAF)

admissible sets: $\{a, c\},\{b\},\{c\}, \emptyset$
stable sets: $\{a, c\},\{b\}$
complete sets: $\{a, c\},\{b\}, \emptyset$

Semantics for Abstract Argumentation

- Each semantics identifies "reasonable" sets of arguments

semantics sem	A set $S \subseteq A$ of arguments is reasonable according to sem iff
admissible	S is conflict-free and all its arguments are acceptable w.r.t. S
stable	S is conflict-free and S defeats each argument in $A \backslash S$
complete	S is admissible and S contains all the arguments that are acceptable w.r.t. S
grounded	S is a minimal complete set of arguments
preferred	S is a maximal admissible set of arguments
ideal	S is admissible and S is contained in every preferred set of arguments

Example (semantics for AAF)

admissible sets: $\{a, c\},\{b\},\{c\}, \emptyset$
stable sets: $\{a, c\},\{b\}$
complete sets: $\{a, c\},\{b\}, \emptyset$
grounded sets: \emptyset

Semantics for Abstract Argumentation

- Each semantics identifies "reasonable" sets of arguments

semantics sem	A set $S \subseteq A$ of arguments is reasonable according to sem iff
admissible	S is conflict-free and all its arguments are acceptable w.r.t. S
stable	S is conflict-free and S defeats each argument in $A \backslash S$
complete	S is admissible and S contains all the arguments that are acceptable w.r.t. S
grounded	S is a minimal complete set of arguments
preferred	S is a maximal admissible set of arguments
ideal	S is admissible and S is contained in every preferred set of arguments

Example (semantics for AAF)

admissible sets: $\{a, c\},\{b\},\{c\}, \emptyset$
stable sets: $\{a, c\},\{b\}$
complete sets: $\{a, c\},\{b\}, \emptyset \quad$ preferred sets: $\{a, c\},\{b\}$ grounded sets: \emptyset

ideal sets: 0

Semantics for Abstract Argumentation

- Each semantics identifies "reasonable" sets of arguments

semantics sem	A set $S \subseteq A$ of arguments is reasonable according to sem iff
admissible	S is conflict-free and all its arguments are acceptable w.r.t. S
stable	S is conflict-free and S defeats each argument in $A \backslash S$
complete	S is admissible and S contains all the arguments that are acceptable w.r.t. S
grounded	S is a minimal complete set of arguments
preferred	S is a maximal admissible set of arguments
ideal	S is admissible and S is contained in every preferred set of arguments

Example (semantics for AAF)

admissible sets: $\{a, c\},\{b\},\{c\}, \emptyset$ stable sets: $\{a, c\},\{b\}$ complete sets: $\{a, c\},\{b\}, \emptyset$ grounded sets: \emptyset

preferred sets: $\{a, c\},\{b\}$ ideal sets: \emptyset

Basics of Probabilistic Argumentation

- A PrAF is a tuple $\left\langle A, P_{A}, D, P_{D}\right\rangle$ where
- $\langle A, D\rangle$ is an $A A F$, and
- P_{A} and P_{D} are functions assigning a probability value to each argument in A and defeat in D
- $P_{A}(a)$ represents the probability that argument a actually occurs
- $P_{D}(\langle a, b\rangle)$ represents the conditional probability that a defeats b given that both a and b occur

Example (probabilities of arguments and defeats)

- The issue of how to assign probabilities to arguments/defeats has been investigated in [Hunter 2012, Hunter 2013]

Basics of Probabilistic Argumentation

- A PrAF is a tuple $\left\langle A, P_{A}, D, P_{D}\right\rangle$ where
- $\langle A, D\rangle$ is an $A A F$, and
- P_{A} and P_{D} are functions assigning a probability value to each argument in A and defeat in D
- $P_{A}(a)$ represents the probability that argument a actually occurs
- $P_{D}(\langle a, b\rangle)$ represents the conditional probability that a defeats b given that both a and b occur

Example (probabilities of arguments and defeats)

$$
\begin{array}{ll}
P_{A}(a)=.9 & P_{D}(\langle b, a\rangle)=.9 \\
P_{A}(b)=.7 & P_{D}(\langle b, c\rangle)=1 \\
P_{A}(c)=.2 & P_{D}(\langle c, b\rangle)=1
\end{array}
$$

- The issue of how to assign probabilities to arguments/defeats has been investigated in [Hunter 2012, Hunter 2013]

Basics of Probabilistic Argumentation

- A PrAF is a tuple $\left\langle A, P_{A}, D, P_{D}\right\rangle$ where
- $\langle A, D\rangle$ is an $A A F$, and
- P_{A} and P_{D} are functions assigning a probability value to each argument in A and defeat in D
- $P_{A}(a)$ represents the probability that argument a actually occurs
- $P_{D}(\langle a, b\rangle)$ represents the conditional probability that a defeats b given that both a and b occur

Example (probabilities of arguments and defeats)

$P_{A}(a)=.9$	$P_{D}(\langle b, a\rangle)=.9$
$P_{A}(b)=.7$	$P_{D}(\langle b, c\rangle)=1$
$P_{A}(c)=.2$	$P_{D}(\langle c, b\rangle)=1$

- The issue of how to assign probabilities to arguments/defeats has been investigated in [Hunter 2012, Hunter 2013]

Meaning of a probabilistic argumentation framework

- The meaning of a PrAF is given in terms of possible worlds
- A possible world represents a (deterministic) scenario consisting of some subset of the arguments and defeats of the PrAF

Example (some possible worlds)

Meaning of a probabilistic argumentation framework

- The meaning of a PrAF is given in terms of possible worlds
- A possible world represents a (deterministic) scenario consisting of some subset of the arguments and defeats of the PrAF
- given a PrAF $\mathcal{F}=\left\langle A, P_{A}, D, P_{D}\right\rangle$, a possible world w for \mathcal{F} is an AAF $\left\langle A^{\prime}, D^{\prime}\right\rangle$ such that $A^{\prime} \subseteq A$ and $D^{\prime} \subseteq D \cap\left(A^{\prime} \times A^{\prime}\right)$.

Example (some possible worlds)

Interpretation for a PrAF

- An interpretation / for a PrAF is a probability distribution over the set of possible worlds
possible world w is assigned by I the probability I(w) equal to:

where $\bar{D}(w)=D \cap(\operatorname{Arg}(w) \times \operatorname{Arg}(w))$ is the set of defeats that may appear in w

Example (probability of some pocsible worlds)

Interpretation for a PrAF

- An interpretation / for a PrAF is a probability distribution over the set of possible worlds
- possible world w is assigned by I the probability $I(w)$ equal to:

$$
\prod_{a \in \operatorname{Arg}(w)} P_{A}(a) \times \prod_{a \in A \backslash \operatorname{Arg}(w)}\left(1-P_{A}(a)\right) \times \prod_{\delta \in \operatorname{Def}(w)} P_{D}(\delta) \times \prod_{\delta \in \bar{D}(w) \backslash \operatorname{Def}(w)}\left(1-P_{D}(\delta)\right)
$$

where $\bar{D}(w)=D \cap(\operatorname{Arg}(w) \times \operatorname{Arg}(w))$ is the set of defeats that may appear in w

Example (probability of some possible worlds)

Probability of reasonable sets

- The probability $\operatorname{Pr}^{\text {sem }}(S)$ that a set S of arguments is reasonable according to a given semantics sem is defined as the sum of the probabilities of the possible worlds w for which S is reasonable according to sem

Example (probability that $\{a, c\}$ is a admissible set)
In our example, the possible worlds for which $\{a, c\}$ is admissible are:

$\operatorname{Pr}{ }^{\text {admissible }}(\{a, c\})=I\left(w_{1}\right)+I\left(w_{2}\right)+I\left(w_{3}\right)=0.18$

Probability of reasonable sets

- The probability $\operatorname{Pr}^{\text {sem }}(S)$ that a set S of arguments is reasonable according to a given semantics sem is defined as the sum of the probabilities of the possible worlds w for which S is reasonable according to sem

Example (probability that $\{a, c\}$ is a admissible set)

In our example, the possible worlds for which $\{a, c\}$ is admissible are:

$$
\begin{aligned}
& I\left(w_{1}\right)=.054 \\
& I\left(w_{2}\right)=.0126 \\
& I\left(w_{3}\right)=.1134 \\
& P^{\text {admissible }}(\{a, c\})=I\left(w_{1}\right)+I\left(w_{2}\right)+I\left(w_{3}\right)=0.18
\end{aligned}
$$

Outline

(1) Introduction

- Motivation
- Contribution
(2) Background
- Abstract Argumentation Framework
- Probabilistic Argumentation Framework
(3) Complexity results
- The problem
- Tractable cases
- Hard cases
(4) Conclusions and future work

What is the complexity of $\operatorname{ProB}^{\text {sem }}(S)$?

Definition (Problem Prob $^{\text {sem }}(S)$)

Given a $\operatorname{PrAF}\left\langle A, P_{A}, D, P_{D}\right\rangle$, a set $S \subseteq A$ of arguments, and a semantics sem in \{admissible, stable, complete, grounded, preferred, ideal\}, $\mathrm{PrOB}^{\text {sem }}(S)$ is the problem of computing the probability $\operatorname{Pr}^{\operatorname{sem}}(S)$ that the set S is reasonable according to the semantics sem

- computing $\operatorname{Pr} r^{s e m}(S)$ by directly applying the definition would require
exponential time (it relies on summing the probabilities of an exponential
number of possible worlds)
- we shown that $\operatorname{Prob}^{\text {sem }}(S)$ can be solved in time $O(|S| \cdot|A|)$ for the admissible and stable semantics
- we shown that $\mathrm{PROB}^{\text {sem }}(S)$ is $F P^{\# P}$-complete for the complete, grounded, preferred, and ideal semantics

What is the complexity of $\operatorname{ProB}^{\text {sem }}(S)$?

Definition (Problem Prob $^{\text {sem }}(S)$)

Given a $\operatorname{PrAF}\left\langle A, P_{A}, D, P_{D}\right\rangle$, a set $S \subseteq A$ of arguments, and a semantics sem in \{admissible, stable, complete, grounded, preferred, ideal\}, $\mathrm{PrOB}^{\text {sem }}(S)$ is the problem of computing the probability $\operatorname{Pr}^{\operatorname{sem}}(S)$ that the set S is reasonable according to the semantics sem

- computing $\operatorname{Pr}^{\text {sem }}(S)$ by directly applying the definition would require exponential time (it relies on summing the probabilities of an exponential number of possible worlds)
- we shown that $\operatorname{Prob}^{\text {sem }}(S)$ can be solved in time $O(|S| \cdot|A|)$ for the admissible and stable semantics
- we shown that $P R O B^{\text {som }}(S)$ is $F P^{H^{P}}$-complete for the complete, grounded, preferred, and ideal semantics

What is the complexity of $\operatorname{ProB}^{\text {sem }}(S)$?

Definition (Problem $\operatorname{Prob}^{\text {sem }}(S)$)

Given a $\operatorname{PrAF}\left\langle A, P_{A}, D, P_{D}\right\rangle$, a set $S \subseteq A$ of arguments, and a semantics sem in \{admissible, stable, complete, grounded, preferred, ideal\}, $\operatorname{Prob}^{\text {sem }}(S)$ is the problem of computing the probability $\operatorname{Pr}^{\operatorname{sem}}(S)$ that the set S is reasonable according to the semantics sem

- computing $\operatorname{Pr}^{\text {sem }}(S)$ by directly applying the definition would require exponential time (it relies on summing the probabilities of an exponential number of possible worlds)
- we shown that $\mathrm{Prob}^{\text {sem }}(S)$ can be solved in time $O(|S| \cdot|A|)$ for the admissible and stable semantics
- we shown that $\mathrm{Prob}^{\text {sem }}(S)$ is $F P^{\# P}$-complete for the complete, grounded, preferred, and ideal semantics

Main idea

- Express the fact that a set S of arguments is admissible [resp., stable] as a probabilistic event $E_{a d}(S)$ [resp., $\left.E_{s t}(S)\right]$
- $\operatorname{Pr}^{\text {admissible }}(S)=\operatorname{Pr}\left(E_{a d}(S)\right)\left[\right.$ resp., $\left.\operatorname{Pr}^{\text {stable }}(S)=\operatorname{Pr}\left(E_{s t}(S)\right)\right]$
- the tractability of $\operatorname{Prob}^{\text {admissible }}(S)$ [resp. $\operatorname{Prob}^{\text {stable }}(S)$] follows from the fact that $\operatorname{Pr}^{\text {admissible }}(S)$ [resp., $\operatorname{Pr}^{\text {stable }}(S)$)] results in a polynomial-size expression involving only the probabilities of the arguments and the defeats
- this does not hold for the other semantics (complete, grounded, preferred, and ideal)

Introduction

Admissible semantics - probabilistic event

- $E_{a d}(S)=e_{1}(S) \wedge e_{2}(S) \wedge e_{3}(S)$
- $e_{1}(S)$ is the event that all of the arguments in S occur
- $e_{2}(S)$ is the event that, given that $e_{1}(S)$ holds, S is conflict-free
- $e_{3}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur
- $e_{32}(S, d)$: d occurs and no defeat (d, b), with $b \in S$, occurs
- $e_{33}(S, d): d$ occurs, there is at least one argument $b \in S$ such that (d, b) occurs, and there is at least one argument $a \in S$ such that (a, d) occurs

Lemma

Pr admissible $(S)=\operatorname{Pr}\left(E_{a d}(S)\right)=\operatorname{Pr}\left(e_{1}(S)\right) \cdot \operatorname{Pr}\left(\theta_{2}(S)\right) \cdot \operatorname{Pr}\left(e_{3}(S)\right)$
The probabilities of e_{1}, e_{2}, and e_{3} are as follows (next slides)

Admissible semantics - probabilistic event

- $E_{a d}(S)=e_{1}(S) \wedge e_{2}(S) \wedge e_{3}(S)$
- $e_{1}(S)$ is the event that all of the arguments in S occur
- $e_{2}(S)$ is the event that, given that $e_{1}(S)$ holds, S is conflict-free
- $e_{3}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur
- $e_{32}(S, d): d$ occurs and no defeat (d, b), with $b \in S$, occurs
- $e_{33}(S, d)$: d occurs, there is at least one argument $b \in S$ such that (d, b) occurs, and there is at least one argument $a \in S$ such that (a, d) occurs

Lemma

$\operatorname{Pradmissible}(S)=\operatorname{Pr}\left(E_{a d}(S)\right)=\operatorname{Pr}\left(e_{1}(S)\right) \cdot \operatorname{Pr}\left(\theta_{2}(S)\right) \cdot \operatorname{Pr}\left(e_{3}(S)\right)$
The probabilities of e_{1}, e_{2}, and e_{3} are as follows (next slides)

Admissible semantics - probabilistic event

- $E_{a d}(S)=e_{1}(S) \wedge e_{2}(S) \wedge e_{3}(S)$
- $e_{1}(S)$ is the event that all of the arguments in S occur
- $e_{2}(S)$ is the event that, given that $e_{1}(S)$ holds, S is conflict-free $e_{3}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur
- $e_{32}(S, d): d$ occurs and no defeat (d, b), with $b \in S$, occurs
- $e_{33}(S, d): d$ occurs, there is at least one argument $b \in S$ such that (d, b) occurs, and there is at least one argument $a \in S$ such that (a, d) occurs

Lemma

$\operatorname{Pradmissible}(S)=\operatorname{Pr}\left(E_{a d}(S)\right)=\operatorname{Pr}\left(e_{1}(S)\right) \cdot \operatorname{Pr}\left(e_{2}(S)\right) \cdot \operatorname{Pr}\left(e_{3}(S)\right)$
The probabilities of e_{1}, e_{2}, and e_{3} are as follows (next slides)

Admissible semantics - probabilistic event

- $E_{a d}(S)=e_{1}(S) \wedge e_{2}(S) \wedge e_{3}(S)$
- $e_{1}(S)$ is the event that all of the arguments in S occur
- $e_{2}(S)$ is the event that, given that $e_{1}(S)$ holds, S is conflict-free
- $e_{3}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur
- $e_{32}(S, d)$: d occurs and no defeat (d, b), with $b \in S$, occurs
- $e_{33}(S, d)$: d occurs, there is at least one argument $b \in S$ such that (d, b) occurs, and there is at least one argument $a \in S$ such that (a, d) occurs

[^0]
Admissible semantics - probabilistic event

- $E_{a d}(S)=e_{1}(S) \wedge e_{2}(S) \wedge e_{3}(S)$
- $e_{1}(S)$ is the event that all of the arguments in S occur
- $e_{2}(S)$ is the event that, given that $e_{1}(S)$ holds, S is conflict-free
- $e_{3}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur
- $e_{32}(S, d)$: d occurs and no defeat (d, b), with $b \in S$, occurs
- $e_{33}(S, d)$: d occurs, there is at least one argument $b \in S$ such that (d, b) occurs, and there is at least one argument $a \in S$ such that (a, d) occurs

Lemma

$\operatorname{Pr}^{\text {admissible }}(S)=\operatorname{Pr}\left(E_{a d}(S)\right)=\operatorname{Pr}\left(e_{1}(S)\right) \cdot \operatorname{Pr}\left(e_{2}(S)\right) \cdot \operatorname{Pr}\left(e_{3}(S)\right)$
The probabilities of e_{1}, e_{2}, and e_{3} are as follows (next slides)

Probability that a set is admissible (1/2)

- $E_{a d}(S)=e_{1}(S) \wedge e_{2}(S) \wedge e_{3}(S)$
- $e_{1}(S)$ is the event that all of the arguments in S occur
- $\operatorname{Pr}\left(e_{1}(S)\right)=\prod_{a \in S} P_{A}(a)$
- $e_{2}(S)$ is the event that, given that $e_{1}(S)$ holds, S is conflict-free
- $\operatorname{Pr}\left(e_{2}(S)\right)=$

Example (probability that $\{a, c\}$ is admissible (to be continued))

$\operatorname{Pr}{ }^{\text {admissible }}(\{a, c\})=\underbrace{P_{A}(a) \cdot P_{A}(c)}_{\operatorname{Pr}\left(e_{1}(\{a, c\})\right)} \cdot \underbrace{1}_{\operatorname{Pr}\left(e_{2}(\{a, c\})\right)} \cdot \operatorname{Pr}\left(e_{3}(S)\right)$

Probability that a set is admissible (1/2)

- $E_{a d}(S)=e_{1}(S) \wedge e_{2}(S) \wedge e_{3}(S)$
- $e_{1}(S)$ is the event that all of the arguments in S occur
- $\operatorname{Pr}\left(e_{1}(S)\right)=\prod_{a \in S} P_{A}(a)$
- $e_{2}(S)$ is the event that, given that $e_{1}(S)$ holds, S is conflict-free
- $\operatorname{Pr}\left(e_{2}(S)\right)=\prod_{i \in D}\left(1-P_{D}(\langle a, b\rangle)\right)$

$$
\langle a, b\rangle \in D
$$

$$
\wedge a \in S \wedge b \in S
$$

Example (probability that $\{a, c\}$ is admissible (to be continued))

$\operatorname{Pr}{ }^{\text {admissible }}(\{a, c\})=\underbrace{P_{A}(a) \cdot P_{A}(c)}_{\operatorname{Pr}\left(e_{1}(\{a, c\})\right)} \cdot \underbrace{1}_{\operatorname{Pr}\left(e_{2}(\{a, c\})\right)} \cdot \operatorname{Pr}\left(e_{3}(S)\right)$

Probability that a set is admissible (2/2)

- $e_{3}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur
- $e_{32}(S, d)$: d occurs and no defeat (d, b), with $b \in S$, occurs
- $e_{33}(S, d)$: d occurs, there is at least one argument $b \in S$ such that (d, b) occurs, and there is at least one argument $a \in S$ such that (a, d) occurs
- $\operatorname{Pr}\left(e_{3}(S)\right)=\prod_{d \in A \backslash S}\left(\operatorname{Pr}\left(e_{31}(S, d)\right)+\operatorname{Pr}\left(e_{32}(S, d)\right)+\operatorname{Pr}\left(e_{33}(S, d)\right)\right)$ where:
- $\operatorname{Pr}\left(e_{33}(S, d)\right)=P_{A}(d) \cdot\left(1-\prod_{\langle d, b\rangle \in D}\left(1-P_{D}(\langle d, b\rangle)\right)\right)$.

Probability that a set is admissible (2/2)

- $e_{3}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur
- $e_{32}(S, d)$: d occurs and no defeat (d, b), with $b \in S$, occurs
- $e_{33}(S, d)$: d occurs, there is at least one argument $b \in S$ such that (d, b) occurs, and there is at least one argument $a \in S$ such that (a, d) occurs
- $\operatorname{Pr}\left(e_{3}(S)\right)=\prod_{d \in A \backslash S}\left(\operatorname{Pr}\left(e_{31}(S, d)\right)+\operatorname{Pr}\left(e_{32}(S, d)\right)+\operatorname{Pr}\left(e_{33}(S, d)\right)\right)$ where:
- $\operatorname{Pr}\left(e_{31}(S, d)\right)=1-P_{A}(d)$
- $\operatorname{Pr}\left(e_{32}(S, d)\right)=P_{A}(d)$
- $\operatorname{Pr}\left(e_{33}(S, d)\right)=P_{A}(d)$

Probability that a set is admissible (2/2)

- $e_{3}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur
- $e_{32}(S, d)$: d occurs and no defeat (d, b), with $b \in S$, occurs
- $e_{33}(S, d)$: d occurs, there is at least one argument $b \in S$ such that (d, b) occurs, and there is at least one argument $a \in S$ such that (a, d) occurs
- $\operatorname{Pr}\left(e_{3}(S)\right)=\prod_{d \in A \backslash S}\left(\operatorname{Pr}\left(e_{31}(S, d)\right)+\operatorname{Pr}\left(e_{32}(S, d)\right)+\operatorname{Pr}\left(e_{33}(S, d)\right)\right)$ where:
- $\operatorname{Pr}\left(e_{32}(S, d)\right)=P_{A}(d) \cdot \prod_{\substack{\langle d, b\rangle \in D \\ \wedge b \in S}}\left(1-P_{D}(\langle d, b\rangle)\right)$
- $\operatorname{Pr}\left(e_{33}(S, d)\right)=P_{A}(d)$

Probability that a set is admissible (2/2)

- $e_{3}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur
- $e_{32}(S, d)$: d occurs and no defeat (d, b), with $b \in S$, occurs
- $e_{33}(S, d)$: d occurs, there is at least one argument $b \in S$ such that (d, b) occurs, and there is at least one argument $a \in S$ such that (a, d) occurs
- $\operatorname{Pr}\left(e_{3}(S)\right)=\prod_{d \in A \backslash S}\left(\operatorname{Pr}\left(e_{31}(S, d)\right)+\operatorname{Pr}\left(e_{32}(S, d)\right)+\operatorname{Pr}\left(e_{33}(S, d)\right)\right)$ where:
- $\operatorname{Pr}\left(e_{31}(S, d)\right)=1-P_{A}(d)$
- $\operatorname{Pr}\left(e_{32}(S, d)\right)=P_{A}(d)$

- $\operatorname{Pr}\left(e_{33}(S, d)\right)=P_{A}(d) \cdot\left(1-\prod_{\substack{\langle d, b\rangle \in D \\ \wedge b \in S}}\left(1-P_{D}(\langle d, b\rangle)\right)\right)$.

$$
\cdot\left(1-\prod_{\substack{\langle a, d\rangle \in D \\ \wedge a \in S}}\left(1-P_{D}(\langle a, d\rangle)\right)\right)
$$

Tractability of admissible semantics

Example (probability that $\{a, c\}$ is admissible (continued))
$\begin{aligned} & \operatorname{Pr}{ }^{\text {admissible }(\{a, c\})=} \underbrace{P_{A}(a) \cdot P_{A}(c)}_{\operatorname{Pr}\left(e_{1}(\{a, c\})\right)} \cdot \underbrace{1}_{\operatorname{Pr}\left(e_{2}(\{a, c\})\right)} \cdot\{\underbrace{\left(1-P_{A}(b)\right.}_{\operatorname{Pr}\left(e_{31}(\{a, c\}, b)\right)}+ \\ &+\underbrace{\left.P_{A}(b) \cdot\left(1-1-P_{D}(\langle b, a\rangle)\right)\right) \cdot\left(1-P_{D}(\langle b, c\rangle)\right)}_{\operatorname{Pr}\left(e_{32}(\{a, c\}, b)\right)}+ \\ &+\underbrace{P_{A}(b) \cdot\left[1-\left(1-P_{D}(\langle b, a\rangle)\right)\left(1-P_{D}(\langle b, c\rangle)\right)\right] \cdot\left[1-\left(1-P_{D}(\langle c, b\rangle)\right)\right]}_{\operatorname{Pr}\left(e_{33}(\{a, c\}, b)\right)}\}\end{aligned}$

Theorem

Prob ${ }^{\text {admissible }}(S)$ can be solved in time $O(|S| \cdot|A|)$.

Tractability of admissible semantics

Example (probability that $\{a, c\}$ is admissible (continued))

Theorem

$\operatorname{Prob}^{\text {admissible }}(S)$ can be solved in time $O(|S| \cdot|A|)$.

Stable semantics

- probabilistic event that S is stable: $E_{s t}(S)=e_{1}(S) \wedge e_{2}(S) \wedge e_{3}^{\prime}(S)$
- $e_{3}^{\prime}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur,
- $e_{32}^{\prime}(S, d)$: d occurs and it is defeated by S

Lemma

$\operatorname{Pr}^{\text {stable }}(S)=\operatorname{Pr}\left(e_{1}(S)\right) \cdot \operatorname{Pr}\left(e_{2}(S)\right)$.

Theorem

Stable semantics

- probabilistic event that S is stable: $E_{s t}(S)=e_{1}(S) \wedge e_{2}(S) \wedge e_{3}^{\prime}(S)$
- $e_{3}^{\prime}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur,
- $e_{32}^{\prime}(S, d)$: d occurs and it is defeated by S

Lemma

$\operatorname{Pr}^{\text {stable }}(S)=\operatorname{Pr}\left(e_{1}(S)\right) \cdot \operatorname{Pr}\left(e_{2}(S)\right)$.

Stable semantics

- probabilistic event that S is stable: $E_{s t}(S)=e_{1}(S) \wedge e_{2}(S) \wedge e_{3}^{\prime}(S)$
- $e_{3}^{\prime}(S)$ is the event that, given that $e_{1}(S)$ holds, for all the arguments d outside S, one of the following events holds:
- $e_{31}(S, d)$: d does not occur,
- $e_{32}^{\prime}(S, d)$: d occurs and it is defeated by S

Lemma

$\operatorname{Pr}^{\text {stable }}(S)=\operatorname{Pr}\left(e_{1}(S)\right) \cdot \operatorname{Pr}\left(e_{2}(S)\right)$.

$$
\prod_{d \in A \backslash S}\{\underbrace{1-P_{A}(d)}_{\operatorname{Pr}\left(e_{31}(S, d)\right)}+\underbrace{\left.P_{A}(d) \cdot\left[1-\prod\left(1-P_{D}(\langle a, d\rangle)\right)\right]\right\}}_{\langle a, d\rangle \in D \wedge a \in S}
$$

Theorem
$\operatorname{ProB}^{\text {stable }}(S)$ can be solved in time $O(|S| \cdot|A|)$.

Complete/Grounded/Preferred/Ideal semantics

Theorem

$\operatorname{Prob}{ }^{\text {complete }}(S), \mathrm{PROB}^{\text {grounded }}(S), \mathrm{PROB}^{\text {preferred }}(S)$ and $\mathrm{Prob}^{\text {ideal }}(S)$ are $F P^{\# P}$-complete.

- For complete/grounded semantics:
- reduction from the \#P-hard problem \#PP2DNF (Partitioned Positive 2DNF)
- \#PP2DNF is the problem of counting the number of satisfying assignments of a DNF formula $\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{k}$ whose propositional variables are positive and can be partitioned into two sets $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$, and each clause C_{i} has the form $x_{j} \wedge y_{\ell}$, with $x_{j} \in X$ and
- For preferred/ideal semantics:
- reduction from \#P2CNF (the problem of counting the number of satisfying assignments of a positive 2CNF formula)
- a function is FP\#P-hard iff it is \#P-hard

Complete/Grounded/Preferred/Ideal semantics

Theorem

$\operatorname{Prob}{ }^{\text {complete }}(S), \mathrm{PROB}^{\text {grounded }}(S), \mathrm{PROB}^{\text {preferred }}(S)$ and $\mathrm{Prob}^{\text {ideal }}(S)$ are $F P^{\# P}$-complete.

- For complete/grounded semantics:
- reduction from the $\# P$-hard problem \#PP2DNF (Partitioned Positive 2DNF)
- \#PP2DNF is the problem of counting the number of satisfying assignments of a DNF formula $\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{k}$ whose propositional variables are positive and can be partitioned into two sets $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$, and each clause C_{i} has the form $x_{j} \wedge y_{\ell}$, with $x_{j} \in X$ and $y_{\ell} \in Y$
- For preferred/ideal semantics:
- reduction from \#P2CNF (the problem of counting the number of satisfying assignments of a positive 2CNF formula)
- a function is FP\#P-hard iff it is \#P-hard

Complete/Grounded/Preferred/Ideal semantics

Theorem

$\operatorname{Prob}{ }^{\text {complete }}(S), \mathrm{Prob}^{\text {grounded }}(S), \mathrm{PROB}^{\text {preferred }}(S)$ and $\mathrm{Prob}^{\text {ideal }}(S)$ are $F P^{\# P}$-complete.

- For complete/grounded semantics:
- reduction from the $\# P$-hard problem \#PP2DNF (Partitioned Positive 2DNF)
- \#PP2DNF is the problem of counting the number of satisfying assignments of a DNF formula $\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{k}$ whose propositional variables are positive and can be partitioned into two sets $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$, and each clause C_{i} has the form $x_{j} \wedge y_{\ell}$, with $x_{j} \in X$ and $y_{\ell} \in Y$
- For preferred/ideal semantics:
- reduction from \#P2CNF (the problem of counting the number of satisfying assignments of a positive 2CNF formula)
- a function is $F P^{\# P}$-hard iff it is $\# P$-hard

Outline

Introduction

- Motivation
- Contribution
(2) Background
- Abstract Argumentation Framework
- Probabilistic Argumentation Framework
(3) Complexity results
- The problem
- Tractable cases
- Hard cases

4 Conclusions and future work

Conclusions and future work

- We characterized the complexity of the problem of computing the probability that a set of arguments is reasonable according to a given semantics (admissible/stable/complete/grounded/preferred/ideal)
- for these semantics, the complexity of the problem is either PTIME or $F P^{\# P}$-complete
- The fact that the problem is hard for some semantics backs the use of approximate techniques for estimating $\operatorname{Pr}^{\text {sem }}(S)$ (such as those proposed in [Li et Al. 2011, Fazzinga et Al. 2013])
- Interesting directions for future work are:
- extending the complexity study to other AAF semantics (such as semi-stable, stage, CF2)
- characterizing the complexity of the probabilistic version of the
credulous/sceptical acceptance problem, that is, the problem of computing
the probability that an argument belongs to any/every reasonable set
according to a given semantics

Conclusions and future work

- We characterized the complexity of the problem of computing the probability that a set of arguments is reasonable according to a given semantics (admissible/stable/complete/grounded/preferred/ideal)
- for these semantics, the complexity of the problem is either PTIME or $F P^{\# P}$-complete
- The fact that the problem is hard for some semantics backs the use of approximate techniques for estimating $\operatorname{Pr}^{\text {sem }}(S)$ (such as those proposed in [Li et Al. 2011, Fazzinga et Al. 2013])
- Interesting directions for future work are:
- extending the complexity study to other AAF semantics (such as
semi-stable, stage, CF2)
- characterizing the complexity of the probabilistic version of the
credulous/sceptical acceptance problem, that is, the problem of computing
the probability that an argument belongs to any/every reasonable set
according to a given semantics

Conclusions and future work

- We characterized the complexity of the problem of computing the probability that a set of arguments is reasonable according to a given semantics (admissible/stable/complete/grounded/preferred/ideal)
- for these semantics, the complexity of the problem is either PTIME or $F P^{\# P}$-complete
- The fact that the problem is hard for some semantics backs the use of approximate techniques for estimating $\operatorname{Pr}^{\text {sem }}(S)$ (such as those proposed in [Li et Al. 2011, Fazzinga et Al. 2013])
- Interesting directions for future work are:
- extending the complexity study to other AAF semantics (such as semi-stable, stage, CF2)
- characterizing the complexity of the probabilistic version of the credulous/sceptical acceptance problem, that is, the problem of computing the probability that an argument belongs to any/every reasonable set according to a given semantics

Thank you!

... any question?

Selected References

Phan Minh Dung.
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321-358, 1995.

Paul E. Dunne and Michael Wooldridge.
Complexity of abstract argumentation.
In Argumentation in Artificial Intelligence, 85-104, 2009.
Paul E. Dunne.
The computational complexity of ideal semantics.
Artif. Intell., 173(18):1559-1591, 2009.
Bettina Fazzinga, Sergio Flesca, and Francesco Parisi.
Efficiently Estimating the Probability of Extensions in Abstract Argumentation. In SUM, 106-119, 2013.

Anthony Hunter.
Some foundations for probabilistic abstract argumentation.
In COMMA, 117-128, 2012.
Anthony Hunter.
A probabilistic approach to modelling uncertain logical arguments.
Int. J. Approx. Reasoning, 54(1):47-81, 2013.
Hengfei Li, Nir Oren, and Timothy J. Norman.
Probabilistic argumentation frameworks.
In TAFA, 1-16, 2011.

[^0]: Lemma
 $\operatorname{Pr}{ }^{\text {admissible }}(S)=\operatorname{Pr}\left(E_{a d}(S)\right)=\operatorname{Pr}\left(e_{1}(S)\right) \cdot \operatorname{Pr}\left(e_{2}(S)\right) \cdot \operatorname{Pr}\left(e_{3}(S)\right)$
 The probabilities of e_{1}, e_{2}, and e_{3} are as follows (next slides)

