Range-Consistent Answers of Aggregate Queries under Aggregate Constraints

Sergio Flesca, Filippo Furfaro, Francesco Parisi

DEIS University of Calabria 87036 Rende (CS), Italy

SUM 2010

Toulouse, September, 27 - 29

Motivation Contribution

Inconsistent Numerical Data

- Data inconsistency can arise in several scenarios
 - Data integration, reconciliation, errors in acquiring data (mistakes in transcription, OCR tools, sensors, etc.)
- Acquiring balance sheets data

original (consistent) balance-sheet paper document

Receipts		100
	receivables	120
	total receipts	220

 The original data were consistent: 100 + 120 = 220, but a symbol recognition error occurred during the digitizing phase

> digitized document (e.g. obtained by an OCR tool)

Receipts	cash sales	100
	receivables	120
	total receipts	250

The acquired document is *not* consistent: $100 + 120 \neq 250$

Motivation Contribution

Inconsistent Numerical Data

- Data inconsistency can arise in several scenarios
 - Data integration, reconciliation, errors in acquiring data (mistakes in transcription, OCR tools, sensors, etc.)
- Acquiring balance sheets data

original (consistent) balance-sheet paper document

Receipts	cash sales	100
	receivables	120
	total receipts	220

 The original data were consistent: 100 + 120 = 220, but a symbol recognition error occurred during the digitizing phase

> digitized document (e.g. obtained by an OCR tool)

Receipts		100
	receivables	120
	total receipts	250

The acquired document is *not* consistent: $100 + 120 \neq 250$

Motivation Contribution

Inconsistent Numerical Data

- Data inconsistency can arise in several scenarios
 - Data integration, reconciliation, errors in acquiring data (mistakes in transcription, OCR tools, sensors, etc.)
- Acquiring balance sheets data

original (consistent) balance-sheet paper document

Receipts	cash sales	100
	receivables	120
	total receipts	220

- The original data were consistent: 100 + 120 = 220, but a symbol recognition error occurred during the digitizing phase

digitized document (e.g. obtained by an OCR tool)

Receipts	Receipts cash sales	
	receivables	120
	total receipts	250

- The acquired document is *not* consistent: $100 + 120 \neq 250$

Motivation Contribution

Querying Inconsistent Data

- The analysis of the financial conditions of a company can be supported by evaluating aggregate queries on its (digitized) balance sheets
- Examples of queries which can support this kind of analysis are:
 - the maximum/minimum value of *cash sales* over the last five years
 - the sum of cash sales for the last five years
- The mere evaluation of these queries on inconsistent data may yield a wrong picture of the real world

Motivation Contribution

Querying Inconsistent Data

- The analysis of the financial conditions of a company can be supported by evaluating aggregate queries on its (digitized) balance sheets
- Examples of queries which can support this kind of analysis are:
 - the maximum/minimum value of *cash sales* over the last five years
 - the sum of cash sales for the last five years
- The mere evaluation of these queries on inconsistent data may yield a wrong picture of the real world

Motivation Contribution

Querying Inconsistent Data

- The analysis of the financial conditions of a company can be supported by evaluating aggregate queries on its (digitized) balance sheets
- Examples of queries which can support this kind of analysis are:
 - the maximum/minimum value of *cash sales* over the last five years
 - the sum of cash sales for the last five years
- The mere evaluation of these queries on inconsistent data may yield a wrong picture of the real world

Motivation Contribution

Range-Consistent Answers (Range-CQAs)

- The range-consistent answer of an aggregate query is the narrowest interval containing all the answers of the query evaluated on every possible repaired database
- Range-CQAs can still support several analysis tasks
- For instance, knowing that, for every "reasonable" repair,
 - the maximum and the minimum of *cash sales* are in the intervals [100, 120] and [50, 70], respectively,
 - the sum of cash sales for the considered years is in [350, 400]

can give a sufficiently accurate picture of the trend of cash sales.

Motivation Contribution

Range-Consistent Answers (Range-CQAs)

- The range-consistent answer of an aggregate query is the narrowest interval containing all the answers of the query evaluated on every possible repaired database
- Range-CQAs can still support several analysis tasks
- For instance, knowing that, for every "reasonable" repair,
 - the maximum and the minimum of *cash sales* are in the intervals [100, 120] and [50, 70], respectively,
 - the sum of *cash sales* for the considered years is in [350, 400]

can give a sufficiently accurate picture of the trend of cash sales.

Motivation Contribution

- We devised a strategy for computing range consistent answers of SUM-, MIN-, and MAX-queries in the presence of aggregate constraints
- Our approach computes range-CQAs by solving Integer Linear Programming (ILP) problem instances, thus enabling the computation of range-CQAs by means of well-known techniques for solving ILP
- We characterized the computational complexity of the range-CQA problem for SUM-, MIN-, and MAX-queries in the presence of aggregate constraints
- We experimentally validated our approach

Motivation Contribution

- We devised a strategy for computing range consistent answers of SUM-, MIN-, and MAX-queries in the presence of aggregate constraints
- Our approach computes range-CQAs by solving Integer Linear Programming (ILP) problem instances, thus enabling the computation of range-CQAs by means of well-known techniques for solving ILP
- We characterized the computational complexity of the range-CQA problem for SUM-, MIN-, and MAX-queries in the presence of aggregate constraints
- We experimentally validated our approach

Motivation Contribution

- We devised a strategy for computing range consistent answers of SUM-, MIN-, and MAX-queries in the presence of aggregate constraints
- Our approach computes range-CQAs by solving Integer Linear Programming (ILP) problem instances, thus enabling the computation of range-CQAs by means of well-known techniques for solving ILP
- We characterized the computational complexity of the range-CQA problem for SUM-, MIN-, and MAX-queries in the presence of aggregate constraints
- We experimentally validated our approach

Motivation Contribution

- We devised a strategy for computing range consistent answers of SUM-, MIN-, and MAX-queries in the presence of aggregate constraints
- Our approach computes range-CQAs by solving Integer Linear Programming (ILP) problem instances, thus enabling the computation of range-CQAs by means of well-known techniques for solving ILP
- We characterized the computational complexity of the range-CQA problem for SUM-, MIN-, and MAX-queries in the presence of aggregate constraints
- We experimentally validated our approach

Aggregate Constraints Repairs Aggregate Queries

Outline

Introduction

- Motivation
- Contribution

Preliminaries

- Aggregate Constraints
- Repairs
- Aggregate Queries

Query Answering

- Steady Aggregate Constraints
- Computing Range-Consistent Answers
- Experimental Results

Conclusion and Future Work

Aggregate Constraints Repairs Aggregate Queries

Managing data consistency

- Often classical "classical" integrity constraints (keys, foreign keys, FDs) do not suffice to manage data consistency
 - in scientific and statistical databases, data warehouses, numerical values in some tuples result from aggregating values in other tuples
 - in the balance sheet example, the sum of cash sales and receivables should be equal to the total cash receipts

	digitized	document
(e.g.	obtained	by an OCR tool)

	100
receivables	120
total receipts	250

 Aggregate constraints allow us to define algebraic relations among aggregate values extracted from the database

Aggregate Constraints Repairs Aggregate Queries

Managing data consistency

- Often classical "classical" integrity constraints (keys, foreign keys, FDs) do not suffice to manage data consistency
 - in scientific and statistical databases, data warehouses, numerical values in some tuples result from aggregating values in other tuples
 - in the balance sheet example, the sum of cash sales and receivables should be equal to the total cash receipts

digitized document (e.g. obtained by an OCR tool)

Receipts	pts cash sales	
	receivables	120
	total receipts	250

 Aggregate constraints allow us to define algebraic relations among aggregate values extracted from the database

Aggregate Constraints Repairs Aggregate Queries

Managing data consistency

- Often classical "classical" integrity constraints (keys, foreign keys, FDs) do not suffice to manage data consistency
 - in scientific and statistical databases, data warehouses, numerical values in some tuples result from aggregating values in other tuples
 - in the balance sheet example, the sum of cash sales and receivables should be equal to the total cash receipts

	digitized document
(e.g.	obtained by an OCR tool)

Receipts	ipts cash sales	
	receivables	120
	total receipts	250

 Aggregate constraints allow us to define algebraic relations among aggregate values extracted from the database

Aggregate Constraints Repairs Aggregate Queries

Aggregate Constraints

Definition (Aggregate Constraint)

An aggregate constraint on a database scheme $\ensuremath{\mathcal{D}}$ is of the form

$$\forall \vec{x} \ \left(\phi(\vec{x}) \implies \sum_{i=1}^{n} c_i \cdot \chi_i(\vec{y}_i) \le K \right)$$

- c_1, \ldots, c_n, K are rational constants;
- 2 $\phi(\vec{x})$ is a conjunction of atoms constructed from relation names, constants, and all the variables in \vec{x} ;
- Seach $\chi_i(\vec{y}_i)$ is an aggregation function, where \vec{y}_i is a list of variables and constants, and every variable that occurs in \vec{y}_i also occurs in \vec{x} .

• The aggregation function $\chi(\vec{y}) = \langle R, e, \alpha(\vec{y}) \rangle$ corresponds to the SQL query SELECT SUM (e) FROM R WHERE $\alpha(\vec{y})$, where *e* is an attribute of *R* or a constant

Aggregate Constraints Repairs Aggregate Queries

Aggregate Constraints

Definition (Aggregate Constraint)

An aggregate constraint on a database scheme $\ensuremath{\mathcal{D}}$ is of the form

$$\forall \vec{x} \ \left(\phi(\vec{x}) \implies \sum_{i=1}^{n} c_{i} \cdot \chi_{i}(\vec{y}_{i}) \le K \right)$$

- c_1, \ldots, c_n, K are rational constants;
- 2 $\phi(\vec{x})$ is a conjunction of atoms constructed from relation names, constants, and all the variables in \vec{x} ;
- Seach $\chi_i(\vec{y}_i)$ is an aggregation function, where \vec{y}_i is a list of variables and constants, and every variable that occurs in \vec{y}_i also occurs in \vec{x} .
 - The aggregation function $\chi(\vec{y}) = \langle R, e, \alpha(\vec{y}) \rangle$ corresponds to the SQL query SELECT SUM (e) FROM R WHERE $\alpha(\vec{y})$, where *e* is an attribute of *R* or a constant

Aggregate Constraints Repairs Aggregate Queries

Example of Aggregate Constraint

BalanceSheets

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

 κ_1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year

• $\chi_1(x, y, z) = \langle BalanceSheets, Value, (Year = x \land Section = y \land Type = z) \rangle$

• BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, x_2, \text{'det'}) = \chi_1(x_1, x_2, \text{'aggr'})$

Aggregate Constraints Repairs Aggregate Queries

Example of Aggregate Constraint

BalanceSheets

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
 - $\chi_1(x, y, z) = \langle BalanceSheets, Value, (Year = x \land Section = y \land Type = z) \rangle$
 - BalanceSheets $(x_1, x_2, x_3, x_4, x_5) \implies \chi_1(x_1, x_2, \text{'det'}) = \chi_1(x_1, x_2, \text{'aggr'})$

Aggregate Constraints Repairs Aggregate Queries

Example of Aggregate Constraint

BalanceSheets

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
 - $\chi_1(x, y, z) = \langle BalanceSheets, Value, (Year = x \land Section = y \land Type = z) \rangle$
 - BalanceSheets $(x_1, x_2, x_3, x_4, x_5) \implies \chi_1(x_1, x_2, \text{'det'}) = \chi_1(x_1, x_2, \text{'aggr'})$

Aggregate Constraints Repairs Aggregate Queries

Repairing strategy (1/2)

- A repair for a database w.r.t. a set of aggregate constraints is a set of value updates making the database consistent
- Updates regard attributes representing measure values, such as weights, lengths, prices, etc. We call these attributes measure attributes
- We assume that the absolute values of measure attributes are bounded by a constant *M*.
 - It is often possible to pre-determine a specific range for numerical attributes.
 - In the balance sheet context, it can be reasonably assumed that the items are bounded by \$10⁹.

Aggregate Constraints Repairs Aggregate Queries

Repairing strategy (1/2)

- A repair for a database w.r.t. a set of aggregate constraints is a set of value updates making the database consistent
- Updates regard attributes representing measure values, such as weights, lengths, prices, etc. We call these attributes measure attributes
- We assume that the absolute values of measure attributes are bounded by a constant *M*.
 - It is often possible to pre-determine a specific range for numerical attributes.
 - In the balance sheet context, it can be reasonably assumed that the items are bounded by \$10⁹.

Aggregate Constraints Repairs Aggregate Queries

Repairing strategy (2/2)

- Reasonable repairs, called *card*-minimal repairs, are those having minimum cardinality
- Repairing by *card*-minimal repairs means assuming that the minimum number of errors occurred
 - In the balance-sheet context: the most probable case is that the acquiring system made the minimum number of errors

Aggregate Constraints Repairs Aggregate Queries

Repairing strategy (2/2)

- Reasonable repairs, called *card*-minimal repairs, are those having minimum cardinality
- Repairing by *card*-minimal repairs means assuming that the minimum number of errors occurred
 - In the balance-sheet context: the most probable case is that the acquiring system made the minimum number of errors

Aggregate Constraints Repairs Aggregate Queries

Two examples of *card*-minimal repairs

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	beginning cash drv	
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	total cash receipts aggr	
2008	Disbursements	payment of accounts det		120
2008	Disbursements	capital expenditure det		20
2008	Disbursements	long-term financing det		80
2008	Disbursements	total disbursements aggr		220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

κ1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year

 κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*

 κ_3 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Aggregate Constraints Repairs Aggregate Queries

Two examples of *card*-minimal repairs

Year	Section	Subsection	Туре	Value	
2008	Receipts	beginning cash	drv	50	
2008	Receipts	cash sales	det	100	
2008	Receipts	receivables	det	120	
2008	Receipts	total cash receipts	total cash receipts aggr		
2008	Disbursements	payment of accounts	det	120	
2008	Disbursements	capital expenditure	det	20	
2008	Disbursements	long-term financing	det	80	
2008	Disbursements	total disbursements	aggr	220	
2008	Balance	net cash inflow	drv	30	
2008	Balance	ending cash balance	drv	80	

 $\rho_1 \qquad \rho_2$ $\rightarrow 130 \qquad \longrightarrow 150$

- κ1 for each section and year, the sum of the values of all detail items must be equal to the value of the aggregate item of the same section and year
- κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
- κ_3 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Aggregate Constraints Repairs Aggregate Queries

Two examples of *card*-minimal repairs

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

 $ho_1
ho_2$ ightarrow 130 ightarrow 150

- κ1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
- κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
- κ_3 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Aggregate Constraints Repairs Aggregate Queries

Two examples of *card*-minimal repairs

Year	Section	Subsection	Туре	Value	ρ_1	ρ2
2008	Receipts	beginning cash	drv	50		
2008	Receipts	cash sales	det	100	\rightarrow 130	
2008	Receipts	receivables	det	120		\rightarrow 150
2008	Receipts	total cash receipts	aggr	250		
2008	Disbursements	payment of accounts	det	120		
2008	Disbursements	capital expenditure	det	20		
2008	Disbursements	long-term financing	det	80		
2008	Disbursements	total disbursements	aggr	220		
2008	Balance	net cash inflow	drv	30		
2008	Balance	ending cash balance	drv	80		

- κ1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
- κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
- κ_3 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Aggregate Constraints Repairs Aggregate Queries

Aggregate Queries

Definition (Aggregate Query)

An aggregate query on a database scheme D is an expression of the form SELECT *f* FROM *R* WHERE α , where:

- R is a relation scheme in D;
- 2 *f* is one of MIN(A), MAX(A) or SUM(A), where A in an attribute of R;
- a is boolean combination of atomic comparisons of the form X ◊ Y, where X and Y are constants or non-measure attributes of R, and ◊ ∈ {=, ≠, ≤, ≥, <, >}.

• Our transformation for computing CQAs by solving ILP instances exploits the restriction that no measure attribute occurs in the WHERE clause of an aggregate query

Aggregate Constraints Repairs Aggregate Queries

Aggregate Queries

Definition (Aggregate Query)

An aggregate query on a database scheme D is an expression of the form SELECT *f* FROM *R* WHERE α , where:

- R is a relation scheme in D;
- 2 *f* is one of MIN(A), MAX(A) or SUM(A), where A in an attribute of R;
- a is boolean combination of atomic comparisons of the form X ◊ Y, where X and Y are constants or non-measure attributes of R, and ◊ ∈ {=, ≠, ≤, ≥, <, >}.
 - Our transformation for computing CQAs by solving ILP instances exploits the restriction that no measure attribute occurs in the WHERE clause of an aggregate query

Aggregate Constraints Repairs Aggregate Queries

Range Consistent Answers

Let \mathcal{D} be a database scheme, \mathcal{AC} a set of aggregate constraints on \mathcal{D} , q an aggregate query on \mathcal{D} , and D an instance of \mathcal{D} .

Definition (Range-consistent query answer)

The *range-consistent query answer* of *q* on *D* is the empty interval \emptyset , in the case that *D* admits no repair w.r.t. \mathcal{AC} , or the interval [*glb*, *lub*], otherwise, where:

- i) for each *card*-minimal repair ρ for D w.r.t. AC, it holds that glb ≤ q(ρ(D)) ≤ lub;
- ii) there is a pair ρ' , ρ'' of *card*-minimal repairs for *D* w.r.t. *AC* such that $q(\rho'(D)) = glb$ and $q(\rho''(D)) = lub$.

Aggregate Constraints Repairs Aggregate Queries

Range Consistent Answers

Let \mathcal{D} be a database scheme, \mathcal{AC} a set of aggregate constraints on \mathcal{D} , q an aggregate query on \mathcal{D} , and D an instance of \mathcal{D} .

Definition (Range-consistent query answer)

The *range-consistent query answer* of *q* on *D* is the empty interval \emptyset , in the case that *D* admits no repair w.r.t. \mathcal{AC} , or the interval [*glb*, *lub*], otherwise, where:

- i) for each *card*-minimal repair ρ for *D* w.r.t. AC, it holds that $glb \leq q(\rho(D)) \leq lub$;
- ii) there is a pair ρ' , ρ'' of *card*-minimal repairs for *D* w.r.t. AC such that $q(\rho'(D)) = glb$ and $q(\rho''(D)) = lub$.

Aggregate Constraints Repairs Aggregate Queries

Range Consistent Answers - Example

BalanceSheets

Year	Section	Subsection	Туре	Value	ρ_1	ρ_2
2008	Receipts	beginning cash	drv	50		
2008	Receipts	cash sales	det	100	\rightarrow 130	
2008	Receipts	receivables	det	120		\rightarrow 150
2008	Receipts	total cash receipts	aggr	250		
2008	Disbursements	payment of accounts	det	120		
2008	Disbursements	capital expenditure	det	20		
2008	Disbursements	long-term financing	det	80		
2008	Disbursements	total disbursements	aggr	220		
2008	Balance	net cash inflow	drv	30		
2008	Balance	ending cash balance	drv	80		

• The range-CQA of SELECT MAX(Value) FROM BalanceSheets WHERE Subsection = 'cash sales' is [100, 130]

• The range-CQA of SELECT MAX(Value) FROM BalanceSheets WHERE Subsection = 'net cash inflow' is [30, 30]

Aggregate Constraints Repairs Aggregate Queries

Range Consistent Answers - Example

BalanceSheets

Year	Section	Subsection	Туре	Value	ρ_1	ρ_2
2008	Receipts	beginning cash	drv	50		
2008	Receipts	cash sales	det	100	\longrightarrow 130	
2008	Receipts	receivables	det	120		\rightarrow 150
2008	Receipts	total cash receipts	aggr	250		
2008	Disbursements	payment of accounts	det	120		
2008	Disbursements	capital expenditure	det	20		
2008	Disbursements	long-term financing	det	80		
2008	Disbursements	total disbursements	aggr	220		
2008	Balance	net cash inflow	drv	30		
2008	Balance	ending cash balance	drv	80		

- The range-CQA of SELECT MAX(Value) FROM BalanceSheets WHERE Subsection = 'cash sales' is [100, 130]
- The range-CQA of SELECT MAX(Value) FROM BalanceSheets WHERE Subsection = 'net cash inflow' is [30, 30]
Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Outline

- Introduction
 - Motivation
 - Contribution
- 2 Preliminaries
 - Aggregate Constraints
 - Repairs
 - Aggregate Queries

3 Query Answering

- Steady Aggregate Constraints
- Computing Range-Consistent Answers
- Experimental Results

Conclusion and Future Work

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Steady Aggregate Constraints

• Our approach for computing consistent answers exploits a restrictions imposed on aggregate constraints

Definition (Steady aggregate constraint)

Aggregate constraint $\forall \vec{x} \ (\phi(\vec{x}) \implies \sum_{i=1}^{n} c_i \cdot \chi_i(\vec{y}_i) \le K)$ is *steady* if: • for each $\chi_i = \langle R_i, e_i, \alpha_i \rangle$, no measure attribute occurs in α_i • measure variables occur at most once in the aggregate constraint • no constant occurring in ϕ is associated with a measure attribute

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Steady Aggregate Constraints

 Our approach for computing consistent answers exploits a restrictions imposed on aggregate constraints

Definition (Steady aggregate constraint)

Aggregate constraint $\forall \vec{x} \ (\phi(\vec{x}) \implies \sum_{i=1}^{n} c_i \cdot \chi_i(\vec{y}_i) \le K)$ is *steady* if:

• for each $\chi_i = \langle R_i, e_i, \alpha_i \rangle$, no measure attribute occurs in α_i

measure variables occur at most once in the aggregate constraint
 no constant occurring in ϕ is associated with a measure attribute

- attribute Value is the measure attribute of BalanceSheets(Year, Section, Subsection, Type, Value)

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Steady Aggregate Constraints

 Our approach for computing consistent answers exploits a restrictions imposed on aggregate constraints

Definition (Steady aggregate constraint)

Aggregate constraint $\forall \vec{x} \ (\phi(\vec{x}) \implies \sum_{i=1}^{n} c_i \cdot \chi_i(\vec{y}_i) \le K)$ is *steady* if:

• for each $\chi_i = \langle R_i, e_i, \alpha_i \rangle$, no measure attribute occurs in α_i

2 measure variables occur at most once in the aggregate constraint

no constant occurring in ϕ is associated with a measure attribute

- measure variables are those variables occurring at the position of a measure attribute in ϕ
- x_5 is the measure variable for $\phi = BalanceSheets(x_1, x_2, x_3, x_4, x_5)$, as it occur at the position of *Value*

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Steady Aggregate Constraints

 Our approach for computing consistent answers exploits a restrictions imposed on aggregate constraints

Definition (Steady aggregate constraint)

Aggregate constraint $\forall \vec{x} \ (\phi(\vec{x}) \implies \sum_{i=1}^{n} c_i \cdot \chi_i(\vec{y}_i) \le K)$ is *steady* if:

• for each $\chi_i = \langle R_i, e_i, \alpha_i \rangle$, no measure attribute occurs in α_i

2 measure variables occur at most once in the aggregate constraint

- (a) no constant occurring in ϕ is associated with a measure attribute
 - a constant in ϕ is associated with a measure attribute if it occurs at the position of a measure attribute in ϕ
 - for $\phi = BalanceSheets(x_1, x_2, x_3, x_4, x_5)$, x_5 cannot be a constant

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Complexity Results

- Steady aggregate constraints are expressive enough to ensure data consistency in several real-life scenarios
- The range-CQA problem is hard (even if aggregate constraints are steady)

Theorem (Complexity of Range-CQA)

Let \mathcal{D} be a fixed database scheme, \mathcal{AC} a fixed set of aggregate constraints on \mathcal{D} , q a fixed aggregate query on \mathcal{D} , D an instance of \mathcal{D} , and $[\ell, u]$ a fixed interval.

- ① Deciding whether $CQA^q_{\mathcal{D},\mathcal{AC}}(D) \neq \emptyset$ is NP-complete
- 3 Deciding whether $CQA^q_{\mathcal{D},\mathcal{AC}}(D) \subseteq [\ell, u]$ is $\Delta^p_2[\log n]$ -complete
- The lower complexity bounds still hold in the case that AC is steady

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Complexity Results

- Steady aggregate constraints are expressive enough to ensure data consistency in several real-life scenarios
- The range-CQA problem is hard (even if aggregate constraints are steady)

Theorem (Complexity of Range-CQA)

Let \mathcal{D} be a fixed database scheme, \mathcal{AC} a fixed set of aggregate constraints on \mathcal{D} , q a fixed aggregate query on \mathcal{D} , D an instance of \mathcal{D} , and $[\ell, u]$ a fixed interval.

- **O** Deciding whether $CQA^{q}_{\mathcal{D},\mathcal{AC}}(D) \neq \emptyset$ is NP-complete
- 2 Deciding whether $CQA_{\mathcal{D},\mathcal{AC}}^q(D) \subseteq [\ell, u]$ is $\Delta_2^p[log n]$ -complete
 - **I** The lower complexity bounds still hold in the case that AC is steady

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Basic Steps

Our approach for computing range-consistent answers w.r.t. steady aggregate constraints consists of two steps:

- we compute the cardinality of card-minimal repairs by solving an ILP instance
- starting from the knowledge of this cardinality, a pair of ILP instances are solved for computing the greatest-lower bound and the least-upper bound of the answers

Steady Aggregation Expressions as Inequalities (1/2)

 A set of steady aggregate constraints AC on a database scheme D and an instance D of D can be translated into a set of linear inequalities S(D, AC, D)

Year	Section	Subsection	Туре	Value	
2008	Receipts	beginning cash	drv		
2008	Receipts		det	100	
2008	Receipts	receivables	det	120	
2008	Receipts	total cash receipts		250	
2008	Disburs.	payment of accounts	det	120	
2008	Disburs.		det	20	
2008	Disburs.		det		
2008	Disburs.	total disbursements		220	
2008		net cash inflow	drv		
2008		ending cash balance	drv		

Steady Aggregation Expressions as Inequalities (1/2)

 A set of steady aggregate constraints AC on a database scheme D and an instance D of D can be translated into a set of linear inequalities S(D, AC, D)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disburs.	payment of accounts	det	120
2008	Disburs.	capital expenditure	det	20
2008	Disburs.	long-term financing	det	80
2008	Disburs.	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

Steady Aggregation Expressions as Inequalities (1/2)

 A set of steady aggregate constraints AC on a database scheme D and an instance D of D can be translated into a set of linear inequalities S(D, AC, D)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disburs.	payment of accounts	det	120
2008	Disburs.	capital expenditure	det	20
2008	Disburs.	long-term financing	det	80
2008	Disburs.	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

$$\begin{cases} z_2 + z_3 = z_4 \\ z_5 + z_6 + z_7 = z_8 \end{cases}$$

• κ_1 : BalanceSheets $(x_1, x_2, x_3, x_4, x_5) \Longrightarrow \chi_1(x_1, x_2, det) = \chi_1(x_1, x_2, aggr)$ where $\chi_1(x, y, z) = \langle BalanceSheets, Value, (Year=x \land Section=y \land Type=z) \rangle$

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

> Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

Steady Aggregation Expressions as Inequalities (2/2)

Every solution of S(D, AC, D) corresponds to a (possibly not minimal, not *M*-bounded) repair for D w.r.t. AC

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disburs.	payment of accounts	det	120
2008	Disburs.	capital expenditure	det	20
2008	Disburs.	long-term financing	det	80
2008	Disburs.	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

$$S(\mathcal{D}, \{\kappa_1, \kappa_2, \kappa_3\}, D): \\ \begin{cases} z_4 - z_8 = z_9 \\ z_1 + z_9 = z_{10} \\ z_2 + z_3 = z_4 \\ z_5 + z_6 + z_7 = z_8 \end{cases}$$

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Basic ILP

Definition $(\mathcal{ILP}(\mathcal{D}, \mathcal{AC}, D))$

Given a database scheme D, a set AC of steady aggregate constraints on D, and an instance D of D, ILP(D, AC, D) is:

$$\begin{cases} \mathbf{A} \times \vec{z} \leq \mathbf{B} \\ z_i - M \leq 0 \\ z_i - v_i - (M + |v_i|) \cdot \delta_i \leq 0 \\ z_i \in \mathbb{Z} \end{cases} \qquad \begin{aligned} -z_i - M \leq 0 \\ -z_i + v_i - (M + |v_i|) \cdot \delta_i \leq 0 \\ \delta_i \in \{0, 1\} \end{cases}$$

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Basic ILP

Definition $(\mathcal{ILP}(\mathcal{D}, \mathcal{AC}, D))$

Given a database scheme D, a set AC of steady aggregate constraints on D, and an instance D of D, ILP(D, AC, D) is:

$$\begin{array}{ll} \mathbf{A} \times \vec{z} \leq \mathbf{B} \\ z_i - M \leq 0 \\ z_i - v_i - (\mathbf{M} + |v_i|) \cdot \delta_i \leq 0 \\ z_i \in \mathbb{Z} \end{array} \qquad \begin{array}{l} -z_i - \mathbf{M} \leq 0 \\ -z_i + v_i - (\mathbf{M} + |v_i|) \cdot \delta_i \leq 0 \\ \delta_i \in \{0, 1\} \end{array}$$

• $\mathbf{A} \times \vec{z} \leq \mathbf{B}$ is the set of inequalities $\mathcal{S}(\mathcal{D}, \mathcal{AC}, D)$

- *M* bounds the absolute value of measure attributes
- v_i is the database value corresponding to the variable z_i

2008	Receipts	beginning cash	drv	50	$\rightarrow Z_1$	<i>v</i> ₁ = 50
			•••			

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Basic ILP

Definition $(\mathcal{ILP}(\mathcal{D}, \mathcal{AC}, D))$

Given a database scheme D, a set AC of steady aggregate constraints on D, and an instance D of D, ILP(D, AC, D) is:

$$\begin{cases} \mathbf{A} \times \vec{z} \leq \mathbf{B} \\ z_i - M \leq 0 \\ z_i - \mathbf{v}_i - (\mathbf{M} + |\mathbf{v}_i|) \cdot \delta_i \leq 0 \\ z_i \in \mathbb{Z} \end{cases} \qquad \qquad -z_i - \mathbf{M} \leq 0 \\ -z_i + \mathbf{v}_i - (\mathbf{M} + |\mathbf{v}_i|) \cdot \delta_i \leq 0 \\ \delta_i \in \{0, 1\} \end{cases}$$

- We defined mechanism for counting the number of updates:
- if $z_i \neq v_i$, then $\delta_i = 1$
- ∑δ_i is an upper bound on the number of updates performed by the repair corresponding to the solution of *ILP*(D, AC, D)

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Computing Repairs

Theorem (Repairs)

There is a biunique correspondence between the solutions of $\mathcal{ILP}(\mathcal{D}, \mathcal{AC}, D)$ and the repairs for D w.r.t \mathcal{AC} . In particular, every solution s of $\mathcal{ILP}(\mathcal{D}, \mathcal{AC}, D)$ corresponds to a repair $\rho(s)$ such that the cardinality of $\rho(s)$ is less than or equal to $\sum \delta_i$.

The range-CQA is the empty interval if there is no repair

Corollary (Empty Range-CQA)

 $CQA^{q}_{\mathcal{D},\mathcal{AC}}(D) = \emptyset$ iff $\mathcal{ILP}(\mathcal{D},\mathcal{AC},D)$ has no solution.

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Computing Repairs

Theorem (Repairs)

There is a biunique correspondence between the solutions of $\mathcal{ILP}(\mathcal{D}, \mathcal{AC}, D)$ and the repairs for D w.r.t \mathcal{AC} . In particular, every solution s of $\mathcal{ILP}(\mathcal{D}, \mathcal{AC}, D)$ corresponds to a repair $\rho(s)$ such that the cardinality of $\rho(s)$ is less than or equal to $\sum \delta_i$.

The range-CQA is the empty interval if there is no repair

Corollary (Empty Range-CQA)

 $CQA^{q}_{\mathcal{D},\mathcal{AC}}(D) = \emptyset$ iff $\mathcal{ILP}(\mathcal{D},\mathcal{AC},D)$ has no solution.

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Computing the Minimum Cardinality of Repairs

 $\mathcal{OPT}(\mathcal{D}, \mathcal{AC}, \mathbf{D}) :=$ minimize $\sum_i \delta_i$ subject to $\mathcal{ILP}(\mathcal{D}, \mathcal{AC}, \mathbf{D})$

Corollary (Cardinality of Card-minimal repairs)

The optimal value of OPT(D, AC, D) coincides with the cardinality of any card-minimal repair for D w.r.t. AC.

The solution of \$\mathcal{OPT}(\mathcal{D}, A\mathcal{C}, D)\$ is exploited to compute (not empty) range-consistent answers

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

SUM-queries (1/2)

• Let λ be the cardinality of any *card*-minimal repair. The solutions of

$$\left\{ \begin{array}{l} \mathcal{ILP}(\mathcal{D},\mathcal{AC},\boldsymbol{D}) \\ \lambda = \sum \delta_i \end{array} \right.$$

one-to-one correspond to *card-minimal* repairs for D w.r.t. AC

• For q = SELECT SUM(A) FROM R WHERE α we define $\mathcal{T}(q)$ as $\sum_{t: t \in R \land t \models \alpha} z_{t,A}$,

i.e., the sum of variables *z* associated with tuples of *R* satisfying the WHERE condition

• minimizing (resp. maximizing) $\mathcal{T}(q)$ subject to $\begin{cases} \mathcal{ILP}(\mathcal{D}, \mathcal{AC}, D) \\ \lambda = \sum \delta_i \end{cases}$ result in the minimum (resp. maximum) value of q on all the databases resulting from applying *card*-minimal repairs

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

SUM-queries (1/2)

• Let λ be the cardinality of any *card*-minimal repair. The solutions of

$$\left(\begin{array}{c} \mathcal{ILP}(\mathcal{D},\mathcal{AC},\boldsymbol{D}) \\ \lambda = \sum \delta_i \end{array}\right)$$

one-to-one correspond to *card-minimal* repairs for D w.r.t. AC

• For q = SELECT SUM(A) FROM R WHERE α we define $\mathcal{T}(q)$ as $\sum_{t: t \in R \land t \models \alpha} z_{t,A}$,

i.e., the sum of variables z associated with tuples of R satisfying the <code>WHERE</code> condition

• minimizing (resp. maximizing) $\mathcal{T}(q)$ subject to $\begin{cases} \mathcal{ILP}(\mathcal{D}, \mathcal{AC}, D) \\ \lambda = \sum \delta_i \end{cases}$ result in the minimum (resp. maximum) value of q on all the databases resulting from applying *card*-minimal repairs

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

SUM-queries (1/2)

• Let λ be the cardinality of any *card*-minimal repair. The solutions of

$$\left(\begin{array}{c} \mathcal{ILP}(\mathcal{D},\mathcal{AC},\boldsymbol{D}) \\ \lambda = \sum \delta_i \end{array}\right)$$

one-to-one correspond to *card-minimal* repairs for D w.r.t. AC

• For q = SELECT SUM(A) FROM R WHERE α we define $\mathcal{T}(q)$ as $\sum_{t: t \in R \land t \models \alpha} z_{t,A}$,

i.e., the sum of variables z associated with tuples of R satisfying the <code>WHERE</code> condition

• minimizing (resp. maximizing) $\mathcal{T}(q)$ subject to $\begin{cases}
\mathcal{ILP}(\mathcal{D}, \mathcal{AC}, D) \\
\lambda = \sum \delta_i
\end{cases}$ result in the minimum (resp. maximum) value of q on all the databases resulting from applying *card*-minimal repairs

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

SUM-queries (2/2)

greatest-lower bound

 $\begin{array}{l} \mathcal{OPT}_{glb}^{SUM}(\mathcal{D},\mathcal{AC},\boldsymbol{q},\boldsymbol{D}) := \\ \textit{minimize } \mathcal{T}(\boldsymbol{q}) \textit{ subject to} \\ \left\{ \begin{array}{l} \mathcal{ILP}(\mathcal{D},\mathcal{AC},\boldsymbol{D}) \\ \lambda = \sum \delta_i \end{array} \right. \end{array}$

least-upper bound

 $\begin{array}{l} \mathcal{OPT}^{SUM}_{lub}(\mathcal{D},\mathcal{AC},\boldsymbol{q},\boldsymbol{D}) := \\ maximize \ \mathcal{T}(\boldsymbol{q}) \ subject \ to \\ \left\{ \begin{array}{l} \mathcal{ILP}(\mathcal{D},\mathcal{AC},\boldsymbol{D}) \\ \lambda = \sum \delta_i \end{array} \right. \end{array}$

Theorem (Range-Consistent Answer of SUM-query)

For a SUM-query q, either $CQA^q_{\mathcal{D},\mathcal{AC}}(D) = \emptyset$, or $CQA^q_{\mathcal{D},\mathcal{AC}}(D) = [\ell, u]$, where

•
$$\ell$$
 is the value returned by $OPT_{glb}^{SUM}(D, AC, q, D)$

2 *u* the value returned by $OPT_{lub}^{SUM}(D, AC, q, D)$.

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

MAX-queries (1/2)

Additional inequalities are exploited to encode the MAX function

 Let I(q) be the set of indexes of variables z associated with the tuples selected by MAX-query q, we define In(q) as

$$\begin{cases} z_j - z_i - 2M \cdot \mu_i \le 0 & \forall j, i \in \\ \sum_{i \in \mathcal{I}(q)} \mu_i = |\mathcal{I}(q)| - 1 & \\ x_i - M \cdot \mu_i \le 0; & -x_i - \\ z_i - x_i - 2M \cdot (1 - \mu_i) \le 0; & -z_i + \\ x_i - M \le 0; & -x_i - \\ x_i \in \mathbb{Z}; & \mu_i \in \{ 0 \} \end{cases}$$

 $\forall j, i \in \mathcal{I}(q), j \neq i$

$$\begin{array}{l} -x_i - M \cdot \mu_i \leq 0; \\ -z_i + x_i - 2M \cdot (1 - \mu_i) \leq 0; \\ -x_i - M \leq 0; \\ \mu_i \in \{0, 1\}; \quad \forall i \in \mathcal{I}(q); \end{array}$$

• $z_i - x_i = \begin{cases} z_i & \text{if } z_i \text{ takes the maximum value among variables } z_j \\ 0 & \text{otherwise} \end{cases}$

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

MAX-queries (1/2)

- Additional inequalities are exploited to encode the MAX function
- Let I(q) be the set of indexes of variables z associated with the tuples selected by MAX-query q, we define In(q) as

$$\begin{array}{ll} z_j - z_i - 2M \cdot \mu_i \leq 0 & \forall j, i \in \mathcal{I}(q), j \neq i \\ \sum_{i \in \mathcal{I}(q)} \mu_i = |\mathcal{I}(q)| - 1 & \\ x_i - M \cdot \mu_i \leq 0; & -x_i - M \cdot \mu_i \leq 0; \\ z_i - x_i - 2M \cdot (1 - \mu_i) \leq 0; & -z_i + x_i - 2M \cdot (1 - \mu_i) \leq 0 \\ x_i - M \leq 0; & -x_i - M \leq 0; \\ x_i \in \mathbb{Z}; & \mu_i \in \{0, 1\}; & \forall i \in \mathcal{I}(q); \end{array}$$

• $z_i - x_i = \begin{cases} z_i & \text{if } z_i \text{ takes the maximum value among variables } z_j \\ 0 & \text{otherwise} \end{cases}$

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

MAX-queries (1/2)

- Additional inequalities are exploited to encode the MAX function
- Let I(q) be the set of indexes of variables z associated with the tuples selected by MAX-query q, we define In(q) as

$$\begin{cases} z_j - z_i - 2M \cdot \mu_i \leq 0 & \forall j, i \in \mathcal{I}(q), j \neq i \\ \sum_{i \in \mathcal{I}(q)} \mu_i = |\mathcal{I}(q)| - 1 & \\ x_i - M \cdot \mu_i \leq 0; & -x_i - M \cdot \mu_i \leq 0; \\ z_i - x_i - 2M \cdot (1 - \mu_i) \leq 0; & -z_i + x_i - 2M \cdot (1 - \mu_i) \leq 0; \\ x_i - M \leq 0; & -x_i - M \leq 0; \\ x_i \in \mathbb{Z}; & \mu_i \in \{0, 1\}; & \forall i \in \mathcal{I}(q); \end{cases}$$

• $z_i - x_i = \begin{cases} z_i & \text{if } z_i \text{ takes the maximum value among variables } z_j \\ 0 & \text{otherwise} \end{cases}$

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

MAX-queries (2/2)

 $\begin{array}{l} \mathcal{OPT}_{glb}^{MAX}(\mathcal{D},\mathcal{AC},q,D) := \\ \textit{minimize } \sum_{i \in \mathcal{I}(q)} (z_i - x_i) \\ \textit{subject to} \\ \left\{ \begin{array}{l} \mathcal{ILP}(\mathcal{D},\mathcal{AC},D) \\ \lambda = \sum \delta_i \\ \textit{In}(q) \end{array} \right\}$

 $\begin{array}{l} \mathcal{OPT}_{lub}^{MAX}(\mathcal{D},\mathcal{AC},\boldsymbol{q},\boldsymbol{D}) := \\ maximize \; \sum_{i \in \mathcal{I}(\boldsymbol{q})} (z_i - x_i) \\ subject \; to \\ \left\{ \begin{array}{l} \mathcal{ILP}(\mathcal{D},\mathcal{AC},\boldsymbol{D}) \\ \lambda = \sum \delta_i \\ \textit{In}(\boldsymbol{q}) \end{array} \right. \end{array}$

Theorem (Range-Consistent Answer of MAX-query

For a MAX-query q, either $CQA^q_{\mathcal{D},\mathcal{AC}}(D) = \emptyset$, or $CQA^q_{\mathcal{D},\mathcal{AC}}(D) = [\ell, u]$

- ℓ is the value returned by $OPT_{alb}^{MAX}(D, AC, q, D)$
- 2 u the value returned by $OPT_{lub}^{MAX}(D, AC, q, D)$.

• A similar (symmetric) result holds for MIN-queries

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

MAX-queries (2/2)

$$\begin{array}{l} \mathcal{OPT}_{glb}^{MAX}(\mathcal{D},\mathcal{AC},q,D) := \\ \text{minimize } \sum_{i \in \mathcal{I}(q)} (z_i - x_i) \\ \text{subject to} \\ \left\{ \begin{array}{l} \mathcal{ILP}(\mathcal{D},\mathcal{AC},D) \\ \lambda = \sum \delta_i \\ ln(q) \end{array} \right\}$$

 $\begin{array}{l} \mathcal{OPT}_{lub}^{MAX}(\mathcal{D},\mathcal{AC},q,D) := \\ maximize \; \sum_{i \in \mathcal{I}(q)} (z_i - x_i) \\ subject \; to \\ \left\{ \begin{array}{l} \mathcal{ILP}(\mathcal{D},\mathcal{AC},D) \\ \lambda = \sum \delta_i \\ ln(q) \end{array} \right. \end{array}$

Theorem (Range-Consistent Answer of MAX-query)

For a MAX-query q, either $CQA^q_{\mathcal{D},\mathcal{AC}}(D) = \emptyset$, or $CQA^q_{\mathcal{D},\mathcal{AC}}(D) = [\ell, u]$

• ℓ is the value returned by $OPT_{glb}^{MAX}(D, AC, q, D)$

2 *u* the value returned by $OPT_{lub}^{MAX}(D, AC, q, D)$.

A similar (symmetric) result holds for MIN-queries

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

MAX-queries (2/2)

$$\begin{array}{l} \mathcal{OPT}_{glb}^{MAX}(\mathcal{D},\mathcal{AC},q,D) := \\ minimize \ \sum_{i \in \mathcal{I}(q)} (z_i - x_i) \\ subject \ to \\ \left\{ \begin{array}{l} \mathcal{ILP}(\mathcal{D},\mathcal{AC},D) \\ \lambda = \sum \delta_i \\ ln(q) \end{array} \right. \end{array}$$

 $\begin{array}{l} \mathcal{OPT}_{lub}^{MAX}(\mathcal{D},\mathcal{AC},q,D) := \\ maximize \; \sum_{i \in \mathcal{I}(q)} (z_i - x_i) \\ subject \; to \\ \left\{ \begin{array}{l} \mathcal{ILP}(\mathcal{D},\mathcal{AC},D) \\ \lambda = \sum \delta_i \\ \textit{In}(q) \end{array} \right. \end{array}$

Theorem (Range-Consistent Answer of MAX-query)

For a MAX-query q, either $CQA^q_{\mathcal{D},\mathcal{AC}}(D) = \emptyset$, or $CQA^q_{\mathcal{D},\mathcal{AC}}(D) = [\ell, u]$

- *l* is the value returned by $OPT_{glb}^{MAX}(D, AC, q, D)$
- **2** *u* the value returned by $OPT_{lub}^{MAX}(D, AC, q, D)$.

• A similar (symmetric) result holds for MIN-queries

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Experiment 1 on data set Balance Sheets

• Average time needed for computing range-consistent answers vs. the percentage of erroneous values

- 3 years balance sheets of companies C1, C2, C3 containing 346, 780, and 1234 tuples, respectively
- typically the percentage of errors is less than 5% of acquired data

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Experiment 1 on data set Balance Sheets

• Average time needed for computing range-consistent answers vs. the percentage of erroneous values

- 3 years balance sheets of companies C1, C2, C3 containing 346, 780, and 1234 tuples, respectively
- typically the percentage of errors is less than 5% of acquired data

Steady Aggregate Constraints Computing Range-Consistent Answers Experimental Results

Experiment 2 on data set Balance Sheets

 An insight on the impact of the database size on the performance of our technique (5% of erroneous values)

 every 1-year balance sheet of companies C1, C2, C3 contains about 115, 260, and 410 tuples, respectively

Outline

Introduction

- Motivation
- Contribution
- 2 Preliminaries
 - Aggregate Constraints
 - Repairs
 - Aggregate Queries

3 Query Answering

- Steady Aggregate Constraints
- Computing Range-Consistent Answers
- Experimental Results

Conclusion and Future Work

Conclusion and ...

- We have introduced a framework for computing range-consistent answers of MAX-, MIN-, and SUM-queries in numerical databases violating a given set of aggregate constraints
- Our approach exploits a transformation into integer linear programming (ILP), thus allowing us to exploit well-known techniques for solving ILP problems
- Experimental results prove the feasibility of the proposed approach in real-life application scenarios

... Future Work

Further work will be devoted to

- devising strategies for computing range-consistent answers of other form of queries (e.g. AVG, GROUPBY clause,...)
- devising strategies for improving performance of our technique (e.g., reducing the number of variables and inequalities used)
- devising a transformation for non-steady constraints (and queries with WHERE clause containing also measure attributes)
- remove the assumption that measure attributes are bounded in value (range-consistent answers can be $\pm\infty$)

Thank you!

... any question?

Related Work

- The *range-consistent query answer* semantics was introduced in [Arenas et Al (TCS 2003)], as a more specific notion of consistent answer w.r.t. the original definition of [Arenas et Al (PODS 1999)] for dealing with aggregate queries (in the presence of FDs)
- Range-CQAs were further investigated in [Fuxman et Al (SIGMOD 2005)] for aggregate queries with grouping under key constraints
- [Flesca et Al (TODS 2010)] investigated several problems regarding the extraction of reliable information from data violating aggregate constraints (including CQA for atomic ground queries)
- None of these works investigated range-CQAa to aggregate queries under of aggregate constraints.
- The *range-consistent query answer* semantics was introduced in [Arenas et Al (TCS 2003)], as a more specific notion of consistent answer w.r.t. the original definition of [Arenas et Al (PODS 1999)] for dealing with aggregate queries (in the presence of FDs)
- Range-CQAs were further investigated in [Fuxman et Al (SIGMOD 2005)] for aggregate queries with grouping under key constraints
- [Flesca et Al (TODS 2010)] investigated several problems regarding the extraction of reliable information from data violating aggregate constraints (including CQA for atomic ground queries)
- None of these works investigated range-CQAa to aggregate queries under of aggregate constraints.

- The *range-consistent query answer* semantics was introduced in [Arenas et Al (TCS 2003)], as a more specific notion of consistent answer w.r.t. the original definition of [Arenas et Al (PODS 1999)] for dealing with aggregate queries (in the presence of FDs)
- Range-CQAs were further investigated in [Fuxman et Al (SIGMOD 2005)] for aggregate queries with grouping under key constraints
- [Flesca et Al (TODS 2010)] investigated several problems regarding the extraction of reliable information from data violating aggregate constraints (including CQA for atomic ground queries)
- None of these works investigated range-CQAa to aggregate queries under of aggregate constraints.

- The *range-consistent query answer* semantics was introduced in [Arenas et Al (TCS 2003)], as a more specific notion of consistent answer w.r.t. the original definition of [Arenas et Al (PODS 1999)] for dealing with aggregate queries (in the presence of FDs)
- Range-CQAs were further investigated in [Fuxman et Al (SIGMOD 2005)] for aggregate queries with grouping under key constraints
- [Flesca et Al (TODS 2010)] investigated several problems regarding the extraction of reliable information from data violating aggregate constraints (including CQA for atomic ground queries)
- None of these works investigated range-CQAa to aggregate queries under of aggregate constraints.

- Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proc. 18th ACM Symp. on Principles of Database Systems (PODS). (1999) 68–79
- Arenas, M., Bertossi, L.E., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar aggregation in inconsistent databases. Theor. Comput. Sci. (TCS) Vol. 3(296) (2003) 405–434
- Fuxman, A., Fazli, E., Miller, R.J.: Conquer: Efficient management of inconsistent databases. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD). (2005) 155–166
 - Flesca, S., Furfaro, F., Parisi, F.: Querying and Repairing Inconsistent Numerical Databases. ACM Transactions on Database Systems (TODS), Vol 35 (2), 2010

Semantics of Aggregate Constraints

An aggregate constraint is an aggregation expression that a database should satisfy

• The database *D* satisfies the aggregate constraint

 $\kappa: \forall \vec{x} \ (\phi(\vec{x}) \implies \sum_{i=1}^{n} c_i \cdot \chi_i(\vec{y}_i) \le K)$

if, for all the substitutions of the variables in \vec{x} with constants making the conjunction of atoms on the $LHS(\kappa)$ true, the inequality on the $RHS(\kappa)$ holds on D.

 A database D is consistent w.r.t. a set of aggregate constraints AC if D ⊨ AC

Semantics of Aggregate Constraints

- An aggregate constraint is an aggregation expression that a database should satisfy
- The database *D* satisfies the aggregate constraint

$$\kappa: \quad \forall \, \vec{x} \; \left(\phi(\vec{x}) \implies \sum_{i=1}^{n} c_{i} \cdot \chi_{i}(\vec{y}_{i}) \le K \right)$$

if, for all the substitutions of the variables in \vec{x} with constants making the conjunction of atoms on the $LHS(\kappa)$ true, the inequality on the $RHS(\kappa)$ holds on D.

 A database D is consistent w.r.t. a set of aggregate constraints AC if D ⊨ AC

Semantics of Aggregate Constraints

- An aggregate constraint is an aggregation expression that a database should satisfy
- The database *D* satisfies the aggregate constraint

$$\kappa: \forall \vec{x} \ (\phi(\vec{x}) \implies \sum_{i=1}^{n} c_i \cdot \chi_i(\vec{y}_i) \le K)$$

if, for all the substitutions of the variables in \vec{x} with constants making the conjunction of atoms on the $LHS(\kappa)$ true, the inequality on the $RHS(\kappa)$ holds on *D*.

 A database D is consistent w.r.t. a set of aggregate constraints AC if D ⊨ AC Appendix

Backup Slides For Further Reading

Example of Aggregate Constraint (1/3)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_1 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
 - $\chi_1(x, y) = \langle BalanceSheets, Value, (Year = x \land Subsection = y) \rangle$
 - BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{'net cash inflow'}) (\chi_1(x_1, \text{'total cash receipts'}) \chi_1(x_1, \text{'total disbursements'})) =$

Appendix

Backup Slides For Further Reading

Example of Aggregate Constraint (1/3)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_1 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
 - $\chi_1(x, y) = \langle BalanceSheets, Value, (Year = x \land Subsection = y) \rangle$
 - BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{ 'net cash inflow'}) (\chi_1(x_1, \text{ 'total cash receipts'}) \chi_1(x_1, \text{ 'total disbursements'})) = 0$

Example of Aggregate Constraint (1/3)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_1 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
 - $\chi_1(x, y) = \langle BalanceSheets, Value, (Year = x \land Subsection = y) \rangle$
 - BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{ 'net cash inflow'}) (\chi_1(x_1, \text{ 'total cash receipts'}) \chi_1(x_1, \text{ 'total disbursements'})) = 0$

Example of Aggregate Constraint (1/3)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_1 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
 - $\chi_1(x, y) = \langle BalanceSheets, Value, (Year = x \land Subsection = y) \rangle$
 - BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{ 'net cash inflow'}) (\chi_1(x_1, \text{ 'total cash receipts'}) \chi_1(x_1, \text{ 'total disbursements'})) = 0$

Appendix

Backup Slides For Further Reading

Example of Aggregate Constraint (2/3)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_2 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*.
 - $\chi_1(x, y) = \langle BalanceSheets, Value, (Year = x \land Subsection = y) \rangle$
 - BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{`ending cash balance'}) (\chi_1(x_1, \text{`beginning cash'}) + \chi_1(x_1, \text{`net cash inflow'})) = 0$

Appendix

Backup Slides For Further Reading

Example of Aggregate Constraint (2/3)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_2 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*.
 - $\chi_1(x, y) = \langle BalanceSheets, Value, (Year = x \land Subsection = y) \rangle$
 - BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{`ending cash balance'}) (\chi_1(x_1, \text{`beginning cash'}) + \chi_1(x_1, \text{`net cash inflow'})) = 0$

Example of Aggregate Constraint (2/3)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_2 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*.
 - $\chi_1(x, y) = \langle BalanceSheets, Value, (Year = x \land Subsection = y) \rangle$
 - BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{`ending cash balance'}) (\chi_1(x_1, \text{`beginning cash'}) + \chi_1(x_1, \text{`net cash inflow'})) = 0$

Example of Aggregate Constraint (2/3)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_2 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*.
 - $\chi_1(x, y) = \langle BalanceSheets, Value, (Year=x \land Subsection=y) \rangle$
 - BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{`ending cash balance'}) (\chi_1(x_1, \text{`beginning cash'}) + \chi_1(x_1, \text{`net cash inflow'})) = 0$

Example of Aggregate Constraint (3/3)

BalanceSheets

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

 κ_3 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year

• $\chi_2(x, y, z) = \langle BalanceSheets, Value, (Year = x \land Section = y \land Type = z) \rangle$

• BalanceSheets $(x_1, x_2, x_3, x_4, x_5) \implies \chi_2(x_1, x_2, \text{'det'}) = \chi_2(x_1, x_2, \text{'aggr'})$

Example of Aggregate Constraint (3/3)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_3 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
 - $\chi_2(x, y, z) = \langle BalanceSheets, Value, (Year = x \land Section = y \land Type = z) \rangle$
 - BalanceSheets $(x_1, x_2, x_3, x_4, x_5) \implies \chi_2(x_1, x_2, \text{'det'}) = \chi_2(x_1, x_2, \text{'aggr'})$

Example of Aggregate Constraint (3/3)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_3 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
 - $\chi_2(x, y, z) = \langle BalanceSheets, Value, (Year = x \land Section = y \land Type = z) \rangle$
 - BalanceSheets $(x_1, x_2, x_3, x_4, x_5) \implies \chi_2(x_1, x_2, \text{'det'}) = \chi_2(x_1, x_2, \text{'aggr'})$

Example of Aggregate Constraint (3/3)

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

- κ_3 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
 - $\chi_2(x, y, z) = \langle BalanceSheets, Value, (Year = x \land Section = y \land Type = z) \rangle$
 - BalanceSheets $(x_1, x_2, x_3, x_4, x_5) \implies \chi_2(x_1, x_2, \text{'det'}) = \chi_2(x_1, x_2, \text{'aggr'})$

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

 κ_1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year

 κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*

 κ_3 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

 \rightarrow 130 \longrightarrow 150

- κ1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
- κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
- κ_3 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Year	Section	Subsection	Туре	Value
2008	Receipts	beginning cash	drv	50
2008	Receipts	cash sales	det	100
2008	Receipts	receivables	det	120
2008	Receipts	total cash receipts	aggr	250
2008	Disbursements	payment of accounts	det	120
2008	Disbursements	capital expenditure	det	20
2008	Disbursements	long-term financing	det	80
2008	Disbursements	total disbursements	aggr	220
2008	Balance	net cash inflow	drv	30
2008	Balance	ending cash balance	drv	80

 $ho_1
ho_2$ ightarrow 130
ightarrow 150

- κ1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
- κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
- κ₃ for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Year	Section	Subsection	Туре	Value	ρ_1	ρ_2
2008	Receipts	beginning cash	drv	50		
2008	Receipts	cash sales	det	100	\longrightarrow 130	
2008	Receipts	receivables	det	120		\longrightarrow 150
2008	Receipts	total cash receipts	aggr	250		
2008	Disbursements	payment of accounts	det	120		
2008	Disbursements	capital expenditure	det	20		
2008	Disbursements	long-term financing	det	80		
2008	Disbursements	total disbursements	aggr	220		
2008	Balance	net cash inflow	drv	30		
2008	Balance	ending cash balance	drv	80		

- κ1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
- κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
- κ₃ for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Year	Section	Subsection	Туре	Value	ρ_1	ρ_2
2008	Receipts	beginning cash	drv	50		
2008	Receipts	cash sales	det	100	\rightarrow 130	
2008	Receipts	receivables	det	120		$\longrightarrow 150$
2008	Receipts	total cash receipts	aggr	250		
2008	Disbursements	payment of accounts	det	120		
2008	Disbursements	capital expenditure	det	20		
2008	Disbursements	long-term financing	det	80		
2008	Disbursements	total disbursements	aggr	220		
2008	Balance	net cash inflow	drv	30		
2008	Balance	ending cash balance	drv	80		

- κ_1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
- κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
- κ_3 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Year	Section	Subsection	Туре	Value	ρ_1	ρ_2
2008	Receipts	beginning cash	drv	50		
2008	Receipts	cash sales	det	100	\longrightarrow 130	
2008	Receipts	receivables	det	120		\rightarrow 150
2008	Receipts	total cash receipts	aggr	250		
2008	Disbursements	payment of accounts	det	120		
2008	Disbursements	capital expenditure	det	20		
2008	Disbursements	long-term financing	det	80		
2008	Disbursements	total disbursements	aggr	220		
2008	Balance	net cash inflow	drv	30		
2008	Balance	ending cash balance	drv	80		

- κ_1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
- κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
- κ_3 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Year	Section	Subsection	Туре	Value	ρ_1	ρ2
2008	Receipts	beginning cash	drv	50		
2008	Receipts	cash sales	det	100	\longrightarrow 130	
2008	Receipts	receivables	det	120		$\longrightarrow 150$
2008	Receipts	total cash receipts	aggr	250		
2008	Disbursements	payment of accounts	det	120		
2008	Disbursements	capital expenditure	det	20		
2008	Disbursements	long-term financing	det	80		
2008	Disbursements	total disbursements	aggr	220		
2008	Balance	net cash inflow	drv	30		
2008	Balance	ending cash balance	drv	80		

- κ1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
- κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
- κ_3 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Year	Section	Subsection	Туре	Value	ρ_1	ρ2
2008	Receipts	beginning cash	drv	50		
2008	Receipts	cash sales	det	100	\longrightarrow 130	
2008	Receipts	receivables	det	120		$\longrightarrow 150$
2008	Receipts	total cash receipts	aggr	250		
2008	Disbursements	payment of accounts	det	120		
2008	Disbursements	capital expenditure	det	20		
2008	Disbursements	long-term financing	det	80		
2008	Disbursements	total disbursements	aggr	220		
2008	Balance	net cash inflow	drv	30		
2008	Balance	ending cash balance	drv	80		

- κ1 for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
- κ_2 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
- κ_3 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*

Repairing non-numerical data (1/2)

- We assume that inconsistencies involve numerical attributes (measure attributes) only
- Non-measure attributes are assumed to be consistent
- In many real-life situations, even if integrity violations of measure data can coexist with integrity violations involving non-measure data, these inconsistencies can be fixed separately

Repairing non-numerical data (1/2)

- We assume that inconsistencies involve numerical attributes (measure attributes) only
- Non-measure attributes are assumed to be consistent
- In many real-life situations, even if integrity violations of measure data can coexist with integrity violations involving non-measure data, these inconsistencies can be fixed separately

Computing the Minimum Cardinality of Repairs -Example

• For the *BalanceSheets* database where $\mathcal{AC} = \{\kappa_1, \kappa_2, \kappa_3\}, \mathcal{OPT}(\mathcal{D}, \mathcal{AC}, D)$ is

minimize $\sum_i \delta_i$ subject to		
ſ	$z_1 - 50 - (M + 50) \cdot \delta_1 \le 0$	$-z_1 + 50 - (M + 50) \cdot \delta_1 \leq 0$
$z_4 - z_8 = z_9$	$z_2 - 100 - (M + 100) \cdot \delta_2 \le 0$	$-z_2 + 100 - (M + 100) \cdot \delta_2 \le 0$
$z_1 + z_9 = z_{10}$	$z_3 - 120 - (M + 120) \cdot \delta_3 \le 0$	$-z_3 + 120 - (M + 120) \cdot \delta_3 \le 0$
$z_2 + z_3 = z_4$	$z_4 - 250 - (M + 250) \cdot \delta_4 \le 0$	$-z_4 + 250 - (M + 250) \cdot \delta_4 \le 0$
$z_5 + z_6 + z_7 = z_8$	$z_5 - 120 - (M + 120) \cdot \delta_5 \le 0$	$-z_5 + 120 - (M + 120) \cdot \delta_5 \le 0$
$z_i - M \leq 0$	$z_6 - 20 - (M + 20) \cdot \delta_6 \le 0$	$-z_6 + 20 - (M + 20) \cdot \delta_6 \leq 0$
$-z_i - M \leq 0$	$z_7 - 80 - (M + 80) \cdot \delta_7 \le 0$	$-z_7 + 80 - (M + 80) \cdot \delta_7 \leq 0$
$z_i, \in \mathbb{Z}$	$z_8 - 220 - (M + 220) \cdot \delta_8 \le 0$	$-z_8 + 220 - (M + 220) \cdot \delta_8 \leq 0$
$\delta_i \in \{0, 1\}$	$z_9 - 30 - (M + 30) \cdot \delta_9 \le 0$	$-z_9 + 30 - (M + 30) \cdot \delta_9 \leq 0$
l	$z_{10} - 80 - (M + 80) \cdot \delta_{10} \le 0$	$-z_{10} + 80 - (M + 80) \cdot \delta_{10} \le 0$

- encoding of the aggregate constraints
- bounds on measure values
- mechanism for counting the number of updates

Repairing non-numerical data (2/2)

- In the balance sheet scenario, errors in the OCR-mediated acquisition of non-measure attributes (such as lacks of correspondences between real and acquired strings denoting item descriptions) can be repaired in a pre-processing step using a dictionary, by searching for the strings in the dictionary which are the most similar to the acquired ones
- [Fazzinga, et Al (IIDB 2006)] described a system adopting such a dictionary-based repairing strategy for string attributes

Repairing non-numerical data (2/2)

- In the balance sheet scenario, errors in the OCR-mediated acquisition of non-measure attributes (such as lacks of correspondences between real and acquired strings denoting item descriptions) can be repaired in a pre-processing step using a dictionary, by searching for the strings in the dictionary which are the most similar to the acquired ones
- [Fazzinga, et Al (IIDB 2006)] described a system adopting such a dictionary-based repairing strategy for string attributes

- Consider the relation scheme R₂(<u>Project</u>, Department, Costs) database scheme
- and the following constraint: *There is at most one "expensive" project* (a project is considered expensive if its costs are not less than 20*K*)
- This constraint can be expressed by the following aggregate constraint: χ() ≤ 1, where χ = ⟨R₂, 1, (Costs ≥ 20K)⟩
- As attribute *Costs* is a measure attribute of *R*₂, and it occurs in the formula *α* of the aggregation function *χ*, the above-introduced aggregate constraint is not steady (condition (1) of the Definition of steady aggregate constraint is not satisfied).

- Consider the relation scheme R₂(<u>Project</u>, Department, Costs) database scheme
- and the following constraint: *There is at most one "expensive" project* (a project is considered expensive if its costs are not less than 20*K*)
- This constraint can be expressed by the following aggregate constraint: χ() ≤ 1, where χ = ⟨R₂, 1, (Costs ≥ 20K)⟩
- As attribute *Costs* is a measure attribute of *R*₂, and it occurs in the formula α of the aggregation function χ, the above-introduced aggregate constraint is not steady (condition (1) of the Definition of steady aggregate constraint is not satisfied).

- Consider the relation scheme R₂(<u>Project</u>, Department, Costs) database scheme
- and the following constraint: *There is at most one "expensive" project* (a project is considered expensive if its costs are not less than 20*K*)
- This constraint can be expressed by the following aggregate constraint: χ() ≤ 1, where χ = ⟨R₂, 1, (Costs ≥ 20K)⟩

As attribute *Costs* is a measure attribute of *R*₂, and it occurs in the formula α of the aggregation function χ, the above-introduced aggregate constraint is not steady (condition (1) of the Definition of steady aggregate constraint is not satisfied).

- Consider the relation scheme R₂(<u>Project</u>, Department, Costs) database scheme
- and the following constraint: *There is at most one "expensive" project* (a project is considered expensive if its costs are not less than 20*K*)
- This constraint can be expressed by the following aggregate constraint: χ() ≤ 1, where χ = ⟨R₂, 1, (Costs ≥ 20K)⟩
- As attribute *Costs* is a measure attribute of *R*₂, and it occurs in the formula *α* of the aggregation function *χ*, the above-introduced aggregate constraint is not steady (condition (1) of the Definition of steady aggregate constraint is not satisfied).
Appendix

Backup Slides For Further Reading

Experiment Setting

- We experimentally validated our framework for computing range-CQAs on data set *Balance Sheets* containing real-life balance-sheet data
- We used LINDO API 4.0 as ILP solver, and a PC with Intel Pentium 4 Processor at 3.00 GHz and 4GB RAM

Constraints and Queries of Experiments on data set Balance Sheets (1/3)

- We considered the aggregate constraints $\mathcal{AC} = \{\kappa_1, \kappa_2, \kappa_3\}$
- κ_1 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
- $\chi_1(x, y) = \langle BalanceSheets, Value, (Year=x \land Subsection=y) \rangle$
- BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{ 'net cash inflow'}) (\chi_1(x_1, \text{ 'total cash receipts'}) \chi_1(x_1, \text{ 'total disbursements'})) = 0$
- κ_2 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*.
- BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{`ending cash balance'}) (\chi_1(x_1, \text{`beginning cash'}) + \chi_1(x_1, \text{`net cash inflow'})) = 0$

Constraints and Queries of Experiments on data set Balance Sheets (1/3)

- We considered the aggregate constraints $\mathcal{AC} = \{\kappa_1, \kappa_2, \kappa_3\}$
- κ_1 for each year, the *net cash inflow* must be equal to the difference between *total cash receipts* and *total disbursements*
 - $\chi_1(x, y) = \langle BalanceSheets, Value, (Year = x \land Subsection = y) \rangle$
 - BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{ 'net cash inflow'}) (\chi_1(x_1, \text{ 'total cash receipts'}) \chi_1(x_1, \text{ 'total disbursements'})) = 0$
- κ_2 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*.
- BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{`ending cash balance'}) (\chi_1(x_1, \text{`beginning cash'}) + \chi_1(x_1, \text{`net cash inflow'})) = 0$

Constraints and Queries of Experiments on data set Balance Sheets (1/3)

- We considered the aggregate constraints $\mathcal{AC} = \{\kappa_1, \kappa_2, \kappa_3\}$
- κ₁ for each year, the net cash inflow must be equal to the difference between total cash receipts and total disbursements
 - $\chi_1(x, y) = \langle BalanceSheets, Value, (Year = x \land Subsection = y) \rangle$
 - BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{ 'net cash inflow'}) (\chi_1(x_1, \text{ 'total cash receipts'}) \chi_1(x_1, \text{ 'total disbursements'})) = 0$
- κ_2 for each year, the *ending cash balance* must be equal to the sum of the *beginning cash* and the *net cash inflow*.
 - BalanceSheets(x_1, x_2, x_3, x_4, x_5) $\implies \chi_1(x_1, \text{`ending cash balance'}) (\chi_1(x_1, \text{`beginning cash'}) + \chi_1(x_1, \text{`net cash inflow'})) = 0$

Appendix

Backup Slides For Further Reading

Constraints and Queries of Experiments on data set Balance Sheets (2/3)

- κ₃ for each section and year, the sum of the values of all *detail* items must be equal to the value of the *aggregate* item of the same section and year
 - $\chi_2(x, y, z) = \langle BalanceSheets, Value, (Year = x \land Section = y \land Type = z) \rangle$
 - BalanceSheets $(x_1, x_2, x_3, x_4, x_5) \implies \chi_2(x_1, x_2, \text{'det'}) = \chi_2(x_1, x_2, \text{'aggr'})$

Constraints and Queries of Experiments on data set Balance Sheets (3/3)

- We considered queries q₁, q₂, q₃ obtained from the following "template" query by replacing f with MAX, MIN, SUM, respectively: SELECT f(Value) FROM BalanceSheets WHERE Subection = 'cash sales'
- along with the queries q₄, q₅, q₆ obtained from the following template by replacing f with MAX, MIN, SUM, respectively:
 SELECT f(Value)
 FROM BalanceSheets
 WHERE Section = 'Receipts' ∧ Type ≠ 'aggr'

Complexity Classes

- PTIME: the class of decision problems solvable in polynomial time by deterministic Turing Machines; this class is also denoted as P;
- *NP*: the class of decision problems solvable in polynomial time by nondeterministic Turing Machines;
- Δ₂^p: the class of decision problems solvable in polynomial time by deterministic Turing machines with an NP oracle; this class is also denoted as P^{NP};
- Δ^p₂[log(n)]: the class of decision problems solvable in polynomial time by deterministic Turing machines with an NP oracle which is invoked O(log(n)) times; this class is also denoted as P^{NP[log(n)]};

Backup Slides For Further Reading I

For Further Reading

- Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases.
 In: Proc. 18th ACM Symp. on Principles of Database Systems (PODS). (1999) 68–79
- Flesca, S., Furfaro, F., Parisi, F.: Querying and Repairing Inconsistent Numerical Databases. ACM Transactions on Database Systems (TODS), Vol 35 (2), 2010
- Fazzinga, B., Flesca, S., Furfaro, F., Parisi, F.: Dart: A data acquisition and repairing tool.
 In: Proc. Int. Workshop on Incons. and Incompl. in Databases (IIDB). (2006) 297–317