Introduction Background Co

Complexity Analysis

Incremental Computation

Implementation & Experiments

Conclusions & Future Work

An Incremental Approach to Structured Argumentation over Dynamic Knowledge Bases

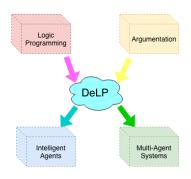
<u>Gianvincenzo Alfano</u>¹, Sergio Greco¹, Francesco Parisi¹, Gerardo Ignacio Simari², Guillermo Ricardo Simari²

¹ Department of Informatics, Modeling, Electronics and System Engineering University of Calabria, Italy {g.alfano, greco, fparisi}@dimes.unical.it ² Departamento de Ciencias e Ing. de la Computación Universidad Nacional del Sur (UNS) Instituto de Ciencias e Ing. de la Computación (ICIC UNS–CONICET) Argentina {gis,grs}@cs.uns.edu.ar

> 16*th* International Conference on Principles of Knowledge Representation and Reasoning October 30-November 2, 2018 Tempe, Arizona

Dynamic Structured Argumentation

- Argumentation frameworks are often dynamic (change over time) as a consequence of the fact that argumentation is inherently dynamic (change mind/opinion, new available knowledge)
- We focus on **De**feasible Logic **P**rogramming, a formalism that combines results of Logic Programming and Defeasible Argumentation.
- We devise an incremental technique for computing conclusions in structured argumentation frameworks (avoiding wasted effort due to recomputation from scratch)



Background	Incremental Computation	Implementation & Experiments	Conclusions & Future Work O

Outline

Background

Defeasible Logic Programming

Complexity Analysis

Complexity Results

Incremental Computation

- Updates
- Dealing with Irrelevant Updates
- Dealing with Relevant Updates
- Our Technique
- Implementation & Experiments
- Conclusions & Future Work

DeLP considers two kinds of program rules:

- Defeasible rules to represent tentative information, and
- Strict rules used to represent strict knowledge.

Example (A DeLP-program \mathcal{P}_1)

Consider the DeLP-program $\mathcal{P}_1 = (\Pi_1, \Delta_1)$, where:

$$\Pi_1 = \big\{ \sim a, t, b, (d \leftarrow t) \big\}$$

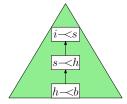
$$\Delta_{1} = \begin{cases} (i \prec s), & (s \prec h), & (h \prec b), \\ (\sim h \prec d, t), & (\sim i \prec \sim a, s), & (a \prec t), \\ (s \prec d), & (h \prec d), & (\sim f \prec \sim e), \\ (\sim e \prec \sim h, \sim a) \end{cases}$$

Given a DeLP program $\mathcal{P} = (\Pi, \Delta)$ and a literal α , we say that $\langle \mathcal{A}, \alpha \rangle$ is an argument for α if \mathcal{A} is a set of defeasible rules of Δ such that:

- (i) there is a derivation for α from $\Pi \cup A$,
- (ii) the set $\Pi\cup \mathcal{A}$ is not contradictory, and
- (iii) A is minimal (i.e., there is no proper subset A' of A satisfying both (i) and (ii)).

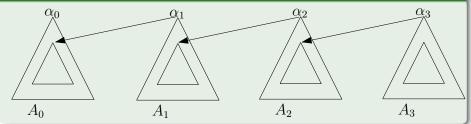
Example (An argument for \mathcal{P}_1)

•
$$\langle \mathcal{A}_1, i \rangle = \langle \{ (i \rightarrow s), (s \rightarrow h), (h \rightarrow b) \}, i \rangle$$



 A sequence of arguments obtained from a DeLP program, where each element of the sequence is a defeater of its predecessor.

Example (Argumentation Line)



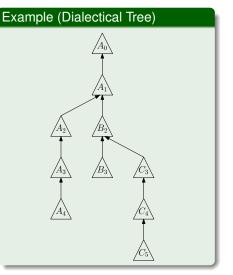
Example (An argumentation line for \mathcal{P}_1)

Given the two arguments: $\langle A_1, i \rangle = \langle \{(i \prec s), (s \prec h), (h \prec b)\}, i \rangle$, and $\langle A_2, \sim i \rangle = \langle \{(\sim i \prec \sim a, s), (s \prec d)\}, \sim i \rangle$ an argumentation line is the following: $[A_1, A_2]$

Introduction O	Background 000●0	Complexity Analysis O	Incremental Computation	Implementation & Experiments	Conclusions & Future Work O
Defeasible Logi	c Programming				

Dialectical Process

- Given an argument *A* for a literal *L*, the dialectical tree contains all acceptable argumentation lines that start with that argument.
- It allows to determine the status for a given argument.

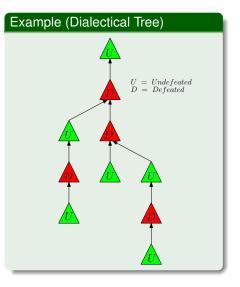


Introduction	Background	Complexity Analysis	Incremental Computation	Implementation & Experiments	Conclusions & Future Work
	00000				
Defeasible Logi	c Programming				

Dialectical Process

• All leaves are marked as **Undefeated**.

 An argument in the tree is marked as **Defeated** if and only if it has at least a child marked as **Undefeated**.



Introduction O	Background 0000●	Complexity Analysis O	Incremental Computation	Implementation & Experiments	Conclusions & Future Work O		
Defeasible Logic Programming							
Statu	s of lite	erals					

The status of literals allow us to determine the conclusions we can draw from a DeLP-program.

 $S_{\mathcal{P}}: Lit \to \{IN, OUT, UNDECIDED, UNKNOWN\}$ assigning a *status* to each literal w.r.t. \mathcal{P} as follows:

 S_P(α) = IN if there exists a (marked) dialectical tree whose root α is Undefeated

•
$$S_{\mathcal{P}}(\alpha) = \mathsf{OUT}$$
 if $S_{\mathcal{P}}(\sim \alpha) = \mathsf{IN}$

- $S_{\mathcal{P}}(\alpha) = \text{UNDECIDED}$ if neither $S_{\mathcal{P}}(\alpha) = \text{IN}$ nor $S_{\mathcal{P}}(\alpha) = \text{OUT}$
- S_P(α) = UNKNOWN if α ∉ Lit_P, i.e., α is not in the language of the program

Example (Arguments from the previous program)

Given \mathcal{P} , then $S_{\mathcal{P}_1}(h) = IN$, $S_{\mathcal{P}_1}(a) = OUT$, and $S_{\mathcal{P}_1}(i) = UNDECIDED$.

Introduction	Background	Complexity Analysis	Incremental Computation	Implementation & Experiments	Conclusions & Future Work

Outline

Motivation

Background

- Defeasible Logic Programming
- Complexity Analysis
 Complexity Results

Incremental Computation

- Updates
- Dealing with Irrelevant Updates
- Dealing with Relevant Updates
- Our Technique
- Implementation & Experiments
- Conclusions & Future Work

Introduction O	Background	Complexity Analysis	Incremental Computation	Implementation & Experiments	Conclusions & Future Work
Complexity Res	sults				

Theorem Given \mathcal{P} and a literal $\alpha \in Lit_{\mathcal{P}}$, deciding whether there is an argument for α w.r.t. \mathcal{P} is NP-complete.

Corollary Let $\mathcal{P} = (\Pi, \Delta)$ be a DeLP-program such that for all $r \in (\Pi \cup \Delta)$, $|body(r)| \leq 2$. Deciding whether there is an argument for $\alpha \in Lit_{\mathcal{P}}$ w.r.t. \mathcal{P} is NP-complete.

Proposition Given $\mathcal{P} = (\Pi, \Delta)$ and a literal $\alpha \in Lit_{\mathcal{P}}$, deciding whether there is an argument for α w.r.t. \mathcal{P} is in PTIME if either (*i*) α does not depend in $G(\mathcal{P})$ on literals β and γ such that $\{\beta, \gamma\} \cup \Pi$ is contradictory, or (*ii*) α is not in $G(\mathcal{P})$.

Corollary Let $\mathcal{P} = (\Pi, \Delta)$ be a DeLP-program such that for all $r \in (\Pi \cup \Delta)$, $|body(r)| \leq 2$. Deciding whether $S_{\mathcal{P}}(\alpha) = IN$, $S_{\mathcal{P}}(\alpha) = OUT$, or $S_{\mathcal{P}}(\alpha) = UNDECIDED$, for $\alpha \in Lit_{\mathcal{P}}$ is NP-hard.

Introduction	Background	Complexity Analysis	Incremental Computation	Implementation & Experiments	Conclusions & Future Work

Outline

Motivation

Background

- Defeasible Logic Programming
- Complexity Analysis
 Complexity Results

Incremental Computation

- Updates
- Dealing with Irrelevant Updates
- Dealing with Relevant Updates
- Our Technique
- Implementation & Experiments
 - **Conclusions & Future Work**

Updating a DeLP program

 An update consists of modifying a DeLP-program *P* into a new DeLP-program *P*' by adding or removing a strict or a defeasible rule.

Example (Perform $u = +(\sim i \rightarrow h)$ on \mathcal{P}_1)

The updated DeLP-program $\mathcal{P}'_1 = (\Pi'_1, \Delta'_1)$, is as follows:

$$\begin{aligned} \Pi_1' &= \Pi_1 = \{ \sim a, t, b, (d \leftarrow t) \} \\ \Delta_1' &= \Delta_1 = \begin{cases} (i \prec s), & (s \prec h), & (h \prec b), \\ (\sim h \prec d, t), & (\sim i \prec \sim a, s), & (a \prec t), \\ (s \prec d), & (h \prec d), & (\sim f \prec \sim e), \\ (\sim e \prec \sim h, \sim a) \end{cases} \cup \{ (\sim i \prec h) \} \end{aligned}$$

If *r* is a strict rule and *u* = +*r*, then *P*' = ((Π ∪ {*r*}), Δ) if (Π ∪ {*r*}) is guaranteed to be not contradictory, otherwise *P*' = *P*.

 After performing an update the conclusion that can be derived may change.

Should we recompute the status of literals from scratch?

• The fact that computing the status of arguments is hard motivated the investigation of incremental techniques.

Overview of our incremental approach

Two main steps:

- 1) First, we check if the update is *irrelevant* (the status of all literals are preserved). In such a case we simply return the initial status $S_{\mathcal{P}}$.
- 2) To efficiently deal with *relevant* updates, we identify the subset of literals whose status needs to be recomputed after performing an update, and only recompute their status.

Conclusions & Future Work O

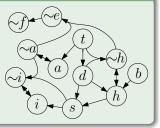
Hyper-graph for a DeLP-Program

Given a program \mathcal{P} , $G(\mathcal{P}) = \langle N, H \rangle$ is defined as follows:

- If there is a strict derivation in Π for literal α , then $\alpha \in N$;
- For each strict rule $\alpha_0 \leftarrow \alpha_1, \ldots, \alpha_n$ (resp., defeasible rule $\alpha_0 \rightarrow \alpha_1, \ldots, \alpha_n$) such that $\alpha_1, \ldots, \alpha_n \in N$, then $\alpha_0 \in N$ and $(\{\alpha_1, \ldots, \alpha_n\}, \alpha_0) \in H$;
- For each pair of nodes in *N* representing complementary literals *α* and *~α*, both ({*α*}, *~α*) ∈ *H* and ({*~α*}, *α*) ∈ *H*.

Example (Hyper-graph $G(\mathcal{P}_1)$ for \mathcal{P}_1)

$$\begin{split} & \text{Consider the DeLP-program } \mathcal{P}_1 = (\Pi_1, \Delta_1), \text{ where:} \\ & \Pi_1 = \left\{ \sim a, \, t, \, b, \, (d \leftarrow t) \right\} \\ & \Delta_1 = \begin{cases} (i \prec s), & (s \prec h), & (h \prec b), \\ (\sim h \prec d, \, t), & (\sim i \prec \sim a, \, s), & (a \prec t), \\ (s \prec d), & (h \prec d), & (\sim f \prec \sim e), \\ (\sim e \prec \sim h, \sim a) \end{cases} \end{split}$$



Background Complexity Analysis

Incremental Computation

Implementation & Experiments

Conclusions & Future Work O

Introduction O Updates

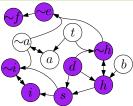
Reachable and Preserved Literals

- We say that a node *y* is *reachable* from a set *X* of nodes if there exists a hyper-path from *X* to *y*.
- We use Reach_{G(P)}(X) to denote the set of all nodes that are reachable from X in G(P).
- $Reach_{G(\mathcal{P}_1)}(\{d\}) = \{d, h, \sim h, s, \sim i, i, \sim e, \sim f\}$

Lemma (1) (Preserved literals)

Let \mathcal{P} be a DeLP-program, $u = \pm r$ an update for \mathcal{P} , and $\mathcal{R}(u, \mathcal{P}) = \text{Reach}_{G(u, \mathcal{P})}(\{\text{head}(r)\})$. Let $\mathcal{P}' = u(\mathcal{P})$ be the updated program, and $G(\mathcal{P}') = \langle N', H' \rangle$ be the updated hyper-graph. Then, a literal $\alpha \in N'$ is preserved (i.e., $S_{\mathcal{P}}(\alpha) = S_{\mathcal{P}'}(\alpha)$) if $\alpha \notin \mathcal{R}(u, \mathcal{P})$.

 If a literal is not reachable in the hyper-graph, then its status does not change after the update.



Introduction	Background	Complexity Analysis	Incremental Computation	Implementation & Experiments	Conclusions & Future Work
			000000000000000000000000000000000000000		
Dealing with Irr	elevant Updates				

Irrelevant updates

Proposition ((2) Status of the head of the rule)

Let \mathcal{P} be a DeLP-program and $r = \alpha_0 \prec \alpha_1, \ldots, \alpha_n$ a **defeasible** rule such that $\{\alpha_0, \ldots, \alpha_n\} \subseteq (Lit_{\mathcal{P}} \cap Lit_{\mathcal{P}'})$.

(1) If $S_{\mathcal{P}}(\alpha_0) = IN$ then +r is irrelevant for \mathcal{P} .

(2) If $S_{\mathcal{P}}(\alpha_0) = \text{OUT}$ then -r is irrelevant for \mathcal{P} .

Proposition ((3) Belonging to the Hyper-Graph)

Let \mathcal{P} be a DeLP-program and r a **strict** rule $\alpha_0 \leftarrow \alpha_1, \ldots, \alpha_n$ or **defeasible** rule $\alpha_0 \prec \alpha_1, \ldots, \alpha_n$ such that $\{\alpha_0, \ldots, \alpha_n\} \subseteq (Lit_{\mathcal{P}} \cap Lit_{\mathcal{P}'})$. Update $u = \pm r$ is irrelevant for \mathcal{P} if α_0 does not belong to $G(u, \mathcal{P})$.

Proposition ((4) Reachable in the Hyper-Graph)

Let \mathcal{P} be a DeLP-program and r a strict rule $\alpha_0 \leftarrow \alpha_1, \ldots, \alpha_n$ or defeasible rule $\alpha_0 \prec \alpha_1, \ldots, \alpha_n$ such that $\{\alpha_0, \ldots, \alpha_n\} \subseteq (Lit_{\mathcal{P}} \cap Lit_{\mathcal{P}'})$. Update $u = \pm r$ is irrelevant for \mathcal{P} if there is α_i (with $i \in [1..n]$) such that $S_{\mathcal{P}}(\alpha_i) = \mathsf{OUT}$ and $\alpha_i \notin Reach_{G(u,\mathcal{P})}(\{\alpha_0\})$.

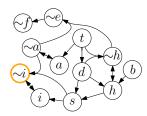
Introduction O	Background	Complexity Analysis O	Incremental Computation	Implementation & Experiments	Conclusions & Future Work O
Dealing with Re	levant Updates				

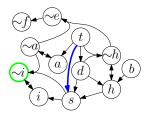
Relevant updates

- However, in many cases updates are not irrelevant.
- An update is relevant whenever it causes the status of at least one literal to change.

Example (A relevant update)

Consider again \mathcal{P}_1 , where we have that $S_{\mathcal{P}_1}(s) = S_{\mathcal{P}_1}(t) = IN$. For update $u = +(s \leftarrow t)$, we have that $S_{u(\mathcal{P}_1)}(\sim i) = IN$, though it was UNDECIDED before performing the update. The change in the status of *s* is caused by the new argument $\langle \mathcal{A}_{10}, \sim i \rangle = \langle \{(\sim i \rightarrow \sim a, s)\}, \sim i \rangle$ for $u(\mathcal{P}_1)$ and \mathcal{A}_{10} is preferred to all the other arguments of the form $\langle \mathcal{A}, i \rangle$.



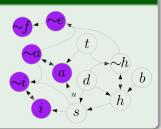


We propose the concept of *influenced set*, which consists of the literals that are reachable in $G(u, \mathcal{P})$ from the head of the rule *r* in the update *u* by using only the hyper-edges whose body does not contain an unreachable literal whose status is OUT.

Example (Influenced literals)

Consider the update $u = +(a \prec s)$ over \mathcal{P}_1 , which yields the DeLP-program $u(\mathcal{P}_1)$. Thus, we have: $\mathcal{R}(u, \mathcal{P}_1) = \{a, \sim a, i, \sim i, \sim e, \sim f\}$, and

 $\mathcal{R}(u,\mathcal{P}_1) \supseteq \mathcal{I}(u,\mathcal{P}_1,S_{\mathcal{P}_1}) = \{a,\sim a,i,\sim i\}.$

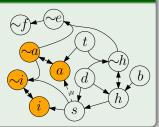


We propose the concept of *influenced set*, which consists of the literals that are reachable in $G(u, \mathcal{P})$ from the head of the rule *r* in the update *u* by using only the hyper-edges whose body does not contain an unreachable literal whose status is OUT.

Example (Influenced literals)

Consider the update $u = +(a \prec s)$ over \mathcal{P}_1 , which yields the DeLP-program $u(\mathcal{P}_1)$. Thus, we have: $\mathcal{R}(u, \mathcal{P}_1) = \{a, \sim a, i, \sim i, \sim e, \sim f\}$, and

 $\mathcal{R}(u,\mathcal{P}_1) \supseteq \mathcal{I}(u,\mathcal{P}_1,S_{\mathcal{P}_1}) = \{a,\sim a,i,\sim i\}.$



Introduction Background Complexity Analysis Incremental Computation Implementation & Experiments Conclusions & Future Work o
Dealing with Relevant Updates

Influenced Set: Definition

We propose the concept of *influenced set*, which consists of the literals that are reachable in G(u, P) from the head of the rule *r* in the update *u* by using only the hyper-edges whose body does not contain an unreachable literal whose status is OUT.

Definition (Influenced Set)

Let \mathcal{P} be a DeLP-program, $u = \pm r$, and $S_{\mathcal{P}}$ the status of literals w.r.t. \mathcal{P} , and $G(u, \mathcal{P}) = \langle N^u, H^u \rangle$.

$$- \mathcal{I}_0(u, \mathcal{P}, S_{\mathcal{P}}) = egin{cases} \emptyset & ext{if } u ext{ is irrelevant for } \mathcal{P} \ \{ ext{head}(r)\} & ext{otherwise}; \end{cases}$$

 $\begin{aligned} &-\mathcal{I}_{i+1}(u,\mathcal{P},\mathcal{S}_{\mathcal{P}}) = \mathcal{I}_{i}(u,\mathcal{P},\mathcal{S}_{\mathcal{P}}) \cup \{\sim \alpha \mid \exists (\{\alpha\},\sim \alpha) \in H^{u} \ s.t. \ \alpha \in \mathcal{I}_{i}(u,\mathcal{P},\mathcal{S}_{\mathcal{P}}) \} \cup \\ &\{y \mid \exists (X,\alpha) \in H^{u} \ s.t. \ X \cap \mathcal{I}_{i}(u,\mathcal{P},\mathcal{S}_{\mathcal{P}}) \neq \emptyset \ \land X \cap OUT(u,\mathcal{P},\mathcal{S}_{\mathcal{P}}) = \emptyset \}. \end{aligned}$

The *influenced set* for *u* w.r.t. \mathcal{P} and $S_{\mathcal{P}}$ is then defined as $\mathcal{I}(u, \mathcal{P}, S_{\mathcal{P}}) = \mathcal{I}_n(u, \mathcal{P}, S_{\mathcal{P}})$ such that $\mathcal{I}_n(u, \mathcal{P}, S_{\mathcal{P}}) = \mathcal{I}_{n+1}(u, \mathcal{P}, S_{\mathcal{P}})$.

Implementation & Experiments

Conclusions & Future Work O

Dealing with Relevant Updates

Inferable and Core Literals

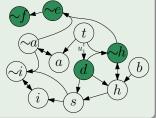
[Inferable] The status of a literal for which there is no argument in the (updated) program may depend only on the status of its complementary literal—we call such literals *inferable*.

[Core] The core literals for a relevant update $u = \pm r$ w.r.t. \mathcal{P} are those in $Lit_{\mathcal{P}'}$ that are influenced but are not inferable.

Example (Inferbale and Core literals)

Consider the update $u = -(d \leftarrow t)$ over \mathcal{P}_1 , which yields the DeLP-program $u(\mathcal{P}_1)$. Thus, we have:

 $Infer(u, \mathcal{P}_1) = \{d, \sim h, \sim e, \sim f\}$ $Core(u, \mathcal{P}_1) = \{h, s, \sim i, i\}.$



Introduction O Complexity Analysis

Incremental Computation

Implementation & Experiments

Conclusions & Future Work O

Dealing with Relevant Updates

Background

Inferable and Core Literals

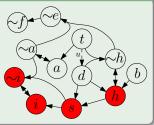
[Inferable] The status of a literal for which there is no argument in the (updated) program may depend only on the status of its complementary literal—we call such literals *inferable*.

[Core] The core literals for a relevant update $u = \pm r$ w.r.t. \mathcal{P} are those in $Lit_{\mathcal{P}'}$ that are influenced but are not inferable.

Example (Inferbale and Core literals)

Consider the update $u = -(d \leftarrow t)$ over \mathcal{P}_1 , which yields the DeLP-program $u(\mathcal{P}_1)$. Thus, we have:

$$Infer(u, \mathcal{P}_1) = \{d, \sim h, \sim e, \sim f\}$$
$$Core(u, \mathcal{P}_1) = \{h, s, \sim i, i\}.$$



Introduction

Complexity Analysis

Incremental Computation

Implementation & Experiments

Conclusions & Future Work

Dealing with Relevant Updates

Background

Inferable and Core Literals: Definitions

The status of a literal for which there is no argument in the (updated) program may depend only on the status of its complementary literal—we call such literals *inferable*. Using the hyper-graph of updated programs, we can define inferable literals as follows.

Definition (Set of Inferable Literals)

Let \mathcal{P} be a DeLP-program, $u = \pm r$, $\mathcal{P}' = u(\mathcal{P})$, and $G(\mathcal{P}') = \langle N', H' \rangle$. The set of inferable literals for u w.r.t. \mathcal{P} is $Infer(u, \mathcal{P}) = Lit_{\mathcal{P}'} \setminus N'$.

The core literals for a relevant update $u = \pm r$ w.r.t. \mathcal{P} are those in $Lit_{\mathcal{P}'}$ that are influenced but are not inferable.

Definition (Set of Core Literals)

Let \mathcal{P} be a DeLP-program, $u = \pm r$, and $S_{\mathcal{P}}$ the status of the literals of \mathcal{P} . The set $Core(u, \mathcal{P})$ of core literals for u w.r.t. \mathcal{P} is $Core(u, \mathcal{P})) = (\mathcal{I}(u, \mathcal{P}, S_{\mathcal{P}}) \setminus Infer(u, \mathcal{P})) \cap Lit_{\mathcal{P}'}$.

Introduction

Complexity Analys

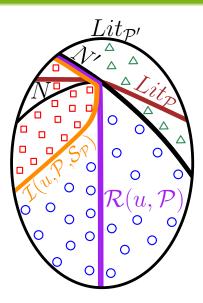
Incremental Computation

Implementation & Experiments

Conclusions & Future Work

Dealing with Relevant Updates

Relationships for addition





Introduction

Complexity Analysi

Incremental Computation

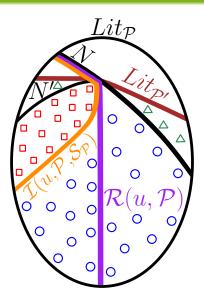
Implementation & Experiments

Conclusions & Future Work

Dealing with Relevant Updates

Background

Relationships for deletion



Introduction O	Complexity Analysis O	Incremental Computation	Implementation & Experiments	Conclusions & Future Work O
Our Technique				

Incremental Algorithm

Algorithm Dynamic DeLP-Solver

Input: DeLP-program \mathcal{P} , Initial status $S_{\mathcal{P}}$, Update $u = \pm r$. **Output:** Status $S_{\mathcal{P}'}$ w.r.t. the updated program $\mathcal{P}' = u(\mathcal{P})$.

- 1: if one of Propositions 2–4 holds (the update is irrelevant) then
- 2: return $S_{\mathcal{P}}$;// Nothing changes
- 3: if $\{head(r), \sim head(r)\} \cap Lit_{\mathcal{P}} = \emptyset$ then
- 4: return $S_{\mathcal{P}} \cup \{(head(r), \text{DELP-SOLVER}(\mathcal{P}', head(r)))\}; // New fresh literal$
- 5: Let $G(\mathcal{P}') = \langle N', H' \rangle$;// Build the Hyper-Graph
- 6: Let $PR = \{ \alpha \in N' \setminus \mathcal{I}(u, \mathcal{P}, S_{\mathcal{P}}) \}$;// Preserved Literals

7: for $\alpha \in PR$ do

- 8: $S_{\mathcal{P}'}(\alpha) \leftarrow S_{\mathcal{P}}(\alpha)$;// Status Preserved
- 9: for $\alpha \in \mathit{Core}(u, \mathcal{P})$ do
- 10: $S_{\mathcal{P}'}(\alpha) \leftarrow \text{DELP-SOLVER}(\mathcal{P}', \alpha);//\text{Status must be computed}$
- 11: for $\alpha \in \mathit{Infer}(u, \mathcal{P})$ do
- 12: **if** $S_{\mathcal{P}'}(\sim \alpha) = IN$
- 13: **then** $S_{\mathcal{P}'}(\alpha) \leftarrow \text{OUT}//\text{Status Inferred}$
- 14: else $S_{\mathcal{P}'}(\alpha) \leftarrow$ UNDECIDED;// Status Inferred
- 15: for $\alpha \in Lit \setminus Lit_{\mathcal{P}'}$ do
- 16: $S_{\mathcal{P}'}(\alpha) = \text{UNKNOWN// Literal is not in the language of the updated program}$
- 17: return $S_{\mathcal{P}'}$.

Introduction O		Incremental Computation	Implementation & Experiments	Conclusions & Future Work O

Outline

Introduction

Motivation

Background

• Defeasible Logic Programming

3 Complexity Analysis

Complexity Results

Incremental Computation

- Updates
- Dealing with Irrelevant Updates
- Dealing with Relevant Updates
- Our Technique

Implementation & Experiments

Conclusions & Future Work

Introduction O	Background	Complexity Analysis O	Incremental Computation	Implementation & Experiments •00	Conclusions & Future Work O
Experimental v	alidation				
D					

Dataset & Metodology

Datasets:

Inspired by the structure of the DeLP-program in our running example, we generated a set of 40 DeLP programs, each consisting of a number of literals in $\{180, 220\}$, of facts in $\{10, 20\}$, of strict rules in $\{20, 30\}$, and a number of defeasible rules in $\{100, 150\}$. For each program, we generated 5 different rule addition/deletion updates.

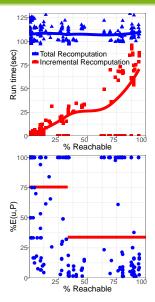
Methodology

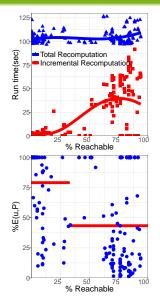
[Efficiency] For each DeLP-program \mathcal{P} in the dataset, we compared the average running time of Algorithm 1 with that of the approach from scratch, which computes the status in the updated program by directly calling the DeLP-Solver for each literal of \mathcal{P} .

[Effectiveness] We also measured the percentage of literals whose status needs to be recomputed over the set of literals whose status is recomputed by Algorithm 1.

$$m{\textit{E}}(u,\mathcal{P}) = rac{|\textit{\textit{Rec}}(u,\mathcal{P})|}{|\textit{\textit{Core}}(u,\mathcal{P}) \cup \textit{\textit{Infer}}(u,\mathcal{P})|}$$

Experimental Results for addition/deletion (left/right)





- 1) We compared our technique with the computation from scratch.
- We performed experiments that aimed at evaluating both the efficiency and effectiveness of our approach.
- 3) Our incremental algorithm outperforms the computation from scratch.
- 4) For almost half of the updates performed, the proposed technique computes only the status of literals whose status actually needs to be recomputed.

Introduction O	Complexity Analysis O	Incremental Computation	Implementation & Experiments	Conclusions & Future Work

Outline

Introduction

Motivation

Background

• Defeasible Logic Programming

3 Complexity Analysis

Complexity Results

Incremental Computation

- Updates
- Dealing with Irrelevant Updates
- Dealing with Relevant Updates
- Our Technique

Implementation & Experiments

Conclusions & Future Work

Introduction O	Background 00000	Complexity Analysis O	Incremental Computation	Implementation & Experiments	Conclusions & Future Work		
Conclusions and Future Work							

- * We have taken the first steps in tackling the problem of avoiding wasted effort when determining the warrant status of literals in a DeLP program after that a (defeasible or strict) rule is added/removed.
- * Our incremental approach outperforms the computation from scratch (especially if the average number of literals reachable from an update is less than 33%).
- FW1) Further developing these techniques, as well as developing similar ones for fact addition and deletion, and the more general case of simultaneously adding or deleting a set of rules and facts.
- FW2) We believe the basic ideas in the framework could carry over to other frameworks, v.g. ASPIC+, ABA.

Introduction O	Complexity Analysis	Implementation & Experiments	Conclusions & Future Work O

Thank you!

... any question argument?