
Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Incremental Computation of Warranted Arguments in
Dynamic Defeasible Argumentation:

The Rule Addition Case

Gianvincenzo Alfano1, Sergio Greco1, Francesco Parisi1,
Gerardo Ignacio Simari2, Guillermo Ricardo Simari2

1 Department of Informatics, Modeling, Electronics and System Engineering
University of Calabria, Italy

{g.alfano, greco, fparisi}@dimes.unical.it
2 Departamento de Ciencias e Ing. de la Computación

Universidad Nacional del Sur (UNS)
Instituto de Ciencias e Ing. de la Computación (ICIC UNS−CONICET) Argentina

{gis,grs}@cs.uns.edu.ar

33rd ACM/SIGAPP Symposium On Applied Computing
Track on Knowledge Representation and Reasoning

April 9-13, 2018
Pau, France



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Motivation

Dynamic Structured Argumentation

A general way for representing arguments and relationships (defeats)
between them

It allows representing dialogues, making decisions, and handling
inconsistency and uncertainty

Several kinds of Argumentation Frameworks (e.g. Abstract
Argumentation, Structured Argumentation)

A well-known formalism for structured argumentation is DeLP: Defeasible
Logic Programming

Argumentation frameworks are often dynamic (change over time) as a
consequence of the fact that argumentation is inherently dynamic
(change mind/opinion, new available knowledge)

We devise an incremental technique for computing conclusions in
structured argumentation frameworks (avoiding wasted effort due to
recomputation from scratch)



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Motivation

DeLP

We focus on Defeasible Logic
Programming, a formalism that
combines results of Logic
Programming and Defeasible
Argumentation.
DeLP is a knowledge representation
language, where defeasible and
non-defeasible rules can be expressed.
The language has two different
negations: classical negation, used for
representing contradictory knowledge
and negation as failure, used for
representing incomplete information.
A defeasible argumentation inference
mechanism for warranting the
conclusions that are entailed.



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Outline

1 Introduction
Motivation

2 Background
Defeasible Logic Programming

3 Incremental Computation
Updates
Dealing with Irrelevant Updates
Dealing with Relevant Updates
Our Technique

4 Implementation & Experiments

5 Conclusions and future work



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Defeasible Logic Programming

A DeLP Program

DeLP considers two kinds of program rules: defeasible rules to represent
tentative information, and strict rules used to represent strict knowledge.

Example

Consider the DeLP-program P1 = (Π1,∆1), where:

Π1 =
{

w , t , z, (p ← t)
}

∆1 =

{
(∼a−≺y), (y−≺x), (x−≺z), (∼x−≺p, t)
(a−≺w , y), (∼w−≺t), (y−≺p), (x−≺p)

}
The (non-contradictory) set of literals that can be derived from Π1 is
{w , t , z,p}. However, both a and ∼a can be derived from P1 using the
following sets of rules and facts:

(a−≺w , y), (y−≺p), (p ← t), (t) and (∼a−≺y), (y−≺p), (p ← t), (t),

respectively.



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Defeasible Logic Programming

Argument

Given a DeLP program P = (Π,∆) and a literal α, we say that 〈A, α〉 is an
argument for α if A is a set of defeasible rules of ∆ such that:

(i) there is a derivation for α from Π ∪ A,
(ii) the set Π ∪ A is not contradictory, and
(iii) A is minimal (i.e., there is no proper subset A′ of A satisfying both (i) and

(ii)).

Example

Given P1, we have the following arguments (among others):
〈A1,∼a〉 = 〈{(∼a−≺y), (y−≺x), (x−≺z)},∼a〉
〈A2,∼a〉 = 〈{(∼a−≺y), (y−≺p)},∼a〉
〈A3,a〉 = 〈{(a−≺w , y), (y−≺p), },a〉
〈A4,∼x〉 = 〈{(∼x−≺t ,p)},∼x〉
〈A5, x〉 = 〈{(x−≺p)}, x〉



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Defeasible Logic Programming

Argument

Given a DeLP program P = (Π,∆) and a literal α, we say that 〈A, α〉 is an
argument for α if A is a set of defeasible rules of ∆ such that:

(i) there is a derivation for α from Π ∪ A,
(ii) the set Π ∪ A is not contradictory, and
(iii) A is minimal (i.e., there is no proper subset A′ of A satisfying both (i) and

(ii)).

Example (An argument for ∼a built from the previous
program)

Given P1, we have the following arguments (among
others):
〈A1,∼a〉 = 〈{(∼a−≺y), (y−≺x), (x−≺z)},∼a〉



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Defeasible Logic Programming

Argumentation Line

A sequence of arguments obtained from a DeLP program, where each
element of the sequence is a defeater of its predecessor.

Example (Argumentation Line)

A0

α0

A1

α1

A2

α2

A3

α3

Example (An argumentation line from the previous program)

Given P, an argumentation line is the following:

[A1,A3]



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Defeasible Logic Programming

Dialectical Process

Given an argument A for a
literal L, the dialectical tree
contains all acceptable
argumentation lines that start
with that argument.

It allows to determine the
status for a given argument.

Example (Dialectical Tree)

A0

A1

B2A2

A3

A4

C3

C4

C5

B3



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Defeasible Logic Programming

Dialectical Process: Marking Procedure

All leaves are marked as
Undefeated.

An argument in the tree is
marked as Defeated if and
only if it has at least a child
marked as Undefeated.

Example (Dialectical Tree)

D

U

U = Undefeated
D = Defeated

U

U

U

U

U

D

D

D



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Defeasible Logic Programming

Status of literals

The status of literals allow us to determine the conclusions we can draw from
a DeLP-program.
SP : Lit → {IN, OUT, UNDECIDED, UNKNOWN} assigning a status to each
literal w.r.t. P as follows:

SP(α) = IN if there exists a (marked) dialectical tree whose root α is
Undefeated

SP(α) = OUT if SP(∼α) = IN

SP(α) = UNDECIDED if neither SP(α) = IN nor SP(α) = OUT

SP(α) = UNKNOWN if α 6∈ LitP , i.e., α is not in the language of the
program

Example (Arguments from the previous program)

Given P, then SP(t) = IN, SP(∼w) = OUT, SP(a) = UNDECIDED.



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Outline

1 Introduction
Motivation

2 Background
Defeasible Logic Programming

3 Incremental Computation
Updates
Dealing with Irrelevant Updates
Dealing with Relevant Updates
Our Technique

4 Implementation & Experiments

5 Conclusions and future work



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Updates

Adding a rule to a DeLP program

An update consists of modifying a DeLP-program P into a new DeLP-program
P ′

by adding a strict or a defeasible rule. In particular, P ′ is as follows:

If r is a strict rule, then if (Π ∪ r) is not contradictory, then
P ′ = ((Π ∪ r),∆) otherwise P ′ = P (i.e., the update has no effect if it
would yield a contradictory program).

If r is a defeasible rule, then P ′ = (Π, (∆ ∪ r)), that is, adding a
defeasible rule is always permitted.

Example (Perform r =(a−≺x) on P1)

The updated DeLP-program P ′
1 = (Π′

1,∆
′
1), is as follows:

Π′
1 = Π1 =

{
w , t , z, (p ← t)

}
∆′

1 = ∆1 =

{
(∼a−≺y), (y−≺x), (x−≺z), (∼x−≺p, t)
(a−≺w , y), (∼w−≺t), (y−≺p), (x−≺p)

}
∪ {(a−≺x)}



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Updates

Question

After performing an update the conclusion that can be derived
may change: the status of a is IN (was UNDECIDED) after
performing the update r = (y ← t) in our example.

Should we recompute the status of literals from scratch?



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Updates

Overview of our incremental approach

Two main steps.

1) First, we check if the update is irrelevant (the status of all
literals are preserved).

In such a case we simply return the initial status SP .

2) To efficiently deal with relevant updates, we identify the
subset of literals whose status needs to be recomputed after
performing an update, and only recompute their status.



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Dealing with Irrelevant Updates

Irrelevant defeasible-rule update

Adding a rule whose head consists of a literal that already appears as a fact
does not affect the status of any other literal of the program.

Proposition Let P be a DeLP-program, and r = α0−≺α1, . . . , αn an update
for P. If SP(α0) = IN then r is irrelevant for P (i.e., SP′ = SP ).

However, many updates are relevant.

Example (Relevant update)

Consider the DeLP-program P1 from our running example, where we have
that SP(y) = SP(t) = IN. If the rule addition update is r = (y ← t), then
SP′(a) becomes IN, though it was UNDECIDED before performing the update.



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Dealing with Relevant Updates

Hyper-graph for a DeLP-Program

Given a program P, G(P) = 〈N,H〉 is defined as follows:
If there is a strict derivation in Π for literal α, then α ∈ N;
For each strict rule α0 ← α1, . . . , αn (resp., defeasible rule
α0−≺α1, . . . , αn) such that α1, . . . , αn ∈ N, then α0 ∈ N and
({α1, . . . , αn}, α0) ∈ H;
For each pair of nodes in N representing complementary literals α and
∼α, both ({α},∼α) ∈ H and ({∼α}, α) ∈ H.

Example (Hyper-graph G(P) for P)

Consider the DeLP-program P1 = (Π1,∆1), where:

Π1 =
{

w , t , z, (p ← t)
}

∆1 =

{
(∼a−≺y), (y−≺x), (x−≺z), (∼x−≺p, t)
(a−≺w , y), (∼w−≺t), (y−≺p), (x−≺p)

}
p

t

∼w
y

w

∼x

x

∼a

z

a



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Dealing with Relevant Updates

Preserved Literals
We say that a node y is reachable from a set X of nodes if there exists a
hyper-path from X to y . We use ReachG(P)(X ) to denote the set of all nodes
that are reachable from X in G(P).
Example

ReachG(P)({y}) = {y , a,∼a}

p

t

∼w
y

w

∼x

x

∼a

z

a

Theorem (Preserved literals)

Given a DeLP program P and an update r , a literal α is preserved (i.e.,
SP(α) = SP′(α)) if α 6∈ ReachG(P)({head(r)}).



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Our Technique

Incremental Algorithm

Algorithm Dynamic DeLP-Solver
Input: DeLP-program P, Initial status SP , Update r .
Output: Status SP′ of the updated program P ′.
1: if the update is irrelevant then
2: return SP ;
3: if head(r) is a fresh literal then
4: return SP ∪

{(
head(r),DELP-SOLVER(P ′, head(r))

)}
5: Let G(P) = 〈N,H〉;// Build Hyper-graph
6: Let R = ReachG(P)({head(r)}); // Literals not preserved
7: Let R = {α ∈ (N \ R)};// Preserved literals
8: for α in R do
9: SP′(α) ← SP(α)// Copy the status of preserved literals

10: for α in R do
11: SP′(α) ← DELP-SOLVER(P ′, α)// Recompute the status of literals
12: return SP′ .



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Outline

1 Introduction
Motivation

2 Background
Defeasible Logic Programming

3 Incremental Computation
Updates
Dealing with Irrelevant Updates
Dealing with Relevant Updates
Our Technique

4 Implementation & Experiments

5 Conclusions and future work



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Experimental validation

Dataset & Metodology

Datasets:
We randomly generated a dataset of 30 DeLP-programs, each of them having
200 positive and 20 negative literals, 8 facts, a number of strict rules in
{5,15, . . . ,35}, and a number d of defeasible rules in {100,120, . . . ,200},
where each (strict or defeasible) rule has a number of literals in the body in
{1,2,3}.

Methodology
For each DeLP-program P in the dataset, we compared the average running
time of Algorithm 1 with that of the approach from scratch, which computes
the status in the updated program by directly calling the DeLP-Solver for each
literal of P.



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Experimental validation

Dataset & Metodology

Datasets:
We randomly generated a dataset of 30 DeLP-programs, each of them having
200 positive and 20 negative literals, 8 facts, a number of strict rules in
{5,15, . . . ,35}, and a number d of defeasible rules in {100,120, . . . ,200},
where each (strict or defeasible) rule has a number of literals in the body in
{1,2,3}.

Methodology
For each DeLP-program P in the dataset, we compared the average running
time of Algorithm 1 with that of the approach from scratch, which computes
the status in the updated program by directly calling the DeLP-Solver for each
literal of P.



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Experimental validation

Experimental Results

10

101

102

0 10 20 30 40 50 60

% Reachable

R
u
n
n
in
g
ti
m
e(
se
c)

Total recomputation
Incremental computation

100 125 150 175 200
0

10

20

30

40

50

60

# defeasible rules

%
R
ea
ch
ab

le

5 15 25 35

20

25

30

35

40

45

50

# strict rules

%
R
ea
ch
ab

le

1 2 3

10

20

30

40

# literals in rule bodies

%
R
ea
ch
ab

le



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Experimental validation

Results

1) We compared our technique with the computation
from scratch.

2) Our incremental algorithm outperforms the
computation from scratch.

3) Our technique is sensitive to the percentage of
literals reachable from the update: the higher it is
the lower the benefits are.

4) A study to determine which parameter impacts on
reachability is reported.



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Outline

1 Introduction
Motivation

2 Background
Defeasible Logic Programming

3 Incremental Computation
Updates
Dealing with Irrelevant Updates
Dealing with Relevant Updates
Our Technique

4 Implementation & Experiments

5 Conclusions and future work



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Conclusions and future work

* We have taken the first steps in tackling the problem of avoiding wasted
effort when determining the warrant status of literals in a DeLP program
after that a (defeasible or strict) rule is added

* Our incremental approach outperforms the computation from scratch
(especially if the average number of literals reachable from an update is
less than 30%).

FW1) Further developing these techniques, as well as developing similar ones
for rule deletion, fact addition and deletion, and the more general case of
simultaneously adding or deleting a set of rules and facts.

FW2) Investigating how our technique can be also extended to cope with other
structured argumentation frameworks.



Introduction Background Incremental Computation Implementation & Experiments Conclusions and future work

Thank you!

... any����question argument?


	Introduction
	Motivation

	Background
	Defeasible Logic Programming

	Incremental Computation
	Updates
	Dealing with Irrelevant Updates
	Dealing with Relevant Updates
	Our Technique

	Implementation & Experiments
	Conclusions and future work

