Introduction	Preliminaries	Algorithms 0000000000	Experiments 000	Conclusions and future work

Incremental Computation of Deterministic Extensions for Dynamic Argumentation Frameworks

Sergio Greco and Francesco Parisi

email:{greco, fparisi}@dimes.unical.it Department of Informatics, Modeling, Electronics and System Engineering University of Calabria Italy

15th European Conference On Logics In Artificial Intelligence

November 9-11, 2016

Larnaca, Cyprus

Introduction	Preliminaries	Algorithms		Conclusions and future work
	00000	000000000000000	000	00
Motivation				

Argumentation in Al

- A general way for representing arguments and relationships (rebuttals) between them
- It allows representing dialogues, making decisions, and handling inconsistency and uncertainty

Abstract Argumentation Framework (AF) [Dung 1995]: arguments are abstract entities (no attention is paid to their internal structure) that may attack and/or be attacked by other arguments

Example (a simple AF)

- a = Our friends will have great fun at our party on Saturday
- b = Saturday will rain (according to the weather forecasting service 1)
- c = Saturday will be sunny (according to the weather forecasting service 2)

Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work
●O○○	00000	0000000000	000	
Motivation				

Argumentation in Al

- A general way for representing arguments and relationships (rebuttals) between them
- It allows representing dialogues, making decisions, and handling inconsistency and uncertainty

Abstract Argumentation Framework (AF) [Dung 1995]: arguments are abstract entities (no attention is paid to their internal structure) that may attack and/or be attacked by other arguments

a

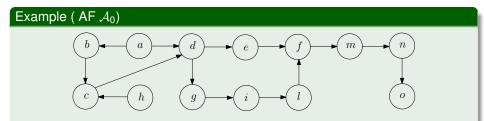
b

Example (a simple AF)

- a = Our friends will have great fun at our party on Saturday
- b = Saturday will rain (according to the weather forecasting service 1)
- c = Saturday will be sunny (according to the weather forecasting service 2)

Introduction	Preliminaries 00000	Algorithms 0000000000	Experiments	Conclusions and future work
Motivation				

 Several semantics have been proposed to identify "reasonable" sets of arguments (called *extensions*)

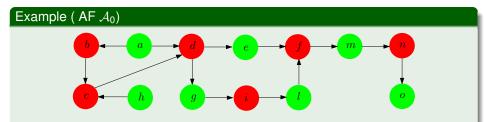


 $E_0 = \{a, h, g, e, l, m, o\}$ is an extension according to the most popular semantics, i.e. grounded, complete, ideal, preferred, stable, and semi-stable

- Extensions change if we update the initial AF by adding/removing arguments/attacks
- Should we recompute the semantics of updated AFs from scratch?

Introduction	Preliminaries 00000	Algorithms 0000000000	Experiments	Conclusions and future work
Motivation				

 Several semantics have been proposed to identify "reasonable" sets of arguments (called *extensions*)



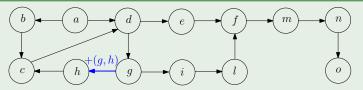
 $E_0 = \{a, h, g, e, l, m, o\}$ is an extension according to the most popular semantics, i.e. *grounded*, *complete*, *ideal*, *preferred*, *stable*, and *semi-stable*

- Extensions change if we update the initial AF by adding/removing arguments/attacks
- Should we recompute the semantics of updated AFs from scratch?

Introduction	Preliminaries 00000	Algorithms 00000000000	Experiments 000	Conclusions and future work
Motivation				

 Several semantics have been proposed to identify "reasonable" sets of arguments (called *extensions*)

Example (Updated AF $\mathcal{A} = +(g,h)(\mathcal{A}_0))$



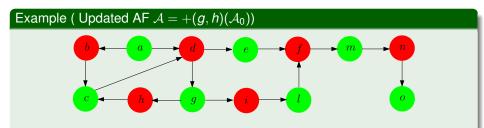
We need to recompute the extension E of the AF obtained by adding attack (g, h)

• Extensions change if we update the initial AF by adding/removing arguments/attacks

Should we recompute the semantics of updated AFs from scratch?

Introduction	Preliminaries 00000	Algorithms 00000000000	Experiments 000	Conclusions and future work
Motivation				

 Several semantics have been proposed to identify "reasonable" sets of arguments (called *extensions*)



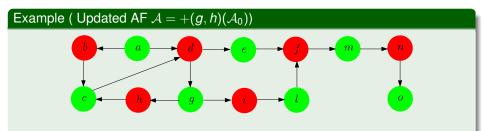
 $E = \{a, c, g, e, l, m, o\}$ is an extension according to the most popular semantics, i.e. *grounded*, *complete*, *ideal*, *preferred*, *stable*, and *semi-stable*

• Extensions change if we update the initial AF by adding/removing arguments/attacks

• Should we recompute the semantics of updated AFs from scratch?

Introduction	Preliminaries 00000	Algorithms 00000000000	Experiments 000	Conclusions and future work
Motivation				

 Several semantics have been proposed to identify "reasonable" sets of arguments (called *extensions*)

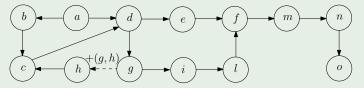


 $E = \{a, c, g, e, l, m, o\}$ is an extension according to the most popular semantics, i.e. *grounded*, *complete*, *ideal*, *preferred*, *stable*, and *semi-stable*

- Extensions change if we update the initial AF by adding/removing arguments/attacks
- Should we recompute the semantics of updated AFs from scratch?

Introduction	Preliminaries 00000	Algorithms 0000000000	Experiments 000	Conclusions and future work
Contributions				
Influenc	ed set			

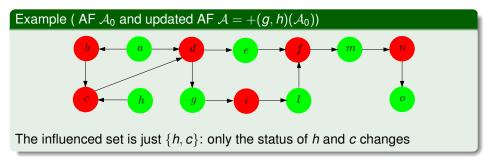
Example (AF \mathcal{A}_0 and updated AF $\mathcal{A} = +(g,h)(\overline{\mathcal{A}_0}))$



The influenced set is just $\{h, c\}$: only the status of h and c changes

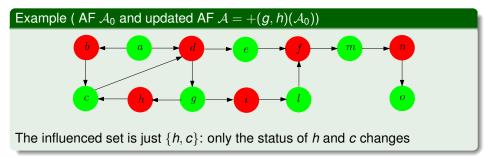
- The influenced set refines the previously proposed set of *affected arguments* [Liao et al. 2011, Baroni et. al. 2014]
- In the example, all the arguments but *a* and *b* turn out to be affected

Introduction	Preliminaries	Algorithms 0000000000	Experiments 000	Conclusions and future work
Contributions				
Influence	ed set			



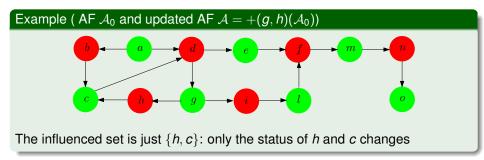
- The influenced set refines the previously proposed set of *affected arguments* [Liao et al. 2011, Baroni et. al. 2014]
- In the example, all the arguments but *a* and *b* turn out to be affected

Introduction 0000	Preliminaries 00000	Algorithms 0000000000	Experiments 000	Conclusions and future work
Contributions				
Influenc	ed set			



- The influenced set refines the previously proposed set of *affected arguments* [Liao et al. 2011, Baroni et. al. 2014]
- In the example, all the arguments but *a* and *b* turn out to be affected

Introduction	Preliminaries	Algorithms 0000000000	Experiments 000	Conclusions and future work
Contributions				
Influenc	ed set			



- The influenced set refines the previously proposed set of *affected arguments* [Liao et al. 2011, Baroni et. al. 2014]
- In the example, all the arguments but *a* and *b* turn out to be affected

Introduction	Preliminaries 00000	Algorithms 0000000000	Experiments 000	Conclusions and future work
Contributions				

Incremental algorithms and experiments

- We formally define the concept of *influenced set* consisting of the arguments whose status could change after an update.
- We focus on the grounded and ideal semantics, which are deterministic (admit exactly one extension)
- We present an incremental algorithm for recomputing the grounded extension; it computes the status of influenced arguments only.
- We present an incremental algorithm for the efficient recomputation of the ideal semantics which takes advantage of both the set of influenced arguments and the efficient algorithm for computing grounded extensions.
- Experimental results show the effectiveness of our approach.

Introduction 0000	Preliminaries	Algorithms 00000000000	Experiments 000	Conclusions and future work
Outline				

Introductio

- Motivation
- Contributions

2

Preliminaries

- Abstract Argumentation Frameworks
- Updates

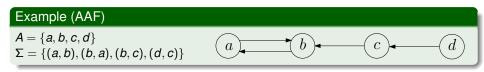
Algorithm

- Influenced Arguments
- Incremental Computation of Grounded Semantics
- Incremental Computation of Ideal Semantics

Experiments

- Discount of the second second
 - References

Introduction	Preliminaries •0000	Algorithms 0000000000	Experiments	Conclusions and future work
Abstract Argumentati	ion Frameworks			
Basic c	oncepts			

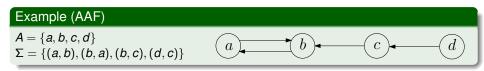


- A set $S \subseteq A$ is *conflict-free* if there are no $a, b \in S$ such that *a attacks b*
- *S* defends a iff $\forall b \in A$ that attacks a there is $c \in S$ that attacks b
- S is admissible if it is conflict-free and it defends all its arguments.

Example (conflict-free and admissible sets)

- $\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}$ are conflict-free
- $\{a\}$ defend a; $\{b, d\}$ defends both b and d
- \emptyset , {a}, {d}, {a, d}, {b, d} are admissible

Introduction	Preliminaries •0000	Algorithms 0000000000	Experiments	Conclusions and future work
Abstract Argumentatio	n Frameworks			
Basic co	oncepts			



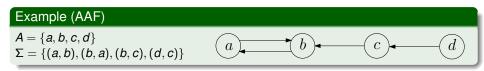
• A set $S \subseteq A$ is *conflict-free* if there are no $a, b \in S$ such that *a attacks b*

- S defends a iff $\forall b \in A$ that attacks a there is $c \in S$ that attacks b
- S is admissible if it is conflict-free and it defends all its arguments.

Example (conflict-free and admissible sets)

- $\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}$ are conflict-free
- $\{a\}$ defend a; $\{b, d\}$ defends both b and d
- $\emptyset, \{a\}, \{d\}, \{a, d\}, \{b, d\}$ are admissible

Introduction	Preliminaries •0000	Algorithms 0000000000	Experiments 000	Conclusions and future work
Abstract Argumentati	on Frameworks			
Basic c	oncepts			



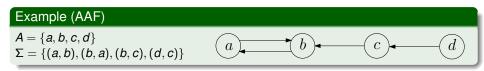
- A set $S \subseteq A$ is *conflict-free* if there are no $a, b \in S$ such that *a attacks b*
- S defends a iff $\forall b \in A$ that attacks a there is $c \in S$ that attacks b
- S is admissible if it is conflict-free and it defends all its arguments.

Example (conflict-free and admissible sets)

- $\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}$ are conflict-free
- $\{a\}$ defend a; $\{b, d\}$ defends both b and d

• \emptyset , {*a*}, {*d*}, {*a*, *d*}, {*b*, *d*} are admissible

Introduction	Preliminaries •0000	Algorithms 0000000000	Experiments	Conclusions and future work
Abstract Argumentatio	n Frameworks			
Basic co	oncepts			



- A set $S \subseteq A$ is *conflict-free* if there are no $a, b \in S$ such that *a attacks b*
- S defends a iff $\forall b \in A$ that attacks a there is $c \in S$ that attacks b
- S is admissible if it is conflict-free and it defends all its arguments.

Example (conflict-free and admissible sets)

- $\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}$ are conflict-free
- $\{a\}$ defend a; $\{b, d\}$ defends both b and d
- \emptyset , {a}, {d}, {a, d}, {b, d} are admissible

Introduction	Preliminaries	Algorithms 0000000000	Experiments	Conclusions and future work
Abstract Argumentation Fra	meworks			

A semantics identifies "reasonable" sets of arguments, called extensions

• A *complete extension* (co) is an admissible set that contains all the arguments that it defends.

A complete extension *S* is said to be:

- preferred (pr) iff it is maximal
- semi-stable (ss) iff $S \cup S^+$ is maximal (S⁺ are arguments attacked by S)
- stable (st) iff it attacks each argument in $A \setminus S$
- grounded (gr) iff it is minimal
- ideal (id) iff it is contained in every preferred extension and it is maximal

Example (semantics for AAF)

complete extensions: $\{d\}, \{a, d\}, \{b, d\}$

preferred extensions: {a, d}, {b, d} semi-stable extensions: {a, d}, {b, d} stable extensions: {a, d}, {b, d}

Introduction	Preliminaries	Algorithms 0000000000	Experiments	Conclusions and future work
Abstract Argumentation Fra	meworks			

A semantics identifies "reasonable" sets of arguments, called extensions

- A *complete extension* (co) is an admissible set that contains all the arguments that it defends.
- A complete extension *S* is said to be:
 - preferred (pr) iff it is maximal
 - semi-stable (ss) iff $S \cup S^+$ is maximal (S⁺ are arguments attacked by S)
 - stable (st) iff it attacks each argument in $A \setminus S$
 - grounded (gr) iff it is minimal
 - ideal (id) iff it is contained in every preferred extension and it is maximal

Example (semantics for AAF)

complete extensions: $\{d\}, \{a, d\}, \{b, d\}$ preferred extensions: $\{a, d\}, \{b, d\}$

semi-stable extensions: {a, d}, {b, d} stable extensions: {a, d}, {b, d}

Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work	
0000	00000	0000000000	000	00	
Abstract Argumentation Frameworks					

A semantics identifies "reasonable" sets of arguments, called extensions

- A *complete extension* (co) is an admissible set that contains all the arguments that it defends.
- A complete extension *S* is said to be:
 - preferred (pr) iff it is maximal
 - semi-stable (ss) iff $S \cup S^+$ is maximal (S^+ are arguments attacked by S)
 - stable (st) iff it attacks each argument in $A \setminus S$
 - grounded (gr) iff it is minimal
 - ideal (id) iff it is contained in every preferred extension and it is maximal

Example (semantics for AAF)

complete extensions: $\{d\}, \{a, d\}, \{b, d\}$ preferred extensions: $\{a, d\}, \{b, d\}$ semi-stable extensions: $\{a, d\}, \{b, d\}$ stable extensions: $\{a, d\}, \{b, d\}$

Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work	
0000	00000	0000000000	000	00	
Abstract Argumentation Frameworks					

A semantics identifies "reasonable" sets of arguments, called extensions

- A *complete extension* (co) is an admissible set that contains all the arguments that it defends.
- A complete extension *S* is said to be:
 - preferred (pr) iff it is maximal
 - semi-stable (ss) iff $S \cup S^+$ is maximal (S^+ are arguments attacked by S)
 - stable (st) iff it attacks each argument in $A \setminus S$
 - grounded (gr) iff it is minimal
 - ideal (id) iff it is contained in every preferred extension and it is maximal

Example (semantics for AAF)

complete extensions: $\{d\}, \{a, d\}, \{b, d\}$ preferred extensions: $\{a, d\}, \{b, d\}$ semi-stable extensions: $\{a, d\}, \{b, d\}$ stable extensions: $\{a, d\}, \{b, d\}$

Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work	
0000	00000	0000000000	000	00	
Abstract Argumentation Frameworks					

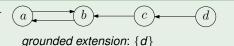
A semantics identifies "reasonable" sets of arguments, called extensions

- A *complete extension* (co) is an admissible set that contains all the arguments that it defends.
- A complete extension *S* is said to be:
 - preferred (pr) iff it is maximal
 - semi-stable (ss) iff $S \cup S^+$ is maximal (S^+ are arguments attacked by S)
 - stable (st) iff it attacks each argument in $A \setminus S$
 - grounded (gr) iff it is minimal

• ideal (id) iff it is contained in every preferred extension and it is maximal

Example (semantics for AAF)

complete extensions: $\{d\}, \{a, d\}, \{b, d\}$ preferred extensions: $\{a, d\}, \{b, d\}$ semi-stable extensions: $\{a, d\}, \{b, d\}$ stable extensions: $\{a, d\}, \{b, d\}$



Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work	
0000	00000	0000000000	000	00	
Abstract Argumentation Frameworks					

A semantics identifies "reasonable" sets of arguments, called extensions

- A *complete extension* (co) is an admissible set that contains all the arguments that it defends.
- A complete extension *S* is said to be:
 - preferred (pr) iff it is maximal
 - semi-stable (ss) iff $S \cup S^+$ is maximal (S^+ are arguments attacked by S)
 - stable (st) iff it attacks each argument in $A \setminus S$
 - grounded (gr) iff it is minimal
 - ideal (id) iff it is contained in every preferred extension and it is maximal

grounded extension: $\{d\}$

ideal extension: {d}

Example (semantics for AAF)

complete extensions: $\{d\}, \{a, d\}, \{b, d\}$ preferred extensions: $\{a, d\}, \{b, d\}$ semi-stable extensions: $\{a, d\}, \{b, d\}$ stable extensions: $\{a, d\}, \{b, d\}$

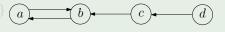
Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work
Abstract Argumentation Fr		000000000	000	

Deterministic (or unique status) semantics

- All the semantics except the stable admit at least one extension
- Grounded and ideal semantics admit exactly one extension
- Semantics gr and id are called deterministic or unique status

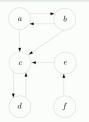
Example (Multiple status vs unique status semantics)

3 complete extensions: {d}, {a, d}, {b, d 2 preferred extensions: {a, d}, {b, d} 2 semi-stable extensions: {a, d}, {b, d} 2 stable extensions: {a, d}, {b, d}



1 grounded extension: {d} 1 ideal extension: {d}

Example (Deterministic semantics)



grounded extension: $\{f\}$

ideal extension: $\{d, f\}$

Introduction 0000	Preliminaries	Algorithms 0000000000	Experiments 000	Conclusions and future work	
Abstract Argumentation Frameworks					

Deterministic (or unique status) semantics

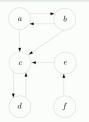
- All the semantics except the stable admit at least one extension
- Grounded and ideal semantics admit exactly one extension
- Semantics gr and id are called deterministic or unique status

Example (Multiple status vs unique status semantics)

3 complete extensions: $\{d\}, \{a, d\}, \{b, d\}$ 2 preferred extensions: $\{a, d\}, \{b, d\}$ 2 semi-stable extensions: $\{a, d\}, \{b, d\}$ 2 stable extensions: $\{a, d\}, \{b, d\}$

1 grounded extension: {d} 1 ideal extension: {d}

Example (Deterministic semantics)



grounded extension: $\{f\}$

ideal extension: $\{d, f\}$

Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work
Abstract Argumentat		0000000000	000	00

Deterministic (or unique status) semantics

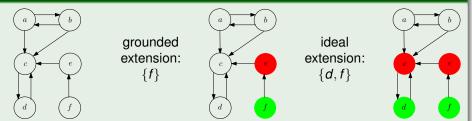
- All the semantics except the stable admit at least one extension
- Grounded and ideal semantics admit exactly one extension
- Semantics gr and id are called deterministic or unique status

Example (Multiple status vs unique status semantics)

3 complete extensions: $\{d\}, \{a, d\}, \{b, d\}$ 2 preferred extensions: $\{a, d\}, \{b, d\}$ 2 semi-stable extensions: $\{a, d\}, \{b, d\}$ 2 stable extensions: $\{a, d\}, \{b, d\}$

1 grounded extension: {d} 1 ideal extension: {d}

Example (Deterministic semantics)

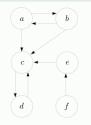


Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work
	00000			
Abstract Argumentation Fr	ameworks			

Extensions and labellings

- Semantics can be also defined in terms of labelling.
- Function $L : A \rightarrow \{IN, OUT, UN\}$ assigns a label to each argument
 - L(a) = IN means a is accepted (i.e., all arguments attacking a are rejected)
 - L(a) = OUT means *a* is rejected (i.e., an argument attacking *a* is accepted)
 - L(a) = UN means that *a* is undecided
- Extension *E* corresponds to the labelling $L = \langle E, E^+, A \setminus (E \cup E^+) \rangle$
- Labelling *L* corresponds to the extension consisting of the arguments labelled as IN

Example (Two complete labellings: the grounded and the ideal labelling)



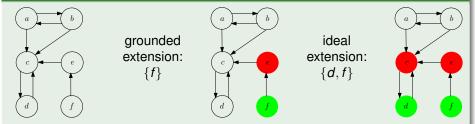
grounded extension: {*f*} ideal extension: {*d*,*f*}

Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work
OOOO Abstract Argumentation Fram		0000000000	000	00

Extensions and labellings

- Semantics can be also defined in terms of *labelling*.
- Function $L : A \rightarrow \{IN, OUT, UN\}$ assigns a label to each argument
 - L(a) = IN means *a* is accepted (i.e., *all* arguments attacking *a* are rejected)
 - L(a) = OUT means *a* is rejected (i.e., an argument attacking *a* is accepted)
 - L(a) = UN means that *a* is undecided
- Extension *E* corresponds to the labelling *L* = ⟨*E*, *E*⁺, *A* \ (*E* ∪ *E*⁺)⟩
- Labelling *L* corresponds to the extension consisting of the arguments labelled as IN

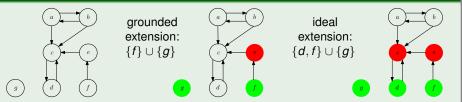
Example (Two complete labellings: the grounded and the ideal labelling)



Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work
Updates				
Updates				

- An *update u* for an AF A_0 consists in modifying A_0 into an AF A by adding or removing arguments or attacks.
- If *E*₀ is an extension for *A*₀ and *A* is obtained by adding (resp. removing) the set *S* of isolated arguments, then *E* = *E*₀ ∪ *S* (resp. *E* = *E*₀ \ *S*)
- We focus on the addition +(a, b) and deletion -(a, b) of an attack (a, b)
- $u(A_0)$ denotes the application of update $u = \pm(a, b)$ to A_0 .
- Multiple updates $\{+(a_1, b_1), \dots, +(a_n, b_n), -(a'_1, b'_1), \dots, -(a'_m, b'_m)\}$ can be simulated by a single attack update

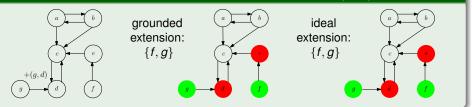
Example (Extensions/labellings after adding the isolated argument g)



Introduction 0000	Preliminaries ○○○○●	Algorithms 0000000000	Experiments 000	Conclusions and future work
Updates				
Updates				

- An *update u* for an AF A_0 consists in modifying A_0 into an AF A by adding or removing arguments or attacks.
- If *E*₀ is an extension for *A*₀ and *A* is obtained by adding (resp. removing) the set *S* of isolated arguments, then *E* = *E*₀ ∪ *S* (resp. *E* = *E*₀ \ *S*)
- We focus on the addition +(a, b) and deletion -(a, b) of an attack (a, b)
- $u(A_0)$ denotes the application of update $u = \pm(a, b)$ to A_0 .
- Multiple updates $\{+(a_1, b_1), \dots, +(a_n, b_n), -(a'_1, b'_1), \dots, -(a'_m, b'_m)\}$ can be simulated by a single attack update

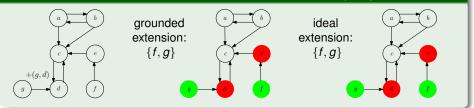
Example (Extensions/labellings after adding the attack +(g, d))



Introduction	Preliminaries	Algorithms 0000000000	Experiments 000	Conclusions and future work
Updates				
Updates				

- An *update u* for an AF A_0 consists in modifying A_0 into an AF A by adding or removing arguments or attacks.
- If *E*₀ is an extension for *A*₀ and *A* is obtained by adding (resp. removing) the set *S* of isolated arguments, then *E* = *E*₀ ∪ *S* (resp. *E* = *E*₀ \ *S*)
- We focus on the addition +(a, b) and deletion -(a, b) of an attack (a, b)
- $u(A_0)$ denotes the application of update $u = \pm(a, b)$ to A_0 .
- Multiple updates $\{+(a_1, b_1), \dots, +(a_n, b_n), -(a'_1, b'_1), \dots, -(a'_m, b'_m)\}$ can be simulated by a single attack update

Example (Extensions/labellings after adding the attack +(g, d))



Introduction	Preliminaries	Algorithms	Experiments 000	Conclusions and future work
Outline				

Introductio

- Motivation
- Contributions

2 F

Preliminaries

- Abstract Argumentation Frameworks
- Updates

3

Algorithms

- Influenced Arguments
- Incremental Computation of Grounded Semantics
- Incremental Computation of Ideal Semantics

Experiments

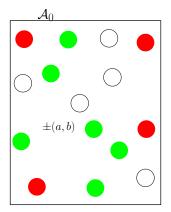
- Conclusions and future work
 - References

Introduction	Preliminaries 00000	Algorithms ••••••	Experiments 000	Conclusions and future work
Influenced Arguments				

Overview of the approach

We have an initial AF A_0 , extension E_0 , and updated $u = \pm(a, b)$ Fundamental Steps:

- Compute the set of arguments of A₀ whose status can change after performing update u (Influenced Set I(u, A₀, E₀))
- Compute the part of A₀ induced by the influenced arguments and additional arguments containing needed information on the "external context" (*Restricted AF R_{sem}(u, A₀, E₀*))
- Compute the extension S_{IN} of the restricted AF using an iterative algorithm (we propose incremental algorithms for grounded and ideal semantics)
- 4) Combine S_{IN} with the initial extension E₀ to get the extension E of the updated AF A = u(A₀)

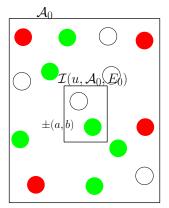


Introduction	Preliminaries	Algorithms •0000000000	Experiments 000	Conclusions and future work
Influenced Arguments				

Overview of the approach

We have an initial AF A_0 , extension E_0 , and updated $u = \pm(a, b)$ Fundamental Steps:

- Compute the set of arguments of A₀ whose status can change after performing update u (Influenced Set I(u, A₀, E₀))
- 2) Compute the part of A_0 induced by the influenced arguments and additional arguments containing needed information on the "external context" (*Restricted AF* $\mathcal{R}_{sem}(u, A_0, E_0)$)
- Compute the extension S_{IN} of the restricted AF using an iterative algorithm (we propose incremental algorithms for grounded and ideal semantics)
- 4) Combine S_{IN} with the initial extension E₀ to get the extension E of the updated AF A = u(A₀)

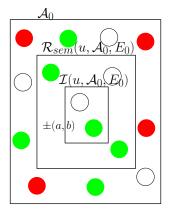


Introduction	Preliminaries	Algorithms •000000000	Experiments 000	Conclusions and future work
Influenced Arguments				

Overview of the approach

We have an initial AF A_0 , extension E_0 , and updated $u = \pm(a, b)$ Fundamental Steps:

- Compute the set of arguments of A₀ whose status can change after performing update u (Influenced Set I(u, A₀, E₀))
- Compute the part of A₀ induced by the influenced arguments and additional arguments containing needed information on the "external context" (*Restricted AF R_{sem}(u, A₀, E₀*))
- Compute the extension S_{IN} of the restricted AF using an iterative algorithm (we propose incremental algorithms for grounded and ideal semantics)
- 4) Combine S_{IN} with the initial extension E₀ to get the extension E of the updated AF A = u(A₀)

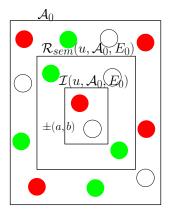


Introduction	Preliminaries	Algorithms ●0000000000	Experiments 000	Conclusions and future work
Influenced Arguments				

Overview of the approach

We have an initial AF A_0 , extension E_0 , and updated $u = \pm(a, b)$ Fundamental Steps:

- Compute the set of arguments of A₀ whose status can change after performing update u (Influenced Set I(u, A₀, E₀))
- Compute the part of A₀ induced by the influenced arguments and additional arguments containing needed information on the "external context" (*Restricted AF R_{sem}(u, A₀, E₀*))
- Compute the extension S_{IN} of the restricted AF using an iterative algorithm (we propose incremental algorithms for grounded and ideal semantics)
- 4) Combine S_{IN} with the initial extension E_0 to get the extension E of the updated AF $\mathcal{A} = u(\mathcal{A}_0)$

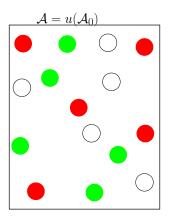


Introduction	Preliminaries	Algorithms ●0000000000	Experiments 000	Conclusions and future work
Influenced Arguments				

Overview of the approach

We have an initial AF A_0 , extension E_0 , and updated $u = \pm(a, b)$ Fundamental Steps:

- Compute the set of arguments of A₀ whose status can change after performing update u (Influenced Set I(u, A₀, E₀))
- Compute the part of A₀ induced by the influenced arguments and additional arguments containing needed information on the "external context" (*Restricted AF R_{sem}(u, A₀, E₀*))
- Compute the extension S_{IN} of the restricted AF using an iterative algorithm (we propose incremental algorithms for grounded and ideal semantics)
- 4) Combine S_{IN} with the initial extension E₀ to get the extension E of the updated AF
 A = u(A₀)



Introduction	Preliminaries 00000	Algorithms	Experiments 000	Conclusions and future work
Influenced Arguments				

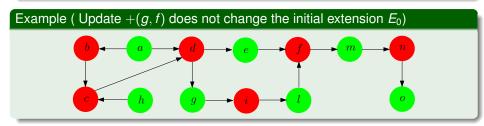
\$\mathcal{E}_S(\mathcal{A})\$ denotes the set of extensions of AF \$\mathcal{A}\$ according to \$\mathcal{S}\$

Proposition (Addition of an attack)

Let u = +(a, b) and $E_0 \in \mathcal{E}_S(\mathcal{A}_0)$ be an extension of \mathcal{A}_0 under semantics S, and L_0 the labelling corresponding to E_0 . Then $E_0 \in \mathcal{E}_S(u(\mathcal{A}_0))$ if

• $S \in \{co, st, gr\}$ and one of the following conditions holds: • $L_0(a) \neq IN$ and $L_0(b) \neq IN$, • $L_0(a) = IN$ and $L_0(b) = OUT$;

• $S \in \{ pr, ss, id \}$ and $L_0(b) = OUT$.



Introduction	Preliminaries 00000	Algorithms	Experiments 000	Conclusions and future work
Influenced Arguments				

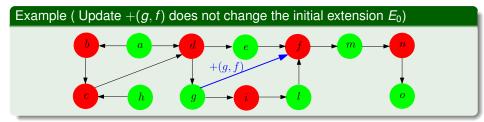
\$\mathcal{E}_S(\mathcal{A})\$ denotes the set of extensions of AF \$\mathcal{A}\$ according to \$\mathcal{S}\$

Proposition (Addition of an attack)

Let u = +(a, b) and $E_0 \in \mathcal{E}_{\mathcal{S}}(\mathcal{A}_0)$ be an extension of \mathcal{A}_0 under semantics \mathcal{S} , and L_0 the labelling corresponding to E_0 . Then $E_0 \in \mathcal{E}_{\mathcal{S}}(u(\mathcal{A}_0))$ if

- $S \in \{co, st, gr\}$ and one of the following conditions holds:
 - $L_0(a) \neq IN$ and $L_0(b) \neq IN$,
 - L₀(a) = IN and L₀(b) = OUT;

•
$$S \in \{ pr, ss, id \}$$
 and $L_0(b) = OUT$.



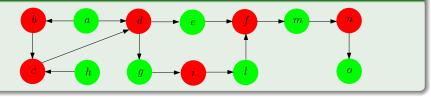
Introduction	Preliminaries	Algorithms	Experiments 000	Conclusions and future work
Influenced Arguments				

\$\mathcal{E}_S(\mathcal{A})\$ denotes the set of extensions of AF \$\mathcal{A}\$ according to \$\mathcal{S}\$

Proposition (Deletion of an attack)

Let u = -(a, b), $S \in \{co, pr, ss, st, gr\}$, and $E_0 \in \mathcal{E}_S(\mathcal{A}_0)$ an extension of \mathcal{A}_0 under S. Then $E_0 \in \mathcal{E}_S(u(\mathcal{A}_0))$ if one of the following conditions holds: 1) $L_0(a) = \text{OUT}$; 2) $L_0(a) = \text{UN}$ and $L_0(b) = \text{OUT}$.

Example (Update -(c, d) does not change the initial extension E_0)



• In these cases we do not need to recompute the semantics

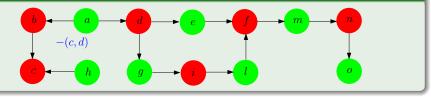
Introduction	Preliminaries	Algorithms	Experiments 000	Conclusions and future work
Influenced Arguments				

• $\mathcal{E}_{\mathcal{S}}(\mathcal{A})$ denotes the set of extensions of AF \mathcal{A} according to \mathcal{S}

Proposition (Deletion of an attack)

Let u = -(a, b), $S \in \{co, pr, ss, st, gr\}$, and $E_0 \in \mathcal{E}_S(\mathcal{A}_0)$ an extension of \mathcal{A}_0 under S. Then $E_0 \in \mathcal{E}_S(u(\mathcal{A}_0))$ if one of the following conditions holds: 1) $L_0(a) = \text{OUT}$; 2) $L_0(a) = \text{UN}$ and $L_0(b) = \text{OUT}$.

Example (Update -(c, d) does not change the initial extension E_0)



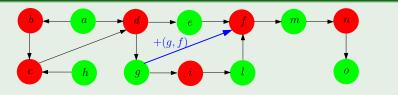
In these cases we do not need to recompute the semantics

Introduction	Preliminaries	Algorithms ○○○●○○○○○○	Experiments	Conclusions and future work
Influenced Arguments				

Influenced set: Intuition

- $\mathcal{I}(u, \mathcal{A}_0, E_0)$) is the *influenced set* of $u = \pm(a, b)$ w.r.t. \mathcal{A}_0 and E_0
- 1) if a condition for extension preservation holds, then $\mathcal{I}(u, \mathcal{A}_0, \mathcal{E}_0) = \emptyset$
- the status of an argument can change only if it is reachable from *b* (that is, *I*(*u*, *A*₀, *E*₀) ⊆ *Reach*_A(*b*))
- if argument z is not reachable from b and z ∈ E₀, then also the status of the arguments attacked by z cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)



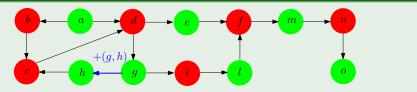
 $\mathcal{I}(+(g,f),\mathcal{A}_0,E_0)=\emptyset$

Introduction	Preliminaries	Algorithms	Experiments 000	Conclusions and future work
Influenced Arguments				

Influenced set: Intuition

- $\mathcal{I}(u, \mathcal{A}_0, E_0)$) is the *influenced set* of $u = \pm(a, b)$ w.r.t. \mathcal{A}_0 and E_0
- 1) if a condition for extension preservation holds, then $\mathcal{I}(u, \mathcal{A}_0, \mathcal{E}_0) = \emptyset$
- the status of an argument can change only if it is reachable from *b* (that is, *I*(*u*, *A*₀, *E*₀) ⊆ *Reach*_A(*b*))
- 3) if argument z is not reachable from b and $z \in E_0$, then also the status of the arguments attacked by z cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)



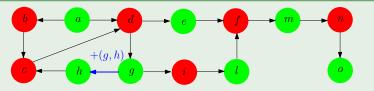
 $\begin{aligned} \mathcal{I}(+(g,h),\mathcal{A}_0,E_0) \subseteq \textit{Reach}(h) &= (A \setminus \{a,b\}) = \{c,d,e,f,g,h,i,l,m,n,o\} \\ \text{We have that } a,b \not\in \mathcal{I}(+(g,h),\mathcal{A}_0,E_0) \end{aligned}$

Introduction	Preliminaries	Algorithms ○○○●○○○○○○	Experiments	Conclusions and future work
Influenced Arguments				

Influenced set: Intuition

- $\mathcal{I}(u, \mathcal{A}_0, E_0)$) is the *influenced set* of $u = \pm(a, b)$ w.r.t. \mathcal{A}_0 and E_0
- 1) if a condition for extension preservation holds, then $\mathcal{I}(u, \mathcal{A}_0, \mathcal{E}_0) = \emptyset$
- the status of an argument can change only if it is reachable from b (that is, *I*(*u*, *A*₀, *E*₀) ⊆ *Reach*₄(b))
- if argument z is not reachable from b and z ∈ E₀, then also the status of the arguments attacked by z cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)



 $d \notin \mathcal{I}(+(g,h), \mathcal{A}_0, E_0)$ since it is attacked by $a \in E_0$ and a is not reachable from h. Thus the arguments that can be reached only using d cannot belong to $\mathcal{I}(+(g,h), \mathcal{A}_0, E_0)$. \rightarrow **The influenced set is** $\mathcal{I}(+(g,h), \mathcal{A}_0, E_0) = \{h, c\}$

Introduction	Preliminaries 00000	Algorithms	Experiments 000	Conclusions and future work
Influenced Arguments				

• $\mathcal{I}(\pm(a, b), \mathcal{A}_0, E_0)$ is the set of arguments that can be reached from *b* without using any intermediate argument *y* whose status is known to be OUT because it is determined by an argument $z \in E_0$ which is not reachable from *b*

Definition (Influenced set)

Influenced set: Definition

Let $A = \langle A, \Sigma \rangle$ be an AF, $u = \pm(a, b)$ an update, E an extension of A under a given semantics S, and let

•
$$\mathcal{I}_{0}(u, \mathcal{A}, E) = \begin{cases} \emptyset \text{ if } E \in \mathcal{E}_{\mathcal{S}}(u(\mathcal{A})) \text{ [Prop. 1/2] or} \\ \exists (z, b) \in \Sigma \text{ s.t. } z \in E \land z \notin \text{Reach}_{\mathcal{A}}(b); \\ \{b\} \text{ otherwise;} \end{cases}$$

• $\mathcal{I}_{i+1}(u, \mathcal{A}, E) = \mathcal{I}_i(u, \mathcal{A}, E) \cup \{y \mid \exists (x, y) \in \Sigma \text{ s.t. } x \in \mathcal{I}_i(u, \mathcal{A}, E) \land \exists (z, y) \in \Sigma \text{ s.t. } z \in E \land z \notin \text{Reach}(b) \}.$

The influenced set of u w.r.t. A and E is $\mathcal{I}(u, A, E) = \mathcal{I}_n(u, A, E)$ such that $\mathcal{I}_n(u, A, E) = \mathcal{I}_{n+1}(u, A, E)$.

 Introduction
 Preliminaries
 Algorithms
 Experiments

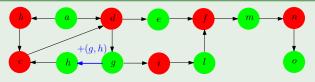
 0000
 00000
 00000
 000

Conclusions and future work

Incremental Computation of Grounded Semantics

Restricted AF for grounded semantics

- Given an AF A₀, its grounded extension E₀, and an update u = ±(a, b), the grounded semantics is recomputed for a small part of the initial AF, called restricted AF and denoted R_{gr}(u, A₀, E₀)
- \$\mathcal{R}_{gr}(u, A_0, E_0)\$ consists of the subgraph of \$u(A_0)\$ induced by \$\mathcal{I}(u, A_0, E_0)\$
 \$plus additional nodes/edges representing the "external context":
 - 1) if there is in $u(\mathcal{A}_0)$ an edge from a node $a \notin \mathcal{I}(u, \mathcal{A}_0, \mathcal{E}_0)$ to a node
 - $b \in \mathcal{I}(u, \mathcal{A}_0, E_0)$, we add edge (a, b) if the status of a is IN,
 - 2) if there is in $u(\mathcal{A}_0)$ an edge from a node $e \notin \mathcal{I}(u, \mathcal{A}_0, E_0)$ to a node
 - $c\in\mathcal{I}(u,\mathcal{A}_0,E_0)$ such that e in UN, we add edge (c,c) to $\mathcal{R}_{\mathrm{gr}}(u,\mathcal{A}_0,E_0)$



 Introduction
 Preliminaries
 Algorithms
 Experiments

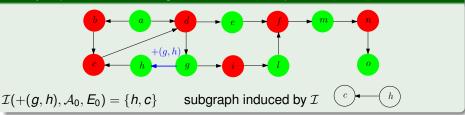
 0000
 00000
 00000
 000

Conclusions and future work

Incremental Computation of Grounded Semantics

Restricted AF for grounded semantics

- Given an AF A₀, its grounded extension E₀, and an update u = ±(a, b), the grounded semantics is recomputed for a small part of the initial AF, called restricted AF and denoted R_{gr}(u, A₀, E₀)
- \$\mathcal{R}_{gr}(u, \mathcal{A}_0, E_0)\$ consists of the subgraph of \$u(\mathcal{A}_0)\$ induced by \$\mathcal{I}(u, \mathcal{A}_0, E_0)\$
 \$plus additional nodes/edges representing the "external context":
 - 1) if there is in $u(\mathcal{A}_0)$ an edge from a node $a \notin \mathcal{I}(u, \mathcal{A}_0, \mathcal{E}_0)$ to a node
 - $D \in \mathcal{I}(U, \mathcal{A}_0, \mathcal{L}_0)$, we add edge (a, b) if the status of a is in,
 - $c \in \mathcal{T}(u, A_0, E_0)$ an edge from a flode $e \notin \mathcal{I}(u, A_0, E_0)$ to a flode $c \in \mathcal{T}(u, A_0, E_0)$ to $\mathcal{R}_{-}(u, A_0, E_0)$



 Introduction
 Preliminaries
 Algorithms
 Experiments

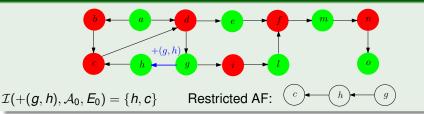
 0000
 00000
 0000
 000

Conclusions and future work

Incremental Computation of Grounded Semantics

Restricted AF for grounded semantics

- Given an AF A₀, its grounded extension E₀, and an update u = ±(a, b), the grounded semantics is recomputed for a small part of the initial AF, called restricted AF and denoted R_{gr}(u, A₀, E₀)
- $\mathcal{R}_{gr}(u, \mathcal{A}_0, E_0)$ consists of the subgraph of $u(\mathcal{A}_0)$ induced by $\mathcal{I}(u, \mathcal{A}_0, E_0)$
- plus additional nodes/edges representing the "external context":
 - 1) if there is in $u(A_0)$ an edge from a node $a \notin \mathcal{I}(u, A_0, E_0)$ to a node $b \in \mathcal{I}(u, A_0, E_0)$, we add edge (a, b) if the status of a is IN,
 - 2) if there is in $u(A_0)$ an edge from a node $e \notin \mathcal{I}(u, A_0, E_0)$ to a node $c \in \mathcal{I}(u, A_0, E_0)$ such that e in UN, we add edge (c, c) to $\mathcal{R}_{gr}(u, A_0, E_0)$



 Introduction
 Preliminaries
 Algorithms
 Experiments

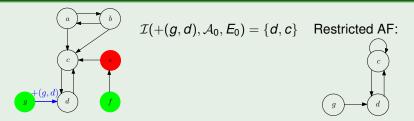
 0000
 00000
 00000
 0000

Conclusions and future work

Incremental Computation of Grounded Semantics

Restricted AF for grounded semantics

- Given an AF A₀, its grounded extension E₀, and an update u = ±(a, b), the grounded semantics is recomputed for a small part of the initial AF, called restricted AF and denoted R_{gr}(u, A₀, E₀)
- $\mathcal{R}_{gr}(u, \mathcal{A}_0, E_0)$ consists of the subgraph of $u(\mathcal{A}_0)$ induced by $\mathcal{I}(u, \mathcal{A}_0, E_0)$
- plus additional nodes/edges representing the "external context":
 - 1) if there is in $u(A_0)$ an edge from a node $a \notin \mathcal{I}(u, A_0, E_0)$ to a node $b \in \mathcal{I}(u, A_0, E_0)$, we add edge (a, b) if the status of a is IN,
 - 2) if there is in $u(A_0)$ an edge from a node $e \notin \mathcal{I}(u, A_0, E_0)$ to a node $c \in \mathcal{I}(u, A_0, E_0)$ such that e in UN, we add edge (c, c) to $\mathcal{R}_{gr}(u, A_0, E_0)$



Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work
		0000000000		

Incremental Computation of Grounded Semantics

Incremental algorithm for grounded semantics

Algorithm Incr-Grounded-Sem (A_0, u, E_0)

Input: AF $A_0 = \langle A_0, \Sigma_0 \rangle$, $u = \pm (a, b)$, grounded extension E_0 ;

Output: Revised grounded extension *E*

- 1: Let $S = \mathcal{I}(u, \tilde{A}_0, E_0)$; // Compute the influenced set
- 2: Let $\mathcal{A}_d = \langle A_d, \Sigma_d \rangle = \mathcal{R}_{gr}(u, \mathcal{A}_0, E_0)$; // Compute the restricted AF
- 3: if $(A_d = \emptyset)$ then $E = E_0$; // If restricted AF is empty, return the initial extension E_0
- 4: else $E = (E_0 \setminus S) \cup IFP(A_d, E_0 \cap A_d)$; // Merge E_0 with the extension of the restricted AF

Function *IFP*(*A*, *E*₀) // *Incremental FixPoint*

Input: AF $\mathcal{A} = \langle A, \Sigma \rangle$, Extension E_0 ;

Output: Extension E

- 1: $S_{\text{IN}} = \Delta_{\text{IN}} = \{ a \mid \exists (c, a) \in \Sigma \}; // \text{ Compute the starting set of arguments labelled IN}$
- 2: if $(S_{\text{IN}} = \emptyset)$ return S_{IN} ;
- 3: $S_{OUT} = \Delta_{OUT} = \Delta_{IN}^+$; // Arguments attacked by Δ_{IN} are OUT
- 4: repeat
- 5: $\Delta_{IN} = G(S_{OUT}, \Delta_{OUT}) \setminus S_{IN}$; // Infer new arguments that can be labelled IN
- 6: $\Delta_{OUT} = \Delta_{IN}^+ \setminus S_{OUT}$; // New arguments labelled OUT
- 7: $S_{IN} = S_{IN} \cup \Delta_{IN}$; // Update the set of arguments labelled IN
- 8: $S_{\text{OUT}} = S_{\text{OUT}} \cup \Delta_{\text{OUT}}; // ... \text{ and OUT}$
- 9: **until** $\Delta_{IN} \subseteq E_0 //$ Until no new labels (w.r.t. the initial labelling) are inferred 10: if $(\Delta_{IN} = \emptyset)$ return S_{IN} ;
- 11: else return $S_{IN} \cup (E_0 \setminus (S_{IN} \cup S_{OUT}))$; // Merge the inferred labels with existing ones

Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work
		0000000000		

Incremental Computation of Grounded Semantics

Incremental algorithm for grounded semantics

Algorithm Incr-Grounded-Sem (A_0, u, E_0)

Input: AF $A_0 = \langle A_0, \Sigma_0 \rangle$, $u = \pm (a, b)$, grounded extension E_0 ;

Output: Revised grounded extension *E*

- 1: Let $S = \mathcal{I}(u, \tilde{A}_0, E_0)$; // Compute the influenced set
- 2: Let $\mathcal{A}_d = \langle A_d, \Sigma_d \rangle = \mathcal{R}_{gr}(u, \mathcal{A}_0, E_0)$; // Compute the restricted AF
- 3: if $(A_d = \emptyset)$ then $E = E_0$; // If restricted AF is empty, return the initial extension E_0
- 4: else $E = (E_0 \setminus S) \cup IFP(A_d, E_0 \cap A_d)$; // Merge E_0 with the extension of the restricted AF

Function *IFP*(*A*, *E*₀) // *Incremental FixPoint*

Input: AF $\mathcal{A} = \langle A, \Sigma \rangle$, Extension E_0 ;

Output: Extension E

- 1: $S_{\text{IN}} = \Delta_{\text{IN}} = \{ a \mid \exists (c, a) \in \Sigma \}; // \text{Compute the starting set of arguments labelled IN}$
- 2: if $(S_{IN} = \emptyset)$ return S_{IN} ;
- 3: $S_{OUT} = \Delta_{OUT} = \Delta_{IN}^+$; // Arguments attacked by Δ_{IN} are OUT
- 4: repeat
- 5: $\Delta_{IN} = G(S_{OUT}, \Delta_{OUT}) \setminus S_{IN}$; // Infer new arguments that can be labelled IN
- 6: $\Delta_{OUT} = \Delta_{IN}^+ \setminus S_{OUT}$; // New arguments labelled OUT
- 7: $S_{IN} = S_{IN} \cup \Delta_{IN}$; // Update the set of arguments labelled IN
- 8: $S_{\text{OUT}} = S_{\text{OUT}} \cup \Delta_{\text{OUT}}; // ... \text{ and OUT}$
- 9: until $\Delta_{IN} \subseteq E_0$ // Until no new labels (w.r.t. the initial labelling) are inferred
- 10: if $(\Delta_{IN} = \emptyset)$ return S_{IN} ;
- 11: else return $S_{IN} \cup (E_0 \setminus (S_{IN} \cup S_{OUT}))$; // Merge the inferred labels with existing ones

Preliminaries

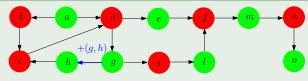
Algorithms

Experiments 000 Conclusions and future work

Incremental Computation of Grounded Semantics

Example 1 of incremental computation

Example (From the initial extension and the update to the revised extension)



Influenced set $\mathcal{I}(+(g, h), \mathcal{A}_0, E_0) = \{h, c\}$ Restricted AF: $(c) \leftarrow (h) \leftarrow (g)$

Extension for the restricted AF: Revised extension for the updated AF:

Preliminaries

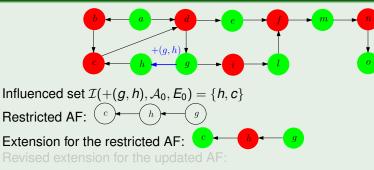
Algorithms

Experiments 000 Conclusions and future work

Incremental Computation of Grounded Semantics

Example 1 of incremental computation

Example (From the initial extension and the update to the revised extension)



Preliminaries

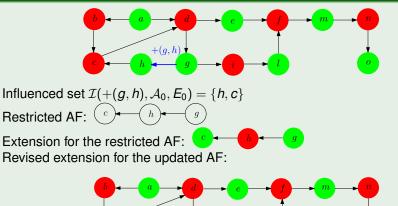
Algorithms

Experiments 000 Conclusions and future work

Incremental Computation of Grounded Semantics

Example 1 of incremental computation

Example (From the initial extension and the update to the revised extension)



Preliminaries

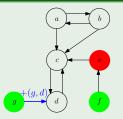
Algorithms

Experiments 000 Conclusions and future work

Incremental Computation of Grounded Semantics

Example 2 of incremental computation

Example (From the initial extension and the update to the revised extension)



Influenced set $\mathcal{I}(+(g, d), \mathcal{A}_0, E_0) = \{d, c\}$

Extension for the restricted AF:

Revised extension for the updated AF:

Preliminaries

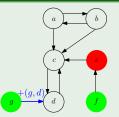
Algorithms

Experiments 000 Conclusions and future work

Incremental Computation of Grounded Semantics

Example 2 of incremental computation

Example (From the initial extension and the update to the revised extension)



Influenced set $\mathcal{I}(+(g, d), \mathcal{A}_0, E_0) = \{d, c\}$

Extension for the restricted AF:

Revised extension for the updated AF:

Preliminaries

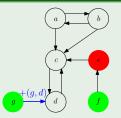
Algorithms

Experiments 000 Conclusions and future work

Incremental Computation of Grounded Semantics

Example 2 of incremental computation

Example (From the initial extension and the update to the revised extension)

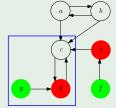


Influenced set $\mathcal{I}(+(g, d), \mathcal{A}_0, E_0) = \{d, c\}$

Restricted AF:

Extension for the restricted AF:

Revised extension for the updated AF:

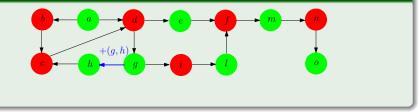


Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work
		00000000000		
Incremental Computation of	f Ideal Semantics			

Restricted AF for ideal semantics R_{id}(u, A₀, E₀)

- $\mathcal{R}_{gr}(u, \mathcal{A}_0, E_0)$ consists of the subgraph of $u(\mathcal{A}_0)$ induced by $\mathcal{I}(u, \mathcal{A}_0, E_0)$
- plus additional nodes/edges representing the "external context":
 - 1) if there is in $u(A_0)$ an edge from a node $a \notin \mathcal{I}(u, A_0, E_0)$ to a node $b \in \mathcal{I}(u, A_0, E_0)$, we add edge (a, b) if the status of a is IN,
 - 2) all nodes and edges occurring in paths (of any length) ending in $\mathcal{I}(u, A_0, E_0)$ whose nodes outside $\mathcal{I}(u, A_0, E_0)$ are all labeled as UN.

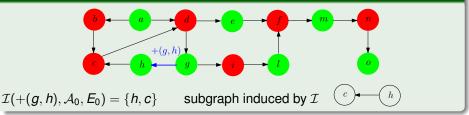
Example (Restricted AF for ideal semantics)



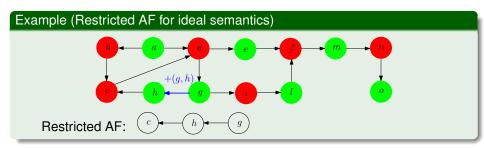
Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work
		00000000000		
Incremental Computation of	Ideal Semantics			

- Restricted AF for ideal semantics R_{id}(u, A₀, E₀)
- $\mathcal{R}_{gr}(u, \mathcal{A}_0, E_0)$ consists of the subgraph of $u(\mathcal{A}_0)$ induced by $\mathcal{I}(u, \mathcal{A}_0, E_0)$
- plus additional nodes/edges representing the "external context":
 - if there is in u(A₀) an edge from a node a ∉ I(u, A₀, E₀) to a node b ∈ I(u, A₀, E₀), we add edge (a, b) if the status of a is IN,
 - 2) all nodes and edges occurring in paths (of any length) ending in $\mathcal{I}(u, A_0, E_0)$ whose nodes outside $\mathcal{I}(u, A_0, E_0)$ are all labeled as UN.

Example (Restricted AF for ideal semantics)



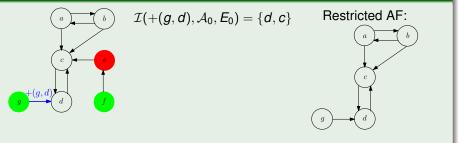
- Restricted AF for ideal semantics R_{id}(u, A₀, E₀)
- $\mathcal{R}_{gr}(u, \mathcal{A}_0, E_0)$ consists of the subgraph of $u(\mathcal{A}_0)$ induced by $\mathcal{I}(u, \mathcal{A}_0, E_0)$
- plus additional nodes/edges representing the "external context":
 - if there is in u(A₀) an edge from a node a ∉ I(u, A₀, E₀) to a node b ∈ I(u, A₀, E₀), we add edge (a, b) if the status of a is IN,
 - 2) all nodes and edges occurring in paths (of any length) ending in $\mathcal{I}(u, A_0, E_0)$ whose nodes outside $\mathcal{I}(u, A_0, E_0)$ are all labeled as UN.



Incremental Compute	ation of Ideal Semantics			
		00000000000		
Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work

- Restricted AF for ideal semantics $\mathcal{R}_{id}(u, \mathcal{A}_0, E_0)$
- $\mathcal{R}_{gr}(u, \mathcal{A}_0, E_0)$ consists of the subgraph of $u(\mathcal{A}_0)$ induced by $\mathcal{I}(u, \mathcal{A}_0, E_0)$
- plus additional nodes/edges representing the "external context":
 - 1) if there is in $u(A_0)$ an edge from a node $a \notin \mathcal{I}(u, A_0, E_0)$ to a node $b \in \mathcal{I}(u, A_0, E_0)$, we add edge (a, b) if the status of a is IN,
 - 2) all nodes and edges occurring in paths (of any length) ending in $\mathcal{I}(u, \mathcal{A}_0, E_0)$ whose nodes outside $\mathcal{I}(u, \mathcal{A}_0, E_0)$ are all labeled as UN.

Example (Restricted AF for ideal semantics)



Introduction	Preliminaries	Algorithms ○○○○○○○○●	Experiments	Conclusions and future work
Incremental Computati	ion of Ideal Semantics			
Increme	ental algori [.]	thm for ideal	semantics	

Algorithm Incr-Ideal-Sem (A_0, u, E_0)
Input: AF $A_0 = \langle A_0, \Sigma_0 \rangle$, $u = \pm (a, b)$, Ideal extension E_0 ;
Output: Revised ideal extension <i>E</i> ;
1: Let $A = u(A_0)$;
2: $S = \mathcal{I}(u, A_0, E_0)$; // Compute the influenced set
3: $E = E_0 \setminus S$; // The status of influenced arguments needs to be computed
4: if $(S = \emptyset)$ then return // If the influenced set is empty, done
5: while $(S \neq \emptyset)$ do
6: $\mathcal{A}_d = \langle A_d, \Sigma_d \rangle = \mathcal{R}_{ar}(u, \mathcal{A}_0, E);$ // Compute the restricted AF for grounded semantics
7: $\Delta_{IN} = IFP(\mathcal{A}_d, E \cap \mathcal{A}_d)$; // Computed the grounded semantics
8: $S = S \setminus (\Delta_{IN} \cup \Delta_{N}^{+});$ // Remove from decided arguments
9: $E = E \cup \Delta_{IN}$; // Update the extension being computed
10: $A_d = \mathcal{R}_{id}(u, A_0, E); //$ Compute the restricted AF for ideal semantics
11: Select an argument $c \in S$:
12: if \exists successful <i>CWS</i> $w \in CW(c, A_d, E)$ then
13: $\Delta_{IN} = PRO(w)$; // A Coherent Winning Strategy (CWS) proves whether
14: $S = S \setminus (\Delta_{IN} \cup \Delta_{IN}^+); //$ a list of arguments belong to the ideal extension
15: $E = E \cup \Delta_{\text{IN}};$
16: else $S = S \setminus \{c\}$; // Otherwise, <i>c</i> is not in the ideal extension

Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work	
		0000000000			
Incremental Computation of Ideal Semantics					

Incremental algorithm for ideal semantics

Algorithm Incr-Ideal-Sem (A_0, u, E_0) **Input:** AF $A_0 = \langle A_0, \Sigma_0 \rangle$, $u = \pm (a, b)$, Ideal extension E_0 ; **Output:** Revised ideal extension E; 1: Let $\mathcal{A} = u(\mathcal{A}_0)$: 2: $S = \mathcal{I}(u, A_0, E_0)$; // Compute the influenced set 3: $E = E_0 \setminus S$; // The status of influenced arguments needs to be computed 4: if $(S = \emptyset)$ then return // If the influenced set is empty, done 5: while $(S \neq \emptyset)$ do 6: $\mathcal{A}_d = \langle A_d, \Sigma_d \rangle = \mathcal{R}_{ar}(u, \mathcal{A}_0, E);$ // Compute the restricted AF for grounded semantics $\Delta_{IN} = IFP(A_d, E \cap A_d); // Computed the grounded semantics$ 7: $S = S \setminus (\Delta_{IN} \cup \Delta_{IN}^+)$; // Remove from decided arguments 8: 9: $E = E \cup \Delta_{IN}$; // Update the extension being computed

Introduction	Preliminaries	Algorithms	Experiments	Conclusions and future work
		0000000000		
In an an a shall Community	ation of Island Compation			

Incremental algorithm for ideal semantics

Algorithm Incr-Ideal-Sem (A_0, u, E_0) **Input:** AF $A_0 = \langle A_0, \Sigma_0 \rangle$, $u = \pm (a, b)$, Ideal extension E_0 ; **Output:** Revised ideal extension E; 1: Let $\mathcal{A} = u(\mathcal{A}_0)$: 2: $S = \mathcal{I}(u, A_0, E_0)$; // Compute the influenced set 3: $E = E_0 \setminus S$; // The status of influenced arguments needs to be computed 4: if $(S = \emptyset)$ then return // If the influenced set is empty, done 5: while $(S \neq \emptyset)$ do $A_d = \langle A_d, \Sigma_d \rangle = \mathcal{R}_{gr}(u, A_0, E);$ // Compute the restricted AF for grounded semantics 6: 7: $\Delta_{IN} = IFP(A_d, E \cap A_d); //$ Computed the grounded semantics $S = S \setminus (\Delta_{IN} \cup \Delta_{IN}^+)$; // Remove from decided arguments 8: 9: $E = E \cup \Delta_{IN}$; // Update the extension being computed $\mathcal{A}_d = \mathcal{R}_{id}(u, \mathcal{A}_0, E)$; // Compute the restricted AF for ideal semantics 10: 11: Select an argument $c \in S$; 12: if \exists successful *CWS* $w \in CW(c, A_d, E)$ then 13: $\Delta_{IN} = PRO(w)$; // A Coherent Winning Strategy (CWS) proves whether 14: $S = S \setminus (\Delta_{IN} \cup \Delta_{IN}^+)$; // a list of arguments belong to the ideal extension 15: $E = E \cup \Delta_{\text{IN}}$: else $S = S \setminus \{c\}$; // Otherwise, c is not in the ideal extension 16:

Introduction	Preliminaries	Algorithms 00000000000	Experiments	Conclusions and future work
Outline	e			
• Mo	luction tivation ntributions			
• Ab	ninaries stract Argumenta dates	tion Frameworks		
3 Algori	thms			

- Influenced Arguments
- Incremental Computation of Grounded Semantics
- Incremental Computation of Ideal Semantics

Experiments

- Conclusions and future work
 - References

Introduction 0000	Preliminaries	Algorithms	Experiments •OO	Conclusions and future work
Experimental validat	ion			
Datasets and algorithms				

Datasets

• For grounded semantics, datasets from ICCMA (International Competition on Computational Models of Argumentation)

- REAL : 19 AFs $\langle A_0, \Sigma_0 \rangle$ with $|A_0| \in [5K, 100K]$ and $|\Sigma_0| \in [7K, 143K]$
- SYN1 : 24 AFs $\langle A_0, \Sigma_0 \rangle$ with $|A_0| \in [1K, 4K]$ and $|\Sigma_0| \in [14K, 172K]$
- For ideal semantics, SYN2 consists of 20 AFs with |*A*₀| ∈ {50, 75, ... 175} laorithms:
- **BaseG** computes the grounded extension *E* of the updated AF $u(A_0)$ from scratch: it finds the fixpoint of the characteristic function of an AF as implemented in the libraries of the *Tweety* Project
- **Basel** computes the ideal extension *E* of the updated AF $u(A_0)$ from scratch: it uses the algorithm implemented by Dung-O-Matic engine
- *Incr-Grounded-Sem* (*IncrG*) incrementally computes the grounded extension *E* starting from *E*₀ and the update
- *Incr-Ideal-Sem* (*IncrI*) incrementally computes the ideal extension *E* starting from *E*₀ and the update

Introduction 0000	Preliminaries 00000	Algorithms 0000000000	Experiments •OO	Conclusions and future work	
Experimental validat	ion				
Datasets and algorithms					

Datasets

• For grounded semantics, datasets from ICCMA (International Competition on Computational Models of Argumentation)

- REAL : 19 AFs $\langle A_0, \Sigma_0 \rangle$ with $|A_0| \in [5K, 100K]$ and $|\Sigma_0| \in [7K, 143K]$
- SYN1:24 AFs $\langle A_0, \Sigma_0 \rangle$ with $|A_0| \in [1K, 4K]$ and $|\Sigma_0| \in [14K, 172K]$
- For ideal semantics, SYN2 consists of 20 AFs with $|A_0| \in \{50, 75, \dots 175\}$

Algorithms:

- **BaseG** computes the grounded extension *E* of the updated AF *u*(*A*₀) from scratch: it finds the fixpoint of the characteristic function of an AF as implemented in the libraries of the *Tweety* Project
- **Basel** computes the ideal extension *E* of the updated AF *u*(*A*₀) from scratch: it uses the algorithm implemented by Dung-O-Matic engine
- *Incr-Grounded-Sem* (*IncrG*) incrementally computes the grounded extension *E* starting from *E*₀ and the update
- *Incr-Ideal-Sem* (*IncrI*) incrementally computes the ideal extension *E* starting from *E*₀ and the update

Introduction 0000	Preliminaries	Algorithms 0000000000	Experiments •OO	Conclusions and future work
Experimental validat	tion			
Datase	ts and algo	rithms		

Datasets

• For grounded semantics, datasets from ICCMA (International Competition on Computational Models of Argumentation)

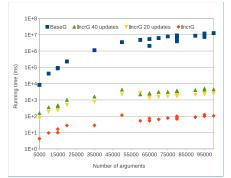
- REAL : 19 AFs $\langle A_0, \Sigma_0 \rangle$ with $|A_0| \in [5K, 100K]$ and $|\Sigma_0| \in [7K, 143K]$
- SYN1:24 AFs $\langle A_0, \Sigma_0 \rangle$ with $|A_0| \in [1K, 4K]$ and $|\Sigma_0| \in [14K, 172K]$
- For ideal semantics, SYN2 consists of 20 AFs with $|A_0| \in \{50, 75, \dots 175\}$

Algorithms:

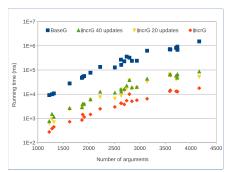
- **BaseG** computes the grounded extension *E* of the updated AF *u*(*A*₀) from scratch: it finds the fixpoint of the characteristic function of an AF as implemented in the libraries of the *Tweety* Project
- **Basel** computes the ideal extension *E* of the updated AF *u*(*A*₀) from scratch: it uses the algorithm implemented by Dung-O-Matic engine
- *Incr-Grounded-Sem* (*IncrG*) incrementally computes the grounded extension *E* starting from *E*₀ and the update
- *Incr-Ideal-Sem* (*IncrI*) incrementally computes the ideal extension *E* starting from *E*₀ and the update

Introduction	Preliminaries	Algorithms 0000000000	Experiments OOO	Conclusions and future work
Experimental validation				

Experiments for grounded semantics



Run times (ms) of BaseG and IncrG for 1, 20, and 40 updates over REAL

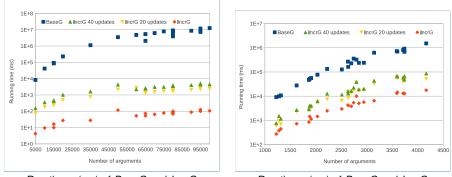


Run times (ms) of *BaseG* and *IncrG* for 1, 20, and 40 updates over SYN1

• *IncrG* and *IncrI* compute extensions of AFs updated by a set *U* of (simultaneous) updates by reducing the application of $U = \{+(a_1, b_1), \ldots, +(a_n, b_n), -(a'_1, b'_1), \ldots, -(a'_m, b'_m)\}$ on AF A_0 to the application of a single attack update on an AF obtained from A_0

Introduction	Preliminaries	Algorithms	Experiments OOO	Conclusions and future work
Experimental validation				

Experiments for grounded semantics



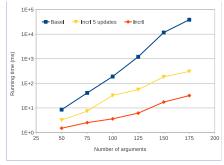
Run times (ms) of *BaseG* and *IncrG* for 1, 20, and 40 updates over REAL

Run times (ms) of *BaseG* and *IncrG* for 1, 20, and 40 updates over SYN1

IncrG and IncrI compute extensions of AFs updated by a set U of (simultaneous) updates by reducing the application of U = {+(a₁, b₁), ..., +(a_n, b_n), -(a'₁, b'₁), ..., -(a'_m, b'_m)} on AF A₀ to the application of a single attack update on an AF obtained from A₀

Introduction	Preliminaries	Algorithms 0000000000	Experiments	Conclusions and future work
Experimental validation				

Experiments for ideal semantics



Run times (ms) of *Basel* and *Incrl* for 1 and 5 updates over SYN2

- Linear improvements for grounded semantics
- Exponential improvements for ideal semantics (whose computation from scratch is exponential)

Introduction	Preliminaries 00000	Algorithms 00000000000	Experiments	Conclusions and future work
Outline				
 Introduction Motivation Contribution 	tion			
PreliminaAbstracUpdate	ct Argumentation	n Frameworks		
Increm	nced Arguments nental Computati	ion of Grounded S ion of Ideal Seman		

Experiments

• References

Introduction 0000	Preliminaries	Algorithms 00000000000	Experiments 000	Conclusions and future work ●○
Conclusions and futu	ire work			
• •				

Conclusions and future work

- We presented two incremental algorithms for computing deterministic extensions of updated AFs
- The algorithms exploit the initial extension of an AF for computing the set of arguments influenced by an update,
- and for detecting early termination conditions during the recomputation of the status of the arguments.
- The technique can be used in the case of general multiple updates.
- The experiments showed that the incremental computation outperforms that of the base (non-incremental) computation
- The definition of influenced set substantially restricts the portion of the AF to be analysed for recomputing the semantics after an update.
- Future work: application of the technique to other (multiple status) semantics.

Introduction	Preliminaries	Algorithms 0000000000	Experiments 000	Conclusions and future work

Thank you!

... any question?

Introduction	Preliminaries	Algorithms 0000000000	Experiments 000	Conclusions and future work
References				
<u> </u>				

Selected References

Phan Minh Dung.

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

Bei Shui Liao, Li Jin, Robert C. Koons.

Dynamics of argumentation systems: A division-based method. *Artif. Intell.*, 175(11), 1790–1814, (2011).

Baroni, P., Giacomin, M., Liao, B.

On topology-related properties of abstract argumentation semantics. A correction and extension to dynamics of argumentation systems: A division-based method. Artificial Intelligence 212, 104–115 (2014)