Exploiting Preference Rules for Querying Databases

Sergio Greco, Cristian Molinaro, Francesco Parisi

D.E.I.S.
Università della Calabria

\{greco, cmolinaro,fparisi\}@deis.unical.it

Motivations

Expressing preferences on alternative scenarios is natural

Information Filtering and Extraction

Main Idea

- We answer to queries by deriving only supported and preferred information

DB: \{ beef, red-wine, white-wine \}
$P:\{$ fruit-salad \leftarrow white-wine,
pie \leftarrow red-wine,
biscuits \leftarrow red-wine \}
$\Phi:\{$ red-wine $>$ white-wine \leftarrow beef, pie $>$ biscuits $\leftarrow\}$

Main Idea

- We answer to queries by deriving only supported and preferred information

```
DB: \{ beef, red-wine, white-wine \} beef red-wine white-wine
\(P:\{\) fruit-salad \(\leftarrow\) white-wine,
    pie \(\leftarrow\) red-wine,
    biscuits \(\leftarrow\) red-wine \}
\(\Phi:\{\) red-wine \(>\) white-wine \(\leftarrow\) beef,
    pie \(>\) biscuits \(\leftarrow\}\)
```


Main Idea

- We answer to queries by deriving only supported and preferred information

```
DB: \{ beef, red-wine, white-wine \}
\(P:\{\) fruit-salad \(\leftarrow\) white-wine,
    pie \(\leftarrow\) red-wine,
    biscuits \(\leftarrow\) red-wine \}
\(\Phi:\{\) red-wine \(>\) white-wine \(\leftarrow\) beef,
    pie \(>\) biscuits \(\leftarrow\}\)
```

beef red-wine
whiteswine

Main Idea

- We answer to queries by deriving only supported and preferred information

DB: \{ beef, red-wine, white-wine \}
$P:\{$ fruit-salad \leftarrow white-wine, pie \leftarrow red-wine, biscuits \leftarrow red-wine \}


```
Ф: { red-wine > white-wine \leftarrow beef,
    pie > biscuits }\leftarrow
```


Main Idea

- We answer to queries by deriving only supported and preferred information

DB: \{ beef, red-wine, white-wine \}
$P:\{$ fruit-salad \leftarrow white-wine, pie \leftarrow red-wine, biscuits \leftarrow red-wine \}


```
\Phi: { red-wine > white-wine \leftarrow beef,
    pie > biscuits }\leftarrow
```

Answer=\{ beef, red-wine, pie \}

Preference Rules

- A preference rule is of the form

$$
A>C \leftarrow B_{1}, \ldots, B_{m}, \text { not } B_{m+1}, \ldots, \operatorname{not} B_{n}, \varphi
$$

- A is preferable to C if the body of the rule is true
- C is dominated by A if the body of the rule is true
red-wine $>$ white-wine \leftarrow beef
beef red-wine white-wine

Preference Rules

- A preference rule is of the form

$$
A>C \leftarrow B_{1}, \ldots, B_{m}, \operatorname{not} B_{m+1}, \ldots, \operatorname{not} B_{n}, \varphi
$$

- A is preferable to C if the body of the rule is true
- C is dominated by A if the body of the rule is true
- dominated atoms cannot be used to infer new information
red-wine $>$ white-wine \leftarrow beef
beef red-wine

white-wine is dominated by red-wine

Preference Rules

- A preference rule is of the form

$$
A>C \leftarrow B_{1}, \ldots, B_{m}, \text { not } B_{m+1}, \ldots, \operatorname{not} B_{n}, \varphi
$$

- A is preferable to C if the body of the rule is true
- C is dominated by A if the body of the rule is true
- dominated atoms cannot be used to infer new information

P: \{ fruit-salad \leftarrow white-wine, pie \leftarrow red-wine, beef red-wine
 biscuits \leftarrow red-wine \}

Preference Rules

- A preference rule is of the form

$$
A>C \leftarrow B_{1}, \ldots, B_{m}, \operatorname{not} B_{m+1}, \ldots, \operatorname{not} B_{n}, \varphi
$$

- A is preferable to C if the body of the rule is true
- C is dominated by A if the body of the rule is true
- dominated atoms cannot be used to infer new information

P: \{ fruit-salad \leftarrow white-wine, pie \leftarrow red-wine, biscuits \leftarrow red-wine \} beef red-wine

Preference Rules

- A preference rule is of the form

$$
A>C \leftarrow B_{1}, \ldots, B_{m}, \text { not } B_{m+1}, \ldots, \operatorname{not} B_{n}, \varphi
$$

- A is preferable to C if the body of the rule is true
- C is dominated by A if the body of the rule is true
- dominated atoms cannot be used to infer new information

P: \{ fruit-salad \leftarrow white-wine, pie \leftarrow red-wine, biscuits \leftarrow red-wine \}

Preferences on Base Atoms

- Preference program Φ

$$
\begin{aligned}
& \Phi:\{ \rho_{1}=\text { beef }>\text { fish } \leftarrow, \\
& \rho_{2}=\text { white-wine }>\text { red-wine } \leftarrow \text { fish }, \\
&\left.\rho_{3}=\text { red-wine }>\text { white-wine } \leftarrow \text { beef }\right\}
\end{aligned}
$$

- intuitively, the evaluation of ρ_{2} and ρ_{3} depends on the evaluation of ρ_{1}
- Φ is layered as follows:

```
Layer 0: { { , }
Layer 1: { }\mp@subsup{\rho}{2}{},\mp@subsup{\rho}{3}{}
```

DB: \{ beef, fish, red-wine, white-wine \}

Preferences on Base Atoms

- Preference program Φ

$$
\begin{aligned}
& \Phi:\{ \rho_{1}=\text { beef }>\text { fish } \leftarrow, \\
& \rho_{2}=\text { white-wine }>\text { red-wine } \leftarrow \text { fish }, \\
&\left.\rho_{3}=\text { red-wine }>\text { white-wine } \leftarrow \text { beef }\right\}
\end{aligned}
$$

- intuitively, the evaluation of ρ_{2} and ρ_{3} depends on the evaluation of ρ_{1}
- Φ is layered as follows:

DB: \{ beef, fish, red-wine, white-wine \}

Preferences on Base Atoms

- Preference program Φ

$$
\begin{aligned}
\Phi:\{ & \rho_{1}=\text { beef }>\text { fish } \leftarrow, \\
& \rho_{2}=\text { white-wine }>\text { red-wine } \leftarrow \text { fish }, \\
& \left.\rho_{3}=\text { red-wine }>\text { white-wine } \leftarrow \text { beef }\right\}
\end{aligned}
$$

- intuitively, the evaluation of ρ_{2} and ρ_{3} depends on the evaluation of ρ_{1}
- Φ is layered as follows:

DB: \{ beef, fish, red-wine, white-wine $\} \quad$ Answer $=\{$ beef, red-wine $\}$

Preferences on Base Atoms

- Preference program Φ

$$
\begin{aligned}
\Phi:\{ & \rho_{1}=\text { beef }>\text { fish } \leftarrow, \\
& \rho_{2}=\text { white-wine }>\text { red-wine } \leftarrow \text { fish }, \\
& \left.\rho_{3}=\text { red-wine }>\text { white-wine } \leftarrow \text { beef }\right\}
\end{aligned}
$$

- intuitively, the evaluation of ρ_{2} and ρ_{3} depends on the evaluation of ρ_{1}
- Φ is layered as follows:

- It is possible to define sufficient conditions which guarantee that the set of preference rules Φ can be partitioned into layers

General Preferences

- Preferences on both base and derived atoms
- Stratified semantics
- a program P is partitioned into strata
- preference rules are associated with strata of P
- for each stratum of P, its preference rules are divided into layers
- P is evaluated by computing one stratum at a time
- for each stratum of P, the associated preference rules are applied one layer at a time

General Preferences

- (Stratified) Datalog program P

P : Lunch $(X) \leftarrow$ Menu (X)
Dinner $(X) \leftarrow$ Menu (X), not Lunch (X)
Dinner (fruit-salad) \leftarrow Dinner (white-wine)
Dinner (ice-cream) \leftarrow Dinner (white-wine)
Dinner (pie) \leftarrow Dinner (red-wine).

- Preference program Φ
$\Phi: \rho_{1}=$ Lunch (beef) $>$ Lunch (fish) \leftarrow,
$\rho_{2}=$ Lunch (red-wine) $>$ Lunch (white-wine) \leftarrow Lunch (beef)
$\rho_{3}=$ Lunch $($ white-wine $)>$ Lunch $($ red-wine $) \leftarrow$ Lunch (fish)
$\rho_{4}=$ Dinner (fruit-salad) $>$ Dinner (ice-cream) \leftarrow Dinner (fish)
$\rho_{5}=\operatorname{Dinner}$ (ice-cream) $>$ Dinner (fruit-salad) \leftarrow Dinner (beef)

General Preferences

- (Stratified) Datalog program P

P : Lunch $(X) \leftarrow$ Menu (X)
Dinner $(X) \leftarrow$ Menu (X), not Lunch (X)
Dinner (fruit-salad) \leftarrow Dinner (white-wine)
Dinner (ice-cream) \leftarrow Dinner (white-wine)
Dinner (pie) \leftarrow Dinner (red-wine).

Stratum S_{1}

- Preference program Φ
$\Phi: \rho_{1}=$ Lunch (beef) $>$ Lunch (fish) \leftarrow,
$\rho_{2}=$ Lunch (red-wine) $>$ Lunch (white-wine) \leftarrow Lunch (beef)
$\rho_{3}=$ Lunch (white-wine) $>$ Lunch (red-wine) \leftarrow Lunch (fish)
$\rho_{4}=$ Dinner (fruit-salad) $>$ Dinner (ice-cream) \leftarrow Dinner (fish)
$\rho_{5}=\operatorname{Dinner}($ ice-cream $)>$ Dinner $($ fruit-salad $) \leftarrow$ Dinner (beef)

General Preferences

- (Stratified) Datalog program P

P : Lunch $(X) \leftarrow$ Menu (X)

Stratum S_{1}

Dinner $(X) \leftarrow$ Menu (X), not Lunch (X) Dinner (fruit-salad) \leftarrow Dinner (white-wine) Dinner (ice-cream) \leftarrow Dinner (white-wine) Dinner (pie) \leftarrow Dinner (red-wine).

- Preference program Φ
$\Phi: \rho_{1}=$ Lunch (beef) $>$ Lunch $($ fish $) \leftarrow$,
$\rho_{2}=$ Lunch $($ red-wine $)>$ Lunch $($ white-wine $) \leftarrow$ Lunch (beef) defined by S_{1}
$\rho_{3}=$ Lunch $($ white-wine $)>$ Lunch $($ red-wine $) \leftarrow$ Lunch (fish)
$\rho_{4}=\operatorname{Dinner}($ fruit-salad) $>$ Dinner $($ ice-cream $) \leftarrow$ Dinner (fish)
$\rho_{5}=\operatorname{Dinner}($ ice-cream $)>$ Dinner (fruit-salad) \leftarrow Dinner (beef)

General Preferences

- (Stratified) Datalog program P

P: Lunch $(X) \leftarrow$ Menu (X)
Dinner $(X) \leftarrow$ Menu (X), not Lunch (X)
Dinner (fruit-salad) \leftarrow Dinner (white-wine)
Dinner (ice-cream) \leftarrow Dinner (white-wine)
Dinner (pie) \leftarrow Dinner (red-wine).

- Preference program Φ
$\Phi: \rho_{1}=$ Lunch (beef) $>$ Lunch (fish) \leftarrow,
$\rho_{2}=$ Lunch $($ red-wine $)>$ Lunch $($ white-wine $) \leftarrow$ Lunch (beef)
$\rho_{3}=$ Lunch $($ white-wine $)>$ Lunch $($ red-wine $) \leftarrow$ Lunch (fish)
$\rho_{4}=\operatorname{Dinner}($ fruit-salad) $>$ Dinner (ice-cream) $\leftarrow \operatorname{Dinner}$ (fish) preferences on atoms
$\rho_{5}=\operatorname{Dinner}($ ice-cream $)>\operatorname{Dinner}\left(\right.$ fruit-salad) $\leftarrow \operatorname{Dinner}$ (beef) defined by S_{2}

General Preferences

- (Stratified) Datalog program P

P : Lunch $(X) \leftarrow$ Menu (X)
Dinner $(X) \leftarrow$ Menu (X), not Lunch (X) Dinner (fruit-salad) \leftarrow Dinner (white-wine) Dinner (ice-cream) \leftarrow Dinner (white-wine) Dinner (pie) \leftarrow Dinner (red-wine).

- Preference program Φ
$\Phi: \rho_{1}=$ Lunch (beef) $>$ Lunch (fish) \leftarrow,
$\rho_{2}=$ Lunch (red-wine) $>$ Lunch (white-wine) \leftarrow Lunch (beef)
$\rho_{3}=$ Lunch $($ white-wine $)>$ Lunch $($ red-wine $) \leftarrow$ Lunch (fish)
$\rho_{4}=$ Dinner $($ fruit-salad $)>$ Dinner (ice-cream) \leftarrow Dinner (fish)
$\rho_{5}=\operatorname{Dinner}$ (ice-cream) $>$ Dinner (fruit-salad) \leftarrow Dinner (beef)
DB: \{ Menu (beef), Menu (fish), Menu (red-wine), Menu (white-wine) \}

- (Stratified) Datalog program P

P : Lunch $(X) \leftarrow$ Menu (X)
Dinner $(X) \leftarrow$ Menu (X), not Lunch (X) Dinner (fruit-salad) \leftarrow Dinner (white-wine) Dinner (ice-cream) \leftarrow Dinner (white-wine) Dinner (pie) \leftarrow Dinner (red-wine).

- Preference program Φ
$\Phi: \rho_{1}=$ Lunch $($ beef $)>$ Lunch $($ fish $) \leftarrow$,
$\rho_{2}=$ Lunch (red-wine) $>$ Lunch (white-wine) \leftarrow Lunch (beef)
$\rho_{3}=$ Lunch $($ white-wine $)>$ Lunch $($ red-wine $) \leftarrow$ Lunch (fish)
$\rho_{4}=$ Dinner $($ fruit-salad $)>$ Dinner (ice-cream) \leftarrow Dinner (fish)
$\rho_{5}=\operatorname{Dinner}$ (ice-cream) $>$ Dinner (fruit-salad) \leftarrow Dinner (beef)
DB: \{ Menu (beef), Menu (fish), Menu (red-wine), Menu (white-wine) \}

General Preferences

- (Stratified) Datalog program P

P: Lunch $(X) \leftarrow$ Menu (X)
Dinner $(X) \leftarrow$ Menu (X), not Lunch (X) Dinner (fruit-salad) \leftarrow Dinner (white-wine) Dinner (ice-cream) \leftarrow Dinner (white-wine) Dinner (pie) \leftarrow Dinner (red-wine).

| Menu | beef fish red-wine white-wine |
| :--- | :--- | :--- |
| Lunch | beef |

- Preference program Φ

```
\Phi: }\mp@subsup{\rho}{1}{}=\mathrm{ Lunch (beef) > Lunch (fish) }\leftarrow
    \rho}=\mathrm{ Lunch (red-wine) > Lunch (white-wine) }\leftarrow\mathrm{ Lunch (beef)
    \rho
    Layer 0:{ 的}
    Layer 1: { \rho }\mp@subsup{\rho}{2}{},\mp@subsup{\rho}{3}{}
    \rho}=\mp@code{Dinner (fruit-salad) > Dinner (ice-cream) }\leftarrow\mathrm{ Dinner (fish)
    \rho}=\mp@code{Dinner (ice-cream) > Dinner (fruit-salad) }\leftarrow\mathrm{ Dinner (beef)
```

DB: \{ Menu (beef), Menu (fish), Menu (red-wine), Menu (white-wine) \}

General Preferences

- (Stratified) Datalog program P

```
P: Lunch \((X) \leftarrow\) Menu \((X)\)
    Dinner \((X) \leftarrow\) Menu \((X)\), not Lunch \((X)\)
    Dinner (fruit-salad) \(\leftarrow\) Dinner (white-wine)
    Dinner (ice-cream) \(\leftarrow\) Dinner (white-wine)
    Dinner (pie) \(\leftarrow\) Dinner (red-wine).
```

| Menu | beef | fish | red-wine |
| :---: | :---: | :---: | :---: | white-wine

- Preference program $Ф$
$\Phi: \rho_{1}=$ Lunch (beef) $>$ Lunch (fish) \leftarrow,
$\rho_{2}=$ Lunch (red-wine) $>$ Lunch (white-wine) \leftarrow Lunch (beef)
$\rho_{3}=$ Lunch $($ white-wine $)>$ Lunch $($ red-wine $) \leftarrow$ Lunch (fish)
$\rho_{4}=$ Dinner $($ fruit-salad $)>$ Dinner (ice-cream) \leftarrow Dinner (fish)
$\rho_{5}=\operatorname{Dinner}$ (ice-cream) $>$ Dinner (fruit-salad) \leftarrow Dinner (beef)
DB: \{ Menu (beef), Menu (fish), Menu (red-wine), Menu (white-wine) \}

General Preferences

- (Stratified) Datalog program P

P : Lunch $(X) \leftarrow$ Menu (X)
Dinner $(X) \leftarrow$ Menu (X), not Lunch (X)
Dinner (fruit-salad) \leftarrow Dinner (white-wine) Dinner (ice-cream) \leftarrow Dinner (white-wine) Dinner (pie) \leftarrow Dinner (red-wine).

Menu	beef fish red-wine	white-wine	
Lunch	beef	red-wine	whit dine
Dinner	fish	white-wine	
	fruit-salad iceseam		

- Preference program Φ
$\Phi: \rho_{1}=$ Lunch $($ beef $)>\operatorname{Lunch}($ fish $) \leftarrow$,
$\rho_{2}=$ Lunch (red-wine) $>$ Lunch (white-wine) \leftarrow Lunch (beef)
$\rho_{3}=$ Lunch $($ white-wine $)>$ Lunch $($ red-wine $) \leftarrow$ Lunch (fish)
$\rho_{4}=\operatorname{Dinner}($ fruit-salad) $>\operatorname{Dinner}$ (ice-cream) $\leftarrow \operatorname{Dinner}$ (fish)
$\rho_{5}=\operatorname{Dinner}($ ice-cream $)>\operatorname{Dinner}($ fruit-salad) $\leftarrow \operatorname{Dinner}$ (beef)
Layer $0:\left\{\rho_{4}, \rho_{5}\right\}$

DB: \{ Menu (beef), Menu (fish), Menu (red-wine), Menu (white-wine) \}

- (Stratified) Datalog program P

P : Lunch $(X) \leftarrow$ Menu (X)
Dinner $(X) \leftarrow$ Menu (X), not Lunch (X) Dinner (fruit-salad) \leftarrow Dinner (white-wine) Dinner (ice-cream) \leftarrow Dinner (white-wine) Dinner (pie) \leftarrow Dinner (red-wine).

Menu	beef fish red-wine	white-wine	
Lunch	beef	red-wine	whit dine
Dinner	fish	white-wine	
	fruit-salad	ice eam	

- Preference program Φ
$\Phi: \rho_{1}=$ Lunch $($ beef $)>\operatorname{Lunch}($ fish $) \leftarrow$,
$\rho_{2}=$ Lunch (red-wine) $>$ Lunch (white-wine) \leftarrow Lunch (beef)
$\rho_{3}=$ Lunch $($ white-wine $)>$ Lunch $($ red-wine $) \leftarrow$ Lunch (fish)
$\rho_{4}=\operatorname{Dinner}($ fruit-salad) $>$ Dinner (ice-cream) \leftarrow Dinner (fish)
$\rho_{5}=\operatorname{Dinner}$ (ice-cream) $>$ Dinner (fruit-salad) \leftarrow Dinner (beef)
The answer to the prioritized query < Dinner, $\mathrm{P}, \Phi>$ is
\{ Dinner (fish), Dinner (white-wine), Dinner (fruit-salad) \}

Well-Formed Queries

- A prioritized query $<q, P, \Phi>$ is well-formed if
- Φ is layered, and
- for each $A>C \leftarrow B_{1}, \ldots, B_{m}$, not $B_{m_{+1}}, \ldots$, not B_{n}, it holds that A, B_{1}, B_{m} do not depend on C in P

DB: \{ white-wine, red-wine \}
$P:\{$ beef \leftarrow white-wine $\}$
$\Phi:\{$ red-wine $>$ white-wine \leftarrow beef $\}$

Complexity Result

Let DB be a database and $\mathrm{Q}=<\mathrm{q}, \mathrm{P}, \Phi>$ be a well-formed prioritized query.

The computational complexity of evaluating Q on DB is polynomial time.

Conclusions

- We have presented prioritized queries
- preferences can be defined on both base and derived atoms
- A stratified semantics for prioritized queries has been introduced
- The computational complexity of evaluating prioritized queries is still polynomial

Thank you!

...any questions?

15th Italian Symposium on Advanced Database Systems, SEBD 2007
Torre Canne, Fasano (BR),Italy

backstage

Layers

- A (ground) preference program Φ is layered if it is possible to partition Φ into n layers as follows:
- for each atom C such that there is no rule $A>C \leftarrow B_{1}, \ldots, B_{m}$, not B_{m+1}, \ldots, not B_{n}, layer $(\mathrm{C})=0$;
- for each atom C such that there is a rule $A>C \leftarrow B_{1}, \ldots, B_{m}$, not B_{m+1}, \ldots, not B_{n}, $\operatorname{layer}(\mathrm{C})>\max \left\{\operatorname{layer}\left(B_{1}\right), \ldots, \operatorname{layer}\left(B_{n}\right), 0\right\}$ and $\operatorname{layer}(\mathrm{C}) \geq \operatorname{layer}(A)$;
- the layer of a preference rule $A>C \leftarrow B_{1}, \ldots, B_{m}$, not B_{m+1}, \ldots, not B_{n}, is layer(C);
- Ф[i] consists of all preference rules having layer i
- It is possible to define sufficient conditions which guarantee that the set of preference rules Φ can be partitioned into layers

Prioritized query

- A prioritized query is a triplet <q, $P, \Phi\rangle$,
$-q$ is a predicate symbol denoting the output relation,
$-P$ is a (stratified) Datalog program
- Φ is a preference program

Well-Formed Queries

- A prioritized query <q, $P, \Phi>$ is well formed if
- the ground transitive closure of Φ is layered, and
- for each $A>C \leftarrow B_{1}, \ldots, B_{m}$, not B_{m+1}, \ldots, not B_{n} it holds that A, B_{1}, B_{m} do not depend on C in P

DB: \{ white-wine, red-wine \}
$P:\{$ beef \leftarrow white-wine $\}$
$\Phi:\{$ red-wine $>$ white-wine \leftarrow beef $\}$

Naive Translation

$\Phi:\{$ red-wine $>$ white-wine \leftarrow beef white-wine $>$ red-wine \leftarrow fish \}
white-wine' \leftarrow white-wine, not X
X \leftarrow red-wine', beef'
red-wine' \leftarrow red-wine
beef' \leftarrow beef
red-wine' \leftarrow red-wine, not Y
$\mathrm{Y} \leftarrow$ white-wine', fish'
white-wine' \leftarrow white-wine
fish' \leftarrow fish

results in a non-stratified program

