
Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Deterministic
Extensions for Dynamic Argumentation Frameworks

Sergio Greco and Francesco Parisi

email:{greco, fparisi}@dimes.unical.it
Department of Informatics, Modeling, Electronics and System Engineering

University of Calabria
Italy

15th European Conference On Logics In Artificial Intelligence
November 9-11, 2016

Larnaca, Cyprus

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Motivation

Argumentation in AI

A general way for representing arguments and relationships (rebuttals)
between them
It allows representing dialogues, making decisions, and handling
inconsistency and uncertainty

Abstract Argumentation Framework (AF) [Dung 1995]: arguments are
abstract entities (no attention is paid to their internal structure) that may attack
and/or be attacked by other arguments

Example (a simple AF)

a = Our friends will have great fun at our party on Saturday
b = Saturday will rain (according to the weather forecasting

service 1)
c = Saturday will be sunny (according to the weather

forecasting service 2)

b

a

c

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Motivation

Argumentation in AI

A general way for representing arguments and relationships (rebuttals)
between them
It allows representing dialogues, making decisions, and handling
inconsistency and uncertainty

Abstract Argumentation Framework (AF) [Dung 1995]: arguments are
abstract entities (no attention is paid to their internal structure) that may attack
and/or be attacked by other arguments

Example (a simple AF)

a = Our friends will have great fun at our party on Saturday
b = Saturday will rain (according to the weather forecasting

service 1)
c = Saturday will be sunny (according to the weather

forecasting service 2)

b

a

c

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Motivation

Semantics for Abstract Argumentations

Several semantics have been proposed to identify “reasonable” sets of
arguments (called extensions)

Example (AF A0)

b

c

da fe

gh li

nm

o

E0 = {a,h,g,e, l ,m,o} is an extension according to the most popular
semantics, i.e. grounded, complete, ideal, preferred, stable, and semi-stable

Extensions change if we update the initial AF by adding/removing
arguments/attacks
Should we recompute the semantics of updated AFs from scratch?

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Motivation

Semantics for Abstract Argumentations

Several semantics have been proposed to identify “reasonable” sets of
arguments (called extensions)

Example (AF A0)

b

c

da fe

gh li

nm

o

E0 = {a,h,g,e, l ,m,o} is an extension according to the most popular
semantics, i.e. grounded, complete, ideal, preferred, stable, and semi-stable

Extensions change if we update the initial AF by adding/removing
arguments/attacks
Should we recompute the semantics of updated AFs from scratch?

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Motivation

Semantics for Abstract Argumentations

Several semantics have been proposed to identify “reasonable” sets of
arguments (called extensions)

Example (Updated AF A = +(g,h)(A0))

b

c

da fe

gh li
+(g, h)

nm

o

We need to recompute the extension E of the AF obtained by adding attack
(g,h)

Extensions change if we update the initial AF by adding/removing
arguments/attacks
Should we recompute the semantics of updated AFs from scratch?

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Motivation

Semantics for Abstract Argumentations

Several semantics have been proposed to identify “reasonable” sets of
arguments (called extensions)

Example (Updated AF A = +(g,h)(A0))

b

c

da fe

gh li

nm

o

E = {a, c,g,e, l ,m,o} is an extension according to the most popular
semantics, i.e. grounded, complete, ideal, preferred, stable, and semi-stable

Extensions change if we update the initial AF by adding/removing
arguments/attacks
Should we recompute the semantics of updated AFs from scratch?

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Motivation

Semantics for Abstract Argumentations

Several semantics have been proposed to identify “reasonable” sets of
arguments (called extensions)

Example (Updated AF A = +(g,h)(A0))

b

c

da fe

gh li

nm

o

E = {a, c,g,e, l ,m,o} is an extension according to the most popular
semantics, i.e. grounded, complete, ideal, preferred, stable, and semi-stable

Extensions change if we update the initial AF by adding/removing
arguments/attacks
Should we recompute the semantics of updated AFs from scratch?

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Contributions

Influenced set

For the grounded and ideal semantics, the extension E can be efficiently
computed incrementally by looking only at a small part of the AF, which is
“influenced by” the update operation.

Example (AF A0 and updated AF A = +(g,h)(A0))

b

c

da fe

gh li
+(g, h)

nm

o

The influenced set is just {h, c}: only the status of h and c changes

The influenced set refines the previously proposed set of affected
arguments [Liao et al. 2011, Baroni et. al. 2014]
In the example, all the arguments but a and b turn out to be affected

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Contributions

Influenced set

For the grounded and ideal semantics, the extension E can be efficiently
computed incrementally by looking only at a small part of the AF, which is
“influenced by” the update operation.

Example (AF A0 and updated AF A = +(g,h)(A0))

b

c

da fe

gh li

nm

o

The influenced set is just {h, c}: only the status of h and c changes

The influenced set refines the previously proposed set of affected
arguments [Liao et al. 2011, Baroni et. al. 2014]
In the example, all the arguments but a and b turn out to be affected

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Contributions

Influenced set

For the grounded and ideal semantics, the extension E can be efficiently
computed incrementally by looking only at a small part of the AF, which is
“influenced by” the update operation.

Example (AF A0 and updated AF A = +(g,h)(A0))

b

c

da fe

gh li

nm

o

The influenced set is just {h, c}: only the status of h and c changes

The influenced set refines the previously proposed set of affected
arguments [Liao et al. 2011, Baroni et. al. 2014]
In the example, all the arguments but a and b turn out to be affected

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Contributions

Influenced set

For the grounded and ideal semantics, the extension E can be efficiently
computed incrementally by looking only at a small part of the AF, which is
“influenced by” the update operation.

Example (AF A0 and updated AF A = +(g,h)(A0))

b

c

da fe

gh li

nm

o

The influenced set is just {h, c}: only the status of h and c changes

The influenced set refines the previously proposed set of affected
arguments [Liao et al. 2011, Baroni et. al. 2014]
In the example, all the arguments but a and b turn out to be affected

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Contributions

Incremental algorithms and experiments

We formally define the concept of influenced set consisting of the
arguments whose status could change after an update.

We focus on the grounded and ideal semantics, which are deterministic
(admit exactly one extension)

We present an incremental algorithm for recomputing the grounded
extension; it computes the status of influenced arguments only.

We present an incremental algorithm for the efficient recomputation of the
ideal semantics which takes advantage of both the set of influenced
arguments and the efficient algorithm for computing grounded extensions.

Experimental results show the effectiveness of our approach.

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Outline

1 Introduction
Motivation
Contributions

2 Preliminaries
Abstract Argumentation Frameworks
Updates

3 Algorithms
Influenced Arguments
Incremental Computation of Grounded Semantics
Incremental Computation of Ideal Semantics

4 Experiments

5 Conclusions and future work
References

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Basic concepts

An (abstract) argumentation framework (AF) is a pair 〈A,Σ〉, where A is a
set of arguments and Σ ⊆ A× A is a set of attacks.

Example (AAF)
A = {a, b, c, d}
Σ = {(a, b), (b, a), (b, c), (d , c)} b ca d

A set S ⊆ A is conflict-free if there are no a,b ∈ S such that a attacks b
S defends a iff ∀b ∈ A that attacks a there is c ∈ S that attacks b
S is admissible if it is conflict-free and it defends all its arguments.

Example (conflict-free and admissible sets)

∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d} are conflict-free

{a} defend a; {b, d} defends both b and d

∅, {a}, {d}, {a, d}, {b, d} are admissible

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Basic concepts

An (abstract) argumentation framework (AF) is a pair 〈A,Σ〉, where A is a
set of arguments and Σ ⊆ A× A is a set of attacks.

Example (AAF)
A = {a, b, c, d}
Σ = {(a, b), (b, a), (b, c), (d , c)} b ca d

A set S ⊆ A is conflict-free if there are no a,b ∈ S such that a attacks b
S defends a iff ∀b ∈ A that attacks a there is c ∈ S that attacks b
S is admissible if it is conflict-free and it defends all its arguments.

Example (conflict-free and admissible sets)

∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d} are conflict-free

{a} defend a; {b, d} defends both b and d

∅, {a}, {d}, {a, d}, {b, d} are admissible

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Basic concepts

An (abstract) argumentation framework (AF) is a pair 〈A,Σ〉, where A is a
set of arguments and Σ ⊆ A× A is a set of attacks.

Example (AAF)
A = {a, b, c, d}
Σ = {(a, b), (b, a), (b, c), (d , c)} b ca d

A set S ⊆ A is conflict-free if there are no a,b ∈ S such that a attacks b
S defends a iff ∀b ∈ A that attacks a there is c ∈ S that attacks b
S is admissible if it is conflict-free and it defends all its arguments.

Example (conflict-free and admissible sets)

∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d} are conflict-free

{a} defend a; {b, d} defends both b and d

∅, {a}, {d}, {a, d}, {b, d} are admissible

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Basic concepts

An (abstract) argumentation framework (AF) is a pair 〈A,Σ〉, where A is a
set of arguments and Σ ⊆ A× A is a set of attacks.

Example (AAF)
A = {a, b, c, d}
Σ = {(a, b), (b, a), (b, c), (d , c)} b ca d

A set S ⊆ A is conflict-free if there are no a,b ∈ S such that a attacks b
S defends a iff ∀b ∈ A that attacks a there is c ∈ S that attacks b
S is admissible if it is conflict-free and it defends all its arguments.

Example (conflict-free and admissible sets)

∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d} are conflict-free

{a} defend a; {b, d} defends both b and d

∅, {a}, {d}, {a, d}, {b, d} are admissible

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Semantics for Abstract Argumentation

A semantics identifies “reasonable” sets of arguments, called extensions
A complete extension (co) is an admissible set that contains all the
arguments that it defends.

A complete extension S is said to be:
preferred (pr) iff it is maximal
semi-stable (ss) iff S ∪ S+ is maximal (S+ are arguments attacked by S)
stable (st) iff it attacks each argument in A \ S
grounded (gr) iff it is minimal
ideal (id) iff it is contained in every preferred extension and it is maximal

Example (semantics for AAF)

complete extensions: {d}, {a, d}, {b, d}
preferred extensions: {a, d}, {b, d}
semi-stable extensions: {a, d}, {b, d}
stable extensions: {a, d}, {b, d}

grounded extension: {d}
ideal extension: {d}

b ca d

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Semantics for Abstract Argumentation

A semantics identifies “reasonable” sets of arguments, called extensions
A complete extension (co) is an admissible set that contains all the
arguments that it defends.

A complete extension S is said to be:
preferred (pr) iff it is maximal
semi-stable (ss) iff S ∪ S+ is maximal (S+ are arguments attacked by S)
stable (st) iff it attacks each argument in A \ S
grounded (gr) iff it is minimal
ideal (id) iff it is contained in every preferred extension and it is maximal

Example (semantics for AAF)

complete extensions: {d}, {a, d}, {b, d}
preferred extensions: {a, d}, {b, d}
semi-stable extensions: {a, d}, {b, d}
stable extensions: {a, d}, {b, d}

grounded extension: {d}
ideal extension: {d}

b ca d

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Semantics for Abstract Argumentation

A semantics identifies “reasonable” sets of arguments, called extensions
A complete extension (co) is an admissible set that contains all the
arguments that it defends.

A complete extension S is said to be:
preferred (pr) iff it is maximal
semi-stable (ss) iff S ∪ S+ is maximal (S+ are arguments attacked by S)
stable (st) iff it attacks each argument in A \ S
grounded (gr) iff it is minimal
ideal (id) iff it is contained in every preferred extension and it is maximal

Example (semantics for AAF)

complete extensions: {d}, {a, d}, {b, d}
preferred extensions: {a, d}, {b, d}
semi-stable extensions: {a, d}, {b, d}
stable extensions: {a, d}, {b, d}

grounded extension: {d}
ideal extension: {d}

b ca d

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Semantics for Abstract Argumentation

A semantics identifies “reasonable” sets of arguments, called extensions
A complete extension (co) is an admissible set that contains all the
arguments that it defends.

A complete extension S is said to be:
preferred (pr) iff it is maximal
semi-stable (ss) iff S ∪ S+ is maximal (S+ are arguments attacked by S)
stable (st) iff it attacks each argument in A \ S
grounded (gr) iff it is minimal
ideal (id) iff it is contained in every preferred extension and it is maximal

Example (semantics for AAF)

complete extensions: {d}, {a, d}, {b, d}
preferred extensions: {a, d}, {b, d}
semi-stable extensions: {a, d}, {b, d}
stable extensions: {a, d}, {b, d}

grounded extension: {d}
ideal extension: {d}

b ca d

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Semantics for Abstract Argumentation

A semantics identifies “reasonable” sets of arguments, called extensions
A complete extension (co) is an admissible set that contains all the
arguments that it defends.

A complete extension S is said to be:
preferred (pr) iff it is maximal
semi-stable (ss) iff S ∪ S+ is maximal (S+ are arguments attacked by S)
stable (st) iff it attacks each argument in A \ S
grounded (gr) iff it is minimal
ideal (id) iff it is contained in every preferred extension and it is maximal

Example (semantics for AAF)

complete extensions: {d}, {a, d}, {b, d}
preferred extensions: {a, d}, {b, d}
semi-stable extensions: {a, d}, {b, d}
stable extensions: {a, d}, {b, d}

grounded extension: {d}
ideal extension: {d}

b ca d

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Semantics for Abstract Argumentation

A semantics identifies “reasonable” sets of arguments, called extensions
A complete extension (co) is an admissible set that contains all the
arguments that it defends.

A complete extension S is said to be:
preferred (pr) iff it is maximal
semi-stable (ss) iff S ∪ S+ is maximal (S+ are arguments attacked by S)
stable (st) iff it attacks each argument in A \ S
grounded (gr) iff it is minimal
ideal (id) iff it is contained in every preferred extension and it is maximal

Example (semantics for AAF)

complete extensions: {d}, {a, d}, {b, d}
preferred extensions: {a, d}, {b, d}
semi-stable extensions: {a, d}, {b, d}
stable extensions: {a, d}, {b, d}

grounded extension: {d}
ideal extension: {d}

b ca d

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Deterministic (or unique status) semantics

All the semantics except the stable admit at least one extension
Grounded and ideal semantics admit exactly one extension
Semantics gr and id are called deterministic or unique status

Example (Multiple status vs unique status semantics)

3 complete extensions: {d}, {a, d}, {b, d}
2 preferred extensions: {a, d}, {b, d}
2 semi-stable extensions: {a, d}, {b, d}
2 stable extensions: {a, d}, {b, d}

1 grounded extension: {d}
1 ideal extension: {d}

b ca d

Example (Deterministic semantics)

a

c e

d

b

f

grounded
extension:
{f}

ideal
extension:
{d , f}

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Deterministic (or unique status) semantics

All the semantics except the stable admit at least one extension
Grounded and ideal semantics admit exactly one extension
Semantics gr and id are called deterministic or unique status

Example (Multiple status vs unique status semantics)

3 complete extensions: {d}, {a, d}, {b, d}
2 preferred extensions: {a, d}, {b, d}
2 semi-stable extensions: {a, d}, {b, d}
2 stable extensions: {a, d}, {b, d}

1 grounded extension: {d}
1 ideal extension: {d}

b ca d

Example (Deterministic semantics)

a

c e

d

b

f

grounded
extension:
{f}

ideal
extension:
{d , f}

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Deterministic (or unique status) semantics

All the semantics except the stable admit at least one extension
Grounded and ideal semantics admit exactly one extension
Semantics gr and id are called deterministic or unique status

Example (Multiple status vs unique status semantics)

3 complete extensions: {d}, {a, d}, {b, d}
2 preferred extensions: {a, d}, {b, d}
2 semi-stable extensions: {a, d}, {b, d}
2 stable extensions: {a, d}, {b, d}

1 grounded extension: {d}
1 ideal extension: {d}

b ca d

Example (Deterministic semantics)

a

c e

d

b

f

grounded
extension:
{f}

a

c e

d

b

f

ideal
extension:
{d , f}

a

c e

d

b

f

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Extensions and labellings

Semantics can be also defined in terms of labelling.
Function L : A→ {IN, OUT, UN} assigns a label to each argument

L(a) = IN means a is accepted (i.e., all arguments attacking a are rejected)
L(a) = OUT means a is rejected (i.e., an argument attacking a is accepted)
L(a) = UN means that a is undecided

Extension E corresponds to the labelling L = 〈E ,E+,A \ (E ∪ E+)〉
Labelling L corresponds to the extension consisting of the arguments
labelled as IN

Example (Two complete labellings: the grounded and the ideal labelling)

a

c e

d

b

f

grounded
extension:
{f}

ideal
extension:
{d , f}

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Abstract Argumentation Frameworks

Extensions and labellings

Semantics can be also defined in terms of labelling.
Function L : A→ {IN, OUT, UN} assigns a label to each argument

L(a) = IN means a is accepted (i.e., all arguments attacking a are rejected)
L(a) = OUT means a is rejected (i.e., an argument attacking a is accepted)
L(a) = UN means that a is undecided

Extension E corresponds to the labelling L = 〈E ,E+,A \ (E ∪ E+)〉
Labelling L corresponds to the extension consisting of the arguments
labelled as IN

Example (Two complete labellings: the grounded and the ideal labelling)

a

c e

d

b

f

grounded
extension:
{f}

a

c e

d

b

f

ideal
extension:
{d , f}

a

c e

d

b

f

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Updates

Updates

An update u for an AF A0 consists in modifying A0 into an AF A by
adding or removing arguments or attacks.
If E0 is an extension for A0 and A is obtained by adding (resp. removing)
the set S of isolated arguments, then E = E0 ∪ S (resp. E = E0 \ S)
We focus on the addition +(a,b) and deletion −(a,b) of an attack (a,b)

u(A0) denotes the application of update u = ±(a,b) to A0.
Multiple updates {+(a1,b1), . . . ,+(an,bn), −(a′

1,b
′
1), . . . ,−(a′

m,b′
m)} can

be simulated by a single attack update

Example (Extensions/labellings after adding the isolated argument g)

a

c e

d

b

fg

grounded
extension:
{f} ∪ {g}

a

c e

d

b

fg

ideal
extension:

{d , f} ∪ {g}

a

c e

d

b

fg

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Updates

Updates

An update u for an AF A0 consists in modifying A0 into an AF A by
adding or removing arguments or attacks.
If E0 is an extension for A0 and A is obtained by adding (resp. removing)
the set S of isolated arguments, then E = E0 ∪ S (resp. E = E0 \ S)
We focus on the addition +(a,b) and deletion −(a,b) of an attack (a,b)

u(A0) denotes the application of update u = ±(a,b) to A0.
Multiple updates {+(a1,b1), . . . ,+(an,bn), −(a′

1,b
′
1), . . . ,−(a′

m,b′
m)} can

be simulated by a single attack update

Example (Extensions/labellings after adding the attack +(g,d))

a

c e

d

b

fg

+(g, d)

grounded
extension:

{f , g}

a

c e

d

b

fg

ideal
extension:

{f , g}

a

c e

d

b

fg

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Updates

Updates

An update u for an AF A0 consists in modifying A0 into an AF A by
adding or removing arguments or attacks.
If E0 is an extension for A0 and A is obtained by adding (resp. removing)
the set S of isolated arguments, then E = E0 ∪ S (resp. E = E0 \ S)
We focus on the addition +(a,b) and deletion −(a,b) of an attack (a,b)

u(A0) denotes the application of update u = ±(a,b) to A0.
Multiple updates {+(a1,b1), . . . ,+(an,bn), −(a′

1,b
′
1), . . . ,−(a′

m,b′
m)} can

be simulated by a single attack update

Example (Extensions/labellings after adding the attack +(g,d))

a

c e

d

b

fg

+(g, d)

grounded
extension:

{f , g}

a

c e

d

b

fg

ideal
extension:

{f , g}

a

c e

d

b

fg

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Outline

1 Introduction
Motivation
Contributions

2 Preliminaries
Abstract Argumentation Frameworks
Updates

3 Algorithms
Influenced Arguments
Incremental Computation of Grounded Semantics
Incremental Computation of Ideal Semantics

4 Experiments

5 Conclusions and future work
References

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Overview of the approach

We have an initial AF A0, extension E0, and updated u = ±(a,b)
Fundamental Steps:

1) Compute the set of arguments of A0 whose
status can change after performing update
u (Influenced Set I(u,A0,E0))

2) Compute the part of A0 induced by the
influenced arguments and additional
arguments containing needed information
on the “external context” (Restricted AF
Rsem(u,A0,E0))

3) Compute the extension SIN of the restricted
AF using an iterative algorithm (we propose
incremental algorithms for grounded and
ideal semantics)

4) Combine SIN with the initial extension E0 to
get the extension E of the updated AF
A = u(A0)

A0

±(a, b)

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Overview of the approach

We have an initial AF A0, extension E0, and updated u = ±(a,b)
Fundamental Steps:

1) Compute the set of arguments of A0 whose
status can change after performing update
u (Influenced Set I(u,A0,E0))

2) Compute the part of A0 induced by the
influenced arguments and additional
arguments containing needed information
on the “external context” (Restricted AF
Rsem(u,A0,E0))

3) Compute the extension SIN of the restricted
AF using an iterative algorithm (we propose
incremental algorithms for grounded and
ideal semantics)

4) Combine SIN with the initial extension E0 to
get the extension E of the updated AF
A = u(A0)

A0

I(u,A0, E0)

±(a, b)

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Overview of the approach

We have an initial AF A0, extension E0, and updated u = ±(a,b)
Fundamental Steps:

1) Compute the set of arguments of A0 whose
status can change after performing update
u (Influenced Set I(u,A0,E0))

2) Compute the part of A0 induced by the
influenced arguments and additional
arguments containing needed information
on the “external context” (Restricted AF
Rsem(u,A0,E0))

3) Compute the extension SIN of the restricted
AF using an iterative algorithm (we propose
incremental algorithms for grounded and
ideal semantics)

4) Combine SIN with the initial extension E0 to
get the extension E of the updated AF
A = u(A0)

A0

Rsem(u,A0, E0)

I(u,A0, E0)

±(a, b)

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Overview of the approach

We have an initial AF A0, extension E0, and updated u = ±(a,b)
Fundamental Steps:

1) Compute the set of arguments of A0 whose
status can change after performing update
u (Influenced Set I(u,A0,E0))

2) Compute the part of A0 induced by the
influenced arguments and additional
arguments containing needed information
on the “external context” (Restricted AF
Rsem(u,A0,E0))

3) Compute the extension SIN of the restricted
AF using an iterative algorithm (we propose
incremental algorithms for grounded and
ideal semantics)

4) Combine SIN with the initial extension E0 to
get the extension E of the updated AF
A = u(A0)

A0

Rsem(u,A0, E0)

I(u,A0, E0)

±(a, b)

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Overview of the approach

We have an initial AF A0, extension E0, and updated u = ±(a,b)
Fundamental Steps:

1) Compute the set of arguments of A0 whose
status can change after performing update
u (Influenced Set I(u,A0,E0))

2) Compute the part of A0 induced by the
influenced arguments and additional
arguments containing needed information
on the “external context” (Restricted AF
Rsem(u,A0,E0))

3) Compute the extension SIN of the restricted
AF using an iterative algorithm (we propose
incremental algorithms for grounded and
ideal semantics)

4) Combine SIN with the initial extension E0 to
get the extension E of the updated AF
A = u(A0)

A = u(A0)

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Conditions for extension/labelling preservation

ES(A) denotes the set of extensions of AF A according to S

Proposition (Addition of an attack)

Let u = +(a,b) and E0 ∈ ES(A0) be an extension of A0 under semantics S,
and L0 the labelling corresponding to E0. Then E0 ∈ ES(u(A0)) if
S ∈{co, st, gr} and one of the following conditions holds:

L0(a) 6= IN and L0(b) 6= IN,
L0(a) = IN and L0(b) = OUT;

S ∈{ pr, ss, id} and L0(b) = OUT.

Example (Update +(g, f) does not change the initial extension E0)

b

c

da fe

gh li

nm

o

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Conditions for extension/labelling preservation

ES(A) denotes the set of extensions of AF A according to S

Proposition (Addition of an attack)

Let u = +(a,b) and E0 ∈ ES(A0) be an extension of A0 under semantics S,
and L0 the labelling corresponding to E0. Then E0 ∈ ES(u(A0)) if
S ∈{co, st, gr} and one of the following conditions holds:

L0(a) 6= IN and L0(b) 6= IN,
L0(a) = IN and L0(b) = OUT;

S ∈{ pr, ss, id} and L0(b) = OUT.

Example (Update +(g, f) does not change the initial extension E0)

b

c

da fe

gh li

nm

o

+(g, f)

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Conditions for extension/labelling preservation

ES(A) denotes the set of extensions of AF A according to S

Proposition (Deletion of an attack)

Let u = −(a,b), S ∈{co, pr, ss, st, gr}, and E0 ∈ ES(A0) an extension of
A0 under S. Then E0 ∈ ES(u(A0)) if one of the following conditions holds:
1) L0(a)= OUT; 2) L0(a)= UN and L0(b)= OUT.

Example (Update −(c,d) does not change the initial extension E0)

b

c

da fe

gh li

nm

o

In these cases we do not need to recompute the semantics

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Conditions for extension/labelling preservation

ES(A) denotes the set of extensions of AF A according to S

Proposition (Deletion of an attack)

Let u = −(a,b), S ∈{co, pr, ss, st, gr}, and E0 ∈ ES(A0) an extension of
A0 under S. Then E0 ∈ ES(u(A0)) if one of the following conditions holds:
1) L0(a)= OUT; 2) L0(a)= UN and L0(b)= OUT.

Example (Update −(c,d) does not change the initial extension E0)

b

c

da fe

gh li

nm

o

−(c, d)

In these cases we do not need to recompute the semantics

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Influenced set: Intuition

I(u,A0,E0)) is the influenced set of u = ±(a,b) w.r.t. A0 and E0

1) if a condition for extension preservation holds, then I(u,A0,E0) = ∅
2) the status of an argument can change only if it is reachable from b (that

is, I(u,A0,E0) ⊆ ReachA(b))
3) if argument z is not reachable from b and z ∈ E0, then also the status of

the arguments attacked by z cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)

b

c

da fe

gh li

nm

o

+(g, f)

I(+(g, f),A0,E0) = ∅

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Influenced set: Intuition

I(u,A0,E0)) is the influenced set of u = ±(a,b) w.r.t. A0 and E0

1) if a condition for extension preservation holds, then I(u,A0,E0) = ∅
2) the status of an argument can change only if it is reachable from b (that

is, I(u,A0,E0) ⊆ ReachA(b))
3) if argument z is not reachable from b and z ∈ E0, then also the status of

the arguments attacked by z cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)

b

c

da fe

gh li

nm

o
+(g, h)

I(+(g,h),A0,E0) ⊆ ReachA(h) = (A \ {a,b}) = {c,d ,e, f ,g,h, i , l ,m,n,o}
We have that a,b 6∈ I(+(g,h),A0,E0)

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Influenced set: Intuition

I(u,A0,E0)) is the influenced set of u = ±(a,b) w.r.t. A0 and E0
1) if a condition for extension preservation holds, then I(u,A0,E0) = ∅
2) the status of an argument can change only if it is reachable from b (that

is, I(u,A0,E0) ⊆ ReachA(b))
3) if argument z is not reachable from b and z ∈ E0, then also the status of

the arguments attacked by z cannot change: their status remain OUT

Example (Set of arguments influenced by an update operation)

b

c

da fe

gh li

nm

o
+(g, h)

d 6∈ I(+(g,h),A0,E0) since it is attacked by a ∈ E0 and a is not reachable
from h. Thus the arguments that can be reached only using d cannot belong
to I(+(g,h),A0,E0). → The influenced set is I(+(g,h),A0,E0) = {h, c}

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Influenced Arguments

Influenced set: Definition

I(±(a,b),A0,E0) is the set of arguments that can be reached from b
without using any intermediate argument y whose status is known to be
OUT because it is determined by an argument z ∈ E0 which is not
reachable from b

Definition (Influenced set)

Let A = 〈A,Σ〉 be an AF, u = ±(a,b) an update, E an extension of A under a
given semantics S, and let

I0(u,A,E)=


∅ if E ∈ ES(u(A)) [Prop. 1/2] or
∃(z,b) ∈ Σ s.t . z ∈ E ∧ z 6∈ ReachA(b);

{b} otherwise;

Ii+1(u,A,E) = Ii (u,A,E) ∪ {y | ∃(x , y) ∈ Σ s.t . x ∈ Ii (u,A,E) ∧
6 ∃(z, y) ∈ Σ s.t . z ∈ E ∧ z 6∈ ReachA(b)}.

The influenced set of u w.r.t. A and E is I(u,A,E) = In(u,A,E) such that
In(u,A,E) = In+1(u,A,E). 2

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Restricted AF for grounded semantics

Given an AF A0, its grounded extension E0, and an update u = ±(a,b),
the grounded semantics is recomputed for a small part of the initial AF,
called restricted AF and denoted Rgr(u,A0,E0)

Rgr(u,A0,E0) consists of the subgraph of u(A0) induced by I(u,A0,E0)
plus additional nodes/edges representing the “external context”:

1) if there is in u(A0) an edge from a node a 6∈ I(u,A0,E0) to a node
b ∈ I(u,A0,E0), we add edge (a, b) if the status of a is IN,

2) if there is in u(A0) an edge from a node e 6∈ I(u,A0,E0) to a node
c ∈ I(u,A0,E0) such that e in UN, we add edge (c, c) to Rgr(u,A0,E0)

Example (Restricted AF for grounded semantics)

b

c

da fe

gh li

nm

o
+(g, h)

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Restricted AF for grounded semantics

Given an AF A0, its grounded extension E0, and an update u = ±(a,b),
the grounded semantics is recomputed for a small part of the initial AF,
called restricted AF and denoted Rgr(u,A0,E0)

Rgr(u,A0,E0) consists of the subgraph of u(A0) induced by I(u,A0,E0)
plus additional nodes/edges representing the “external context”:

1) if there is in u(A0) an edge from a node a 6∈ I(u,A0,E0) to a node
b ∈ I(u,A0,E0), we add edge (a, b) if the status of a is IN,

2) if there is in u(A0) an edge from a node e 6∈ I(u,A0,E0) to a node
c ∈ I(u,A0,E0) such that e in UN, we add edge (c, c) to Rgr(u,A0,E0)

Example (Restricted AF for grounded semantics)

b

c

da fe

gh li

nm

o
+(g, h)

I(+(g,h),A0,E0) = {h, c} subgraph induced by I c h

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Restricted AF for grounded semantics

Given an AF A0, its grounded extension E0, and an update u = ±(a,b),
the grounded semantics is recomputed for a small part of the initial AF,
called restricted AF and denoted Rgr(u,A0,E0)

Rgr(u,A0,E0) consists of the subgraph of u(A0) induced by I(u,A0,E0)
plus additional nodes/edges representing the “external context”:

1) if there is in u(A0) an edge from a node a 6∈ I(u,A0,E0) to a node
b ∈ I(u,A0,E0), we add edge (a, b) if the status of a is IN,

2) if there is in u(A0) an edge from a node e 6∈ I(u,A0,E0) to a node
c ∈ I(u,A0,E0) such that e in UN, we add edge (c, c) to Rgr(u,A0,E0)

Example (Restricted AF for grounded semantics)

b

c

da fe

gh li

nm

o
+(g, h)

I(+(g,h),A0,E0) = {h, c} Restricted AF: c h g

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Restricted AF for grounded semantics

Given an AF A0, its grounded extension E0, and an update u = ±(a,b),
the grounded semantics is recomputed for a small part of the initial AF,
called restricted AF and denoted Rgr(u,A0,E0)
Rgr(u,A0,E0) consists of the subgraph of u(A0) induced by I(u,A0,E0)
plus additional nodes/edges representing the “external context”:

1) if there is in u(A0) an edge from a node a 6∈ I(u,A0,E0) to a node
b ∈ I(u,A0,E0), we add edge (a, b) if the status of a is IN,

2) if there is in u(A0) an edge from a node e 6∈ I(u,A0,E0) to a node
c ∈ I(u,A0,E0) such that e in UN, we add edge (c, c) to Rgr(u,A0,E0)

Example (Restricted AF for grounded semantics)

a

c e

d

b

fg
+(g, d)

I(+(g,d),A0,E0) = {d , c} Restricted AF:

c

dg

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Incremental algorithm for grounded semantics
Algorithm Incr-Grounded-Sem(A0,u,E0)
Input: AF A0 = 〈A0,Σ0〉, u = ±(a, b), grounded extension E0;
Output: Revised grounded extension E
1: Let S = I(u,A0,E0); // Compute the influenced set
2: Let Ad = 〈Ad ,Σd 〉 = Rgr(u,A0,E0); // Compute the restricted AF
3: if (Ad = ∅) then E = E0; // If restricted AF is empty, return the initial extension E0
4: else E = (E0 \ S) ∪ IFP(Ad ,E0 ∩ Ad); // Merge E0 with the extension of the restricted AF

Function IFP(A,E0) // Incremental FixPoint
Input: AF A = 〈A,Σ〉, Extension E0;
Output: Extension E
1: SIN = ∆IN = { a | 6 ∃(c, a) ∈ Σ }; // Compute the starting set of arguments labelled IN
2: if (SIN = ∅) return SIN;
3: SOUT = ∆OUT = ∆+

IN; // Arguments attacked by ∆IN are OUT
4: repeat
5: ∆IN = G(SOUT,∆OUT) \ SIN; // Infer new arguments that can be labelled IN
6: ∆OUT = ∆+

IN \ SOUT; // New arguments labelled OUT
7: SIN = SIN ∪∆IN; // Update the set of arguments labelled IN
8: SOUT = SOUT ∪∆OUT; // ... and OUT
9: until ∆IN ⊆ E0 // Until no new labels (w.r.t. the initial labelling) are inferred

10: if (∆IN = ∅) return SIN;
11: else return SIN ∪ (E0 \ (SIN ∪ SOUT)); // Merge the inferred labels with existing ones

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Incremental algorithm for grounded semantics
Algorithm Incr-Grounded-Sem(A0,u,E0)
Input: AF A0 = 〈A0,Σ0〉, u = ±(a, b), grounded extension E0;
Output: Revised grounded extension E
1: Let S = I(u,A0,E0); // Compute the influenced set
2: Let Ad = 〈Ad ,Σd 〉 = Rgr(u,A0,E0); // Compute the restricted AF
3: if (Ad = ∅) then E = E0; // If restricted AF is empty, return the initial extension E0
4: else E = (E0 \ S) ∪ IFP(Ad ,E0 ∩ Ad); // Merge E0 with the extension of the restricted AF

Function IFP(A,E0) // Incremental FixPoint
Input: AF A = 〈A,Σ〉, Extension E0;
Output: Extension E
1: SIN = ∆IN = { a | 6 ∃(c, a) ∈ Σ }; // Compute the starting set of arguments labelled IN
2: if (SIN = ∅) return SIN;
3: SOUT = ∆OUT = ∆+

IN; // Arguments attacked by ∆IN are OUT
4: repeat
5: ∆IN = G(SOUT,∆OUT) \ SIN; // Infer new arguments that can be labelled IN
6: ∆OUT = ∆+

IN \ SOUT; // New arguments labelled OUT
7: SIN = SIN ∪∆IN; // Update the set of arguments labelled IN
8: SOUT = SOUT ∪∆OUT; // ... and OUT
9: until ∆IN ⊆ E0 // Until no new labels (w.r.t. the initial labelling) are inferred

10: if (∆IN = ∅) return SIN;
11: else return SIN ∪ (E0 \ (SIN ∪ SOUT)); // Merge the inferred labels with existing ones

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Example 1 of incremental computation

Example (From the initial extension and the update to the revised extension)

b

c

da fe

gh li

nm

o
+(g, h)

Influenced set I(+(g,h),A0,E0) = {h, c}
Restricted AF: c h g

Extension for the restricted AF:
Revised extension for the updated AF:

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Example 1 of incremental computation

Example (From the initial extension and the update to the revised extension)

b

c

da fe

gh li

nm

o
+(g, h)

Influenced set I(+(g,h),A0,E0) = {h, c}
Restricted AF: c h g

Extension for the restricted AF: c h g

Revised extension for the updated AF:

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Example 1 of incremental computation

Example (From the initial extension and the update to the revised extension)

b

c

da fe

gh li

nm

o
+(g, h)

Influenced set I(+(g,h),A0,E0) = {h, c}
Restricted AF: c h g

Extension for the restricted AF: c h g

Revised extension for the updated AF:

b

c

da fe

gh li

nm

o

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Example 2 of incremental computation

Example (From the initial extension and the update to the revised extension)

a

c e

d

b

fg
+(g, d)

Influenced set
I(+(g,d),A0,E0) = {d , c}

Restricted AF:

c

dg

Extension for the restricted AF:
Revised extension for the updated AF:

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Example 2 of incremental computation

Example (From the initial extension and the update to the revised extension)

a

c e

d

b

fg
+(g, d)

Influenced set
I(+(g,d),A0,E0) = {d , c}

Restricted AF:

c

dg

Extension for the restricted AF:

c

dg

Revised extension for the updated AF:

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Grounded Semantics

Example 2 of incremental computation

Example (From the initial extension and the update to the revised extension)

a

c e

d

b

fg
+(g, d)

Influenced set
I(+(g,d),A0,E0) = {d , c}

Restricted AF:

c

dg

Extension for the restricted AF:

c

dg

Revised extension for the updated AF:
a

c e

d

b

fg

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Ideal Semantics

Restricted AF for ideal semantics

Restricted AF for ideal semantics Rid(u,A0,E0)

Rgr(u,A0,E0) consists of the subgraph of u(A0) induced by I(u,A0,E0)

plus additional nodes/edges representing the “external context”:
1) if there is in u(A0) an edge from a node a 6∈ I(u,A0,E0) to a node

b ∈ I(u,A0,E0), we add edge (a, b) if the status of a is IN,
2) all nodes and edges occurring in paths (of any length) ending in I(u,A0,E0)

whose nodes outside I(u,A0,E0) are all labeled as UN.

Example (Restricted AF for ideal semantics)

b

c

da fe

gh li

nm

o
+(g, h)

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Ideal Semantics

Restricted AF for ideal semantics

Restricted AF for ideal semantics Rid(u,A0,E0)

Rgr(u,A0,E0) consists of the subgraph of u(A0) induced by I(u,A0,E0)

plus additional nodes/edges representing the “external context”:
1) if there is in u(A0) an edge from a node a 6∈ I(u,A0,E0) to a node

b ∈ I(u,A0,E0), we add edge (a, b) if the status of a is IN,
2) all nodes and edges occurring in paths (of any length) ending in I(u,A0,E0)

whose nodes outside I(u,A0,E0) are all labeled as UN.

Example (Restricted AF for ideal semantics)

b

c

da fe

gh li

nm

o
+(g, h)

I(+(g,h),A0,E0) = {h, c} subgraph induced by I c h

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Ideal Semantics

Restricted AF for ideal semantics

Restricted AF for ideal semantics Rid(u,A0,E0)

Rgr(u,A0,E0) consists of the subgraph of u(A0) induced by I(u,A0,E0)

plus additional nodes/edges representing the “external context”:
1) if there is in u(A0) an edge from a node a 6∈ I(u,A0,E0) to a node

b ∈ I(u,A0,E0), we add edge (a, b) if the status of a is IN,
2) all nodes and edges occurring in paths (of any length) ending in I(u,A0,E0)

whose nodes outside I(u,A0,E0) are all labeled as UN.

Example (Restricted AF for ideal semantics)

b

c

da fe

gh li

nm

o
+(g, h)

Restricted AF: c h g

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Ideal Semantics

Restricted AF for ideal semantics

Restricted AF for ideal semantics Rid(u,A0,E0)
Rgr(u,A0,E0) consists of the subgraph of u(A0) induced by I(u,A0,E0)
plus additional nodes/edges representing the “external context”:

1) if there is in u(A0) an edge from a node a 6∈ I(u,A0,E0) to a node
b ∈ I(u,A0,E0), we add edge (a, b) if the status of a is IN,

2) all nodes and edges occurring in paths (of any length) ending in I(u,A0,E0)
whose nodes outside I(u,A0,E0) are all labeled as UN.

Example (Restricted AF for ideal semantics)

a

c e

d

b

fg
+(g, d)

I(+(g,d),A0,E0) = {d , c} Restricted AF:
a

c

d

b

g

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Ideal Semantics

Incremental algorithm for ideal semantics

Algorithm Incr-Ideal-Sem(A0,u,E0)
Input: AF A0=〈A0,Σ0〉, u=±(a, b), Ideal extension E0;
Output: Revised ideal extension E ;
1: Let A = u(A0);
2: S = I(u,A0,E0); // Compute the influenced set
3: E = E0 \ S; // The status of influenced arguments needs to be computed
4: if (S = ∅) then return // If the influenced set is empty, done
5: while (S 6= ∅) do
6: Ad = 〈Ad ,Σd 〉 = Rgr(u,A0,E); // Compute the restricted AF for grounded semantics
7: ∆IN = IFP(Ad ,E ∩ Ad); // Computed the grounded semantics
8: S = S \ (∆IN ∪∆+

IN); // Remove from decided arguments
9: E = E ∪∆IN; // Update the extension being computed

10: Ad = Rid(u,A0,E); // Compute the restricted AF for ideal semantics
11: Select an argument c ∈ S;
12: if ∃ successful CWS w ∈ CW(c,Ad ,E) then
13: ∆IN = PRO(w); // A Coherent Winning Strategy (CWS) proves whether
14: S = S \ (∆IN ∪∆+

IN); // a list of arguments belong to the ideal extension
15: E = E ∪∆IN;
16: else S = S \ {c}; // Otherwise, c is not in the ideal extension

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Ideal Semantics

Incremental algorithm for ideal semantics

Algorithm Incr-Ideal-Sem(A0,u,E0)
Input: AF A0=〈A0,Σ0〉, u=±(a, b), Ideal extension E0;
Output: Revised ideal extension E ;
1: Let A = u(A0);
2: S = I(u,A0,E0); // Compute the influenced set
3: E = E0 \ S; // The status of influenced arguments needs to be computed
4: if (S = ∅) then return // If the influenced set is empty, done
5: while (S 6= ∅) do
6: Ad = 〈Ad ,Σd 〉 = Rgr(u,A0,E); // Compute the restricted AF for grounded semantics
7: ∆IN = IFP(Ad ,E ∩ Ad); // Computed the grounded semantics
8: S = S \ (∆IN ∪∆+

IN); // Remove from decided arguments
9: E = E ∪∆IN; // Update the extension being computed

10: Ad = Rid(u,A0,E); // Compute the restricted AF for ideal semantics
11: Select an argument c ∈ S;
12: if ∃ successful CWS w ∈ CW(c,Ad ,E) then
13: ∆IN = PRO(w); // A Coherent Winning Strategy (CWS) proves whether
14: S = S \ (∆IN ∪∆+

IN); // a list of arguments belong to the ideal extension
15: E = E ∪∆IN;
16: else S = S \ {c}; // Otherwise, c is not in the ideal extension

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Incremental Computation of Ideal Semantics

Incremental algorithm for ideal semantics

Algorithm Incr-Ideal-Sem(A0,u,E0)
Input: AF A0=〈A0,Σ0〉, u=±(a, b), Ideal extension E0;
Output: Revised ideal extension E ;
1: Let A = u(A0);
2: S = I(u,A0,E0); // Compute the influenced set
3: E = E0 \ S; // The status of influenced arguments needs to be computed
4: if (S = ∅) then return // If the influenced set is empty, done
5: while (S 6= ∅) do
6: Ad = 〈Ad ,Σd 〉 = Rgr(u,A0,E); // Compute the restricted AF for grounded semantics
7: ∆IN = IFP(Ad ,E ∩ Ad); // Computed the grounded semantics
8: S = S \ (∆IN ∪∆+

IN); // Remove from decided arguments
9: E = E ∪∆IN; // Update the extension being computed

10: Ad = Rid(u,A0,E); // Compute the restricted AF for ideal semantics
11: Select an argument c ∈ S;
12: if ∃ successful CWS w ∈ CW(c,Ad ,E) then
13: ∆IN = PRO(w); // A Coherent Winning Strategy (CWS) proves whether
14: S = S \ (∆IN ∪∆+

IN); // a list of arguments belong to the ideal extension
15: E = E ∪∆IN;
16: else S = S \ {c}; // Otherwise, c is not in the ideal extension

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Outline

1 Introduction
Motivation
Contributions

2 Preliminaries
Abstract Argumentation Frameworks
Updates

3 Algorithms
Influenced Arguments
Incremental Computation of Grounded Semantics
Incremental Computation of Ideal Semantics

4 Experiments

5 Conclusions and future work
References

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Experimental validation

Datasets and algorithms

Datasets
For grounded semantics, datasets from ICCMA (International
Competition on Computational Models of Argumentation)

REAL : 19 AFs 〈A0,Σ0〉 with |A0| ∈ [5K , 100K] and |Σ0| ∈ [7K , 143K]
SYN1 : 24 AFs 〈A0,Σ0〉 with |A0| ∈ [1K , 4K] and |Σ0| ∈ [14K , 172K]

For ideal semantics, SYN2 consists of 20 AFs with |A0| ∈ {50,75, . . .175}
Algorithms:

BaseG computes the grounded extension E of the updated AF u(A0)
from scratch: it finds the fixpoint of the characteristic function of an AF as
implemented in the libraries of the Tweety Project
BaseI computes the ideal extension E of the updated AF u(A0) from
scratch: it uses the algorithm implemented by Dung-O-Matic engine
Incr-Grounded-Sem (IncrG) incrementally computes the grounded
extension E starting from E0 and the update
Incr-Ideal-Sem (IncrI) incrementally computes the ideal extension E
starting from E0 and the update

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Experimental validation

Datasets and algorithms

Datasets
For grounded semantics, datasets from ICCMA (International
Competition on Computational Models of Argumentation)

REAL : 19 AFs 〈A0,Σ0〉 with |A0| ∈ [5K , 100K] and |Σ0| ∈ [7K , 143K]
SYN1 : 24 AFs 〈A0,Σ0〉 with |A0| ∈ [1K , 4K] and |Σ0| ∈ [14K , 172K]

For ideal semantics, SYN2 consists of 20 AFs with |A0| ∈ {50,75, . . .175}
Algorithms:

BaseG computes the grounded extension E of the updated AF u(A0)
from scratch: it finds the fixpoint of the characteristic function of an AF as
implemented in the libraries of the Tweety Project
BaseI computes the ideal extension E of the updated AF u(A0) from
scratch: it uses the algorithm implemented by Dung-O-Matic engine
Incr-Grounded-Sem (IncrG) incrementally computes the grounded
extension E starting from E0 and the update
Incr-Ideal-Sem (IncrI) incrementally computes the ideal extension E
starting from E0 and the update

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Experimental validation

Datasets and algorithms

Datasets
For grounded semantics, datasets from ICCMA (International
Competition on Computational Models of Argumentation)

REAL : 19 AFs 〈A0,Σ0〉 with |A0| ∈ [5K , 100K] and |Σ0| ∈ [7K , 143K]
SYN1 : 24 AFs 〈A0,Σ0〉 with |A0| ∈ [1K , 4K] and |Σ0| ∈ [14K , 172K]

For ideal semantics, SYN2 consists of 20 AFs with |A0| ∈ {50,75, . . .175}
Algorithms:

BaseG computes the grounded extension E of the updated AF u(A0)
from scratch: it finds the fixpoint of the characteristic function of an AF as
implemented in the libraries of the Tweety Project
BaseI computes the ideal extension E of the updated AF u(A0) from
scratch: it uses the algorithm implemented by Dung-O-Matic engine
Incr-Grounded-Sem (IncrG) incrementally computes the grounded
extension E starting from E0 and the update
Incr-Ideal-Sem (IncrI) incrementally computes the ideal extension E
starting from E0 and the update

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Experimental validation

Experiments for grounded semantics

Run times (ms) of BaseG and IncrG Run times (ms) of BaseG and IncrG
for 1, 20, and 40 updates over REAL for 1, 20, and 40 updates over SYN1

IncrG and IncrI compute extensions of AFs updated by a set U of
(simultaneous) updates by reducing the application of
U = {+(a1,b1), . . . ,+(an,bn), −(a′

1,b
′
1), . . . ,−(a′

m,b′
m)} on AF A0 to the

application of a single attack update on an AF obtained from A0

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Experimental validation

Experiments for grounded semantics

Run times (ms) of BaseG and IncrG Run times (ms) of BaseG and IncrG
for 1, 20, and 40 updates over REAL for 1, 20, and 40 updates over SYN1

IncrG and IncrI compute extensions of AFs updated by a set U of
(simultaneous) updates by reducing the application of
U = {+(a1,b1), . . . ,+(an,bn), −(a′

1,b
′
1), . . . ,−(a′

m,b′
m)} on AF A0 to the

application of a single attack update on an AF obtained from A0

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Experimental validation

Experiments for ideal semantics

Run times (ms) of BaseI and IncrI
for 1 and 5 updates over SYN2

Linear improvements for grounded semantics
Exponential improvements for ideal semantics (whose computation from
scratch is exponential)

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Outline

1 Introduction
Motivation
Contributions

2 Preliminaries
Abstract Argumentation Frameworks
Updates

3 Algorithms
Influenced Arguments
Incremental Computation of Grounded Semantics
Incremental Computation of Ideal Semantics

4 Experiments

5 Conclusions and future work
References

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Conclusions and future work

Conclusions and future work

We presented two incremental algorithms for computing deterministic
extensions of updated AFs

The algorithms exploit the initial extension of an AF for computing the set
of arguments influenced by an update,

and for detecting early termination conditions during the recomputation of
the status of the arguments.

The technique can be used in the case of general multiple updates.

The experiments showed that the incremental computation outperforms
that of the base (non-incremental) computation

The definition of influenced set substantially restricts the portion of the AF
to be analysed for recomputing the semantics after an update.

Future work: application of the technique to other (multiple status)
semantics.

Introduction Preliminaries Algorithms Experiments Conclusions and future work

Thank you!

... any question?

Introduction Preliminaries Algorithms Experiments Conclusions and future work

References

Selected References

Phan Minh Dung.

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.
Artif. Intell., 77(2):321–358, 1995.

Bei Shui Liao, Li Jin, Robert C. Koons.

Dynamics of argumentation systems: A division-based method.
Artif. Intell., 175(11), 1790–1814, (2011).

Baroni, P., Giacomin, M., Liao, B.

On topology-related properties of abstract argumentation semantics. A correction and extension to dynamics of argumentation systems: A
division-based method.
Artificial Intelligence 212, 104–115 (2014)

	Introduction
	Motivation
	Contributions

	Preliminaries
	Abstract Argumentation Frameworks
	Updates

	Algorithms
	Influenced Arguments
	Incremental Computation of Grounded Semantics
	Incremental Computation of Ideal Semantics

	Experiments
	Conclusions and future work
	References

