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Motivation

Dynamic Structured Argumentation

Argumentation frameworks are often
dynamic (change over time) as a
consequence of the fact that
argumentation is inherently dynamic
(change mind/opinion, new available
knowledge)
We focus on Defeasible Logic
Programming, a formalism that
combines results of Logic
Programming and Defeasible
Argumentation.
We devise an incremental technique
for computing conclusions in structured
argumentation frameworks (avoiding
wasted effort due to recomputation
from scratch)
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Defeasible Logic Programming

A DeLP Program

DeLP considers two kinds of program rules:
Defeasible rules to represent tentative information, and
Strict rules used to represent strict knowledge.

Example ( A DeLP-program P1)

Consider the DeLP-program P1 = (Π1,∆1), where:

Π1 =
{
∼a, t , b, (d ← t)

}

∆1 =


(i−≺s), (s−≺h), (h−≺b),

(∼h−≺d , t), (∼i−≺ ∼a, s), (a−≺t),
(s−≺d), (h−≺d), (∼f−≺ ∼e),

(∼e−≺ ∼h,∼a)
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Defeasible Logic Programming

Argument

Given a DeLP program P = (Π,∆) and a literal α, we say that 〈A, α〉 is an
argument for α if A is a set of defeasible rules of ∆ such that:

(i) there is a derivation for α from Π ∪ A,
(ii) the set Π ∪ A is not contradictory, and
(iii) A is minimal (i.e., there is no proper subset A′ of A satisfying both (i) and

(ii)).

Example (An argument for P1)

〈A1, i〉 = 〈{(i−≺s), (s−≺h), (h−≺b)}, i〉

i−<s

s−<h

h−<b
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Defeasible Logic Programming

Argumentation Line

A sequence of arguments obtained from a DeLP program, where each
element of the sequence is a defeater of its predecessor.

Example (Argumentation Line)

A0

α0

A1

α1

A2

α2

A3

α3

Example (An argumentation line for P1)

Given the two arguments: 〈A1, i〉 = 〈{(i−≺s), (s−≺h), (h−≺b)}, i〉, and
〈A2,∼i〉 = 〈{(∼i−≺ ∼a, s), (s−≺d)},∼i〉

an argumentation line is the following: [A1,A2]
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Defeasible Logic Programming

Dialectical Process

Given an argument A for a
literal L, the dialectical tree
contains all acceptable
argumentation lines that start
with that argument.

It allows to determine the
status for a given argument.

Example (Dialectical Tree)

A0

A1

B2A2

A3

A4

C3

C4

C5

B3
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Defeasible Logic Programming

Dialectical Process

All leaves are marked as
Undefeated.

An argument in the tree is
marked as Defeated if and
only if it has at least a child
marked as Undefeated.

Example (Dialectical Tree)

D

U

U = Undefeated
D = Defeated

U

U

U

U

U

D

D

D
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Defeasible Logic Programming

Status of literals

The status of literals allow us to determine the conclusions we can draw from
a DeLP-program.
SP : Lit → {IN, OUT, UNDECIDED, UNKNOWN} assigning a status to each
literal w.r.t. P as follows:

SP(α) = IN if there exists a (marked) dialectical tree whose root α is
Undefeated

SP(α) = OUT if SP(∼α) = IN

SP(α) = UNDECIDED if neither SP(α) = IN nor SP(α) = OUT

SP(α) = UNKNOWN if α 6∈ LitP , i.e., α is not in the language of the
program

Example (Arguments from the previous program)

Given P, then SP1 (h) = IN, SP1 (a) = OUT, and SP1 (i) = UNDECIDED.
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Complexity Results

Theorem Given P and a literal α ∈ LitP , deciding whether there is an
argument for α w.r.t. P is NP-complete.

Corollary Let P = (Π,∆) be a DeLP-program such that for all r ∈ (Π ∪∆),
|body(r)| ≤ 2. Deciding whether there is an argument for α ∈ LitP w.r.t. P is
NP-complete.

Proposition Given P = (Π,∆) and a literal α ∈ LitP , deciding whether there
is an argument for α w.r.t. P is in PTIME if either (i) α does not depend in G(P)
on literals β and γ such that {β, γ} ∪ Π is contradictory, or (ii) α is not in G(P).

Corollary Let P = (Π,∆) be a DeLP-program such that for all r ∈ (Π ∪∆),
|body(r)| ≤ 2. Deciding whether SP(α) = IN, SP(α) = OUT, or
SP(α) = UNDECIDED, for α ∈ LitP is NP-hard.
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Updates

Updating a DeLP program

An update consists of modifying a DeLP-program P into a new
DeLP-program P ′

by adding or removing a strict or a defeasible rule.

Example (Perform u =+(∼i−≺h) on P1)

The updated DeLP-program P ′
1 = (Π′

1,∆
′
1), is as follows:

Π′
1 = Π1 =

{
∼a, t , b, (d ← t)

}
∆′

1 = ∆1 =


(i−≺s), (s−≺h), (h−≺b),

(∼h−≺d , t), (∼i−≺ ∼a, s), (a−≺t),
(s−≺d), (h−≺d), (∼f−≺ ∼e),

(∼e−≺ ∼h,∼a)

 ∪ {(∼i−≺h)}

If r is a strict rule and u = +r , then P ′ = ((Π ∪ {r}),∆) if (Π ∪ {r}) is
guaranteed to be not contradictory, otherwise P ′ = P.
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Updates

Question

After performing an update the conclusion that can be
derived may change.

Should we recompute the status of literals from scratch?

The fact that computing the status of arguments is hard
motivated the investigation of incremental techniques.
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Updates

Overview of our incremental approach

Two main steps:

1) First, we check if the update is irrelevant (the status of all
literals are preserved). In such a case we simply return the
initial status SP .

2) To efficiently deal with relevant updates, we identify the
subset of literals whose status needs to be recomputed after
performing an update, and only recompute their status.
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Updates

Hyper-graph for a DeLP-Program

Given a program P, G(P) = 〈N,H〉 is defined as follows:
If there is a strict derivation in Π for literal α, then α ∈ N;
For each strict rule α0 ← α1, . . . , αn (resp., defeasible rule
α0−≺α1, . . . , αn) such that α1, . . . , αn ∈ N, then α0 ∈ N and
({α1, . . . , αn}, α0) ∈ H;
For each pair of nodes in N representing complementary literals α and
∼α, both ({α},∼α) ∈ H and ({∼α}, α) ∈ H.

Example (Hyper-graph G(P1) for P1)

Consider the DeLP-program P1 = (Π1,∆1), where:
Π1 =

{
∼a, t , b, (d ← t)

}
∆1 =


(i−≺s), (s−≺h), (h−≺b),

(∼h−≺d , t), (∼i−≺ ∼a, s), (a−≺t),
(s−≺d), (h−≺d), (∼f−≺ ∼e),

(∼e−≺ ∼h,∼a)

 d

t

a

s

∼a ∼h

h

∼i b

i

∼e∼f
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Updates

Reachable and Preserved Literals

We say that a node y is reachable from a set X of nodes if
there exists a hyper-path from X to y .

We use ReachG(P)(X ) to denote the set of all nodes that
are reachable from X in G(P).

ReachG(P1)({d}) = {d , h,∼h, s,∼i, i,∼e,∼f}

d

∼f ∼e

∼h
∼i

i s
h

∼a
a

t

b

Lemma (1) (Preserved literals)

Let P be a DeLP-program, u = ±r an update for P, and
R(u,P) = ReachG(u,P)({head(r)}). Let P ′ = u(P) be the updated program,
and G(P ′) = 〈N ′,H ′〉 be the updated hyper-graph. Then, a literal α ∈ N ′ is
preserved (i.e., SP(α) = SP′(α)) if α 6∈ R(u,P).

If a literal is not reachable in the hyper-graph, then its status does not
change after the update.
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Dealing with Irrelevant Updates

Irrelevant updates
Proposition ( (2) Status of the head of the rule )

Let P be a DeLP-program and r = α0 −≺ α1, . . . , αn a defeasible rule such
that {α0, . . . , αn} ⊆ (LitP ∩ LitP′).
(1) If SP(α0) = IN then +r is irrelevant for P.
(2) If SP(α0) = OUT then −r is irrelevant for P.

Proposition ( (3) Belonging to the Hyper-Graph )

Let P be a DeLP-program and r a strict rule α0 ← α1, . . . , αn or defeasible
rule α0−≺α1, . . . , αn such that {α0, . . . αn} ⊆ (LitP ∩ LitP′). Update u = ±r is
irrelevant for P if α0 does not belong to G(u,P).

Proposition ( (4) Reachable in the Hyper-Graph )

Let P be a DeLP-program and r a strict rule α0 ← α1, . . . , αn or defeasible
rule α0−≺α1, . . . , αn such that {α0, . . . αn} ⊆ (LitP ∩ LitP′). Update u = ±r is
irrelevant for P if there is αi (with i ∈ [1..n]) such that SP(αi ) = OUT and
αi 6∈ ReachG(u,P)({α0}).
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Dealing with Relevant Updates

Relevant updates

However, in many cases updates are not irrelevant.
An update is relevant whenever it causes the status of at least one literal
to change.

Example (A relevant update)

Consider again P1, where we have that SP1 (s) = SP1 (t) = IN. For update
u = +(s ← t), we have that Su(P1)(∼i) = IN, though it was UNDECIDED before
performing the update. The change in the status of s is caused by the new
argument 〈A10,∼i〉 = 〈{(∼i−≺ ∼a, s)},∼i〉 for u(P1) and A10 is preferred to all
the other arguments of the form 〈A, i〉.

d

t

a

s

∼a ∼h

h

∼i b

i

∼e∼f

d

t

a

s

∼a ∼h

h

∼i b

i

∼e∼f
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Dealing with Relevant Updates

Influenced Set

We propose the concept of influenced set, which consists of the literals that
are reachable in G(u,P) from the head of the rule r in the update u by using
only the hyper-edges whose body does not contain an unreachable literal
whose status is OUT.

Example (Influenced literals)

Consider the update u = +(a−≺s) over P1, which yields
the DeLP-program u(P1). Thus, we have:
R(u,P1) = {a,∼a, i,∼i,∼e,∼f}, and

R(u,P1) ⊇ I(u,P1,SP1 ) = {a,∼a, i,∼i}.

t

b
u

d

∼f ∼e

∼h
∼i

i s
h

∼a
a
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Dealing with Relevant Updates

Influenced Set

We propose the concept of influenced set, which consists of the literals that
are reachable in G(u,P) from the head of the rule r in the update u by using
only the hyper-edges whose body does not contain an unreachable literal
whose status is OUT.

Example (Influenced literals)

Consider the update u = +(a−≺s) over P1, which yields
the DeLP-program u(P1). Thus, we have:
R(u,P1) = {a,∼a, i,∼i,∼e,∼f}, and

R(u,P1) ⊇ I(u,P1,SP1 ) = {a,∼a, i,∼i}.

t

b
u

d

∼f ∼e

∼h
∼i

i s
h

∼a
a
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Dealing with Relevant Updates

Influenced Set: Definition

We propose the concept of influenced set, which consists of the literals that
are reachable in G(u,P) from the head of the rule r in the update u by using
only the hyper-edges whose body does not contain an unreachable literal
whose status is OUT.

Definition (Influenced Set)

Let P be a DeLP-program, u = ±r , and SP the status of literals w.r.t. P, and
G(u,P) = 〈Nu,Hu〉.

– I0(u,P,SP)=

{
∅ if u is irrelevant for P
{head(r)} otherwise;

– Ii+1(u,P,SP) = Ii (u,P,SP)∪{∼α | ∃({α},∼α) ∈ Hu s.t . α ∈ Ii (u,P,SP)}∪
{y |∃(X , α) ∈ Hu s.t . X ∩ Ii (u,P,SP) 6= ∅ ∧ X ∩OUT(u,P,SP) = ∅}.

The influenced set for u w.r.t. P and SP is then defined as
I(u,P,SP) = In(u,P,SP) such that In(u,P,SP) = In+1(u,P,SP).
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Dealing with Relevant Updates

Inferable and Core Literals

[Inferable] The status of a literal for which there is no argument in the
(updated) program may depend only on the status of its complementary
literal—we call such literals inferable.
[Core] The core literals for a relevant update u = ±r w.r.t. P are those in LitP′

that are influenced but are not inferable.

Example (Inferbale and Core literals)

Consider the update u = −(d ← t) over P1, which yields
the DeLP-program u(P1). Thus, we have:

Infer(u,P1) = {d ,∼h,∼e,∼f}
Core(u,P1) = {h, s,∼i, i}.

t

a

s

∼a

h

∼i b

i

u

d

∼f ∼e

∼h
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Dealing with Relevant Updates

Inferable and Core Literals

[Inferable] The status of a literal for which there is no argument in the
(updated) program may depend only on the status of its complementary
literal—we call such literals inferable.
[Core] The core literals for a relevant update u = ±r w.r.t. P are those in LitP′

that are influenced but are not inferable.

Example (Inferbale and Core literals)

Consider the update u = −(d ← t) over P1, which yields
the DeLP-program u(P1). Thus, we have:

Infer(u,P1) = {d ,∼h,∼e,∼f}
Core(u,P1) = {h, s,∼i, i}.

t

a

∼a

b

u

d

∼f ∼e

∼h
∼i

i s
h
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Dealing with Relevant Updates

Inferable and Core Literals: Definitions

The status of a literal for which there is no argument in the (updated) program
may depend only on the status of its complementary literal—we call such
literals inferable. Using the hyper-graph of updated programs, we can define
inferable literals as follows.

Definition (Set of Inferable Literals)

Let P be a DeLP-program, u = ±r , P ′ = u(P), and G(P ′) = 〈N ′,H ′〉. The set
of inferable literals for u w.r.t. P is Infer(u,P) = LitP′ \ N ′.

The core literals for a relevant update u = ±r w.r.t. P are those in LitP′ that
are influenced but are not inferable.

Definition (Set of Core Literals)

Let P be a DeLP-program, u = ±r , and SP the status of the literals of P. The
set Core(u,P) of core literals for u w.r.t. P is
Core(u,P)) = (I(u,P,SP) \ Infer(u,P)) ∩ LitP′ .
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Dealing with Relevant Updates

Relationships for addition

LitP ′
N ′

R(u,P)

LitPN

PR
Core(u,P)
Infer(u,P)I(u

,P
,SP

)
Legend :
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Dealing with Relevant Updates

Relationships for deletion

LitP
N

R(u,P)

LitP ′N ′

PR
Core(u,P)
Infer(u,P)I(u

,P
,SP

)
Legend :
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Our Technique

Incremental Algorithm
Algorithm Dynamic DeLP-Solver
Input: DeLP-program P, Initial status SP , Update u = ±r .
Output: Status SP′ w.r.t. the updated program P ′ = u(P).
1: if one of Propositions 2–4 holds (the update is irrelevant) then
2: return SP ;// Nothing changes
3: if {head(r),∼head(r)} ∩ LitP = ∅ then
4: return SP ∪ {(head(r),DELP-SOLVER(P ′, head(r)))};// New fresh literal
5: Let G(P ′) = 〈N′,H′〉;// Build the Hyper-Graph
6: Let PR = {α ∈ N′ \ I(u,P,SP )};// Preserved Literals
7: for α ∈ PR do
8: SP′ (α) ← SP (α);// Status Preserved
9: for α ∈ Core(u,P) do

10: SP′ (α) ← DELP-SOLVER(P ′, α);// Status must be computed
11: for α ∈ Infer(u,P) do
12: if SP′ (∼α) = IN
13: then SP′ (α) ← OUT// Status Inferred
14: else SP′ (α) ← UNDECIDED;// Status Inferred
15: for α ∈ Lit \ LitP′ do
16: SP′ (α) = UNKNOWN// Literal is not in the language of the updated program
17: return SP′ .
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Experimental validation

Dataset & Metodology

Datasets:
Inspired by the structure of the DeLP-program in our running example, we
generated a set of 40 DeLP programs, each consisting of a number of literals
in {180,220}, of facts in {10,20}, of strict rules in {20,30}, and a number of
defeasible rules in {100,150}. For each program, we generated 5 different
rule addition/deletion updates.

Methodology
[Efficiency] For each DeLP-program P in the dataset, we compared the
average running time of Algorithm 1 with that of the approach from scratch,
which computes the status in the updated program by directly calling the
DeLP-Solver for each literal of P.
[Effectiveness] We also measured the percentage of literals whose status
needs to be recomputed over the set of literals whose status is recomputed by
Algorithm 1.

E(u,P) =
|Rec(u,P)|

|Core(u,P) ∪ Infer(u,P)|



Introduction Background Complexity Analysis Incremental Computation Implementation & Experiments Conclusions & Future Work

Experimental validation

Experimental Results for addition/deletion (left/right)
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Experimental validation

Results

1) We compared our technique with the computation
from scratch.

2) We performed experiments that aimed at
evaluating both the efficiency and effectiveness of
our approach.

3) Our incremental algorithm outperforms the
computation from scratch.

4) For almost half of the updates performed, the
proposed technique computes only the status of
literals whose status actually needs to be
recomputed.
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Conclusions and Future Work

* We have taken the first steps in tackling the problem of avoiding wasted
effort when determining the warrant status of literals in a DeLP program
after that a (defeasible or strict) rule is added/removed.

* Our incremental approach outperforms the computation from scratch
(especially if the average number of literals reachable from an update is
less than 33%).

FW1) Further developing these techniques, as well as developing similar ones
for fact addition and deletion, and the more general case of
simultaneously adding or deleting a set of rules and facts.

FW2) We believe the basic ideas in the framework could carry over to other
frameworks, v.g. ASPIC+, ABA.



Introduction Background Complexity Analysis Incremental Computation Implementation & Experiments Conclusions & Future Work

Thank you!

... any����question argument?
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