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SPOT databases

SPOT (Spatial PrObabilistic Temporal) databases
[Parker, Subrahmanian, Grant. TKDE’07]

Declarative framework for the representation and processing of
probabilistic spatio-temporal databases with uncertain probabilities.
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A SPOT database:

(id1, d , 1, [0.9, 1])
(id1, b, 2, [0.6, 1])
(id1, c , 2, [0.7, 0.8])
(id2, b, 1, [0.5, 0.9])
(id2, e, 2, [0.2, 0.5])
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SPOT databases
Several problems have been investigated:

Consistency Checking [Parker et al. TKDE’09]:
Does a given SPOT database have a model?

I Efficient algortihms.

Selection Queries [Parker et al. TKDE’09]:
Given a region r and a probability interval [`, u], find all pairs (id , t)
s.t. object id is at time t inside region r with a probability in [`, u].

I Two semantics: optimistic and cautious.
I Efficient evaluation.

Belief revision [Grant et al. AIJ’10]:
Given a SPOT database D and a new SPOT atom A (to be added to
D), if D ∪ {A} is inconsistent, then “revise” D into a new database
D ′ so that D ′ ∪ {A} is consistent.

Full logic [Doder, Grant, Ognjanović. J. Log. Comput.’13]:
More expressive language with with negation, disjunction, and
quantifiers.
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Contribution

Count Queries in the SPOT framework:
how many objects are in a certain region at a given time point?

Syntax and three alternative semantics

I Expected value semantics

I Extreme values semantics

I Ranking semantics

Properties

Algorithms

Complexity
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SPOT databases

Notation

ID is the set of all object ids.

Space is a grid of N × N points.

T is the set of time points.

Assumptions:

An object can be in only one location at a time.

A location may contain more than one object.
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SPOT databases - Syntax

Definition

A SPOT atom is a tuple (id , r , t, [`, u]) where

id is an object id,

r is a region,

t is a time point,

[`, u] ⊆ [0, 1] is a probability interval.

Definition

A SPOT database is a finite set of SPOT atoms.
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SPOT databases - Syntax
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SPOT databases - Semantics

Definition

A SPOT interpretation is a function I : ID × Space × T → [0, 1] such
that for each id ∈ ID and t ∈ T ,∑

p∈Space
I (id , p, t) = 1

Definition

A SPOT interpretation I satisfies a SPOT atom (id , r , t, [`, u]) iff∑
p∈r

I (id , p, t) ∈ [`, u]

Definition

A SPOT interpretation I is a model for a SPOT database D iff I satisfies
every SPOT atom in D.

Grant, Molinaro, Parisi () Aggregate Count Queries in SPOT databases 8 / 35



SPOT databases - Semantics

Definition

A SPOT interpretation is a function I : ID × Space × T → [0, 1] such
that for each id ∈ ID and t ∈ T ,∑

p∈Space
I (id , p, t) = 1

Definition

A SPOT interpretation I satisfies a SPOT atom (id , r , t, [`, u]) iff∑
p∈r

I (id , p, t) ∈ [`, u]

Definition

A SPOT interpretation I is a model for a SPOT database D iff I satisfies
every SPOT atom in D.

Grant, Molinaro, Parisi () Aggregate Count Queries in SPOT databases 8 / 35



SPOT databases - Semantics

Definition

A SPOT interpretation is a function I : ID × Space × T → [0, 1] such
that for each id ∈ ID and t ∈ T ,∑

p∈Space
I (id , p, t) = 1

Definition

A SPOT interpretation I satisfies a SPOT atom (id , r , t, [`, u]) iff∑
p∈r

I (id , p, t) ∈ [`, u]

Definition

A SPOT interpretation I is a model for a SPOT database D iff I satisfies
every SPOT atom in D.

Grant, Molinaro, Parisi () Aggregate Count Queries in SPOT databases 8 / 35



SPOT databases - Semantics

Example
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SPOT database D:

(id1, d , 1, [0.9, 1])
(id1, b, 2, [0.6, 1])
(id1, c, 2, [0.7, 0.8])
(id2, b, 1, [0.5, 0.9])
(id2, e, 2, [0.2, 0.5])

Interpretation I defined as follows is a model of D

I (id1, (2, 5), 1) = 0.4 I (id1, (3, 5), 1) = 0.5 I (id1, (10, 6), 1) = 0.1
I (id1, (10, 10), 2) = 0.7 I (id1, (1, 1), 2) = 0.3
I (id2, (7, 8), 1) = 0.7 I (id2, (11, 12), 1) = 0.3
I (id2, (9, 7), 2) = 0.3 I (id2, (12, 15), 2) = 0.7
I (id , p, t) = 0 for all triplets (id , p, t) not mentioned above.
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Count Queries in SPOT databases - Syntax

Definition

A count query is an expression of the form

Count(r , t)

where r is a region (i.e., a subset of Space) and t is a time point.

Intuitively, Count(r , t) asks:
“How many objects are inside region r at time t?”.
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Count Queries in SPOT databases - Semantics

We propose three alternative semantics for interpreting count queries:

1 the expected value semantics,

2 the extreme values semantics,

3 the ranking semantics.
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Expected Value Semantics

Basic idea: Given a count query Count(r , t) and a SPOT database D,

Define the expected number of objects in r at time t w.r.t. to a
model M.

Take the minimum and maximum expected number of objects
across all models of D.
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Expected Value Semantics

Consider a count query Count(r , t) and a SPOT database D with n
objects.

Definition
Let M be a model for D and XM a random variable representing the number of
objects in region r at time t according to M.
The expected number of objects in r at time t w.r.t. M is:

Qexp(M) = E[XM ] =
n∑

i=0

i · Pr(XM = i)

Definition (Expected value semantics)

The expected value answer is [c ,C ] where:

c = min
M is a model of D

Qexp(M) and C = max
M is a model of D

Qexp(M)
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Expected Value Semantics

Consider a count query Count(r , t) and a SPOT database D.

Proposition

If [c,C ] is the expected value answer, then ∀v ∈ [c ,C ] there exists a
model M of D s.t. Qexp(M) = v.
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Extreme Values Semantics

Basic idea: Given a count query Count(r , t) and a SPOT database D,
return the lowest and the highest numbers of objects that can be
inside region r at time t (according to the different models of D).
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Extreme Values Semantics

Consider a count query Count(r , t) and a SPOT database D.

Definition (Extreme values semantics)

The extreme values answer is [z ,Z ] where:

z = min
M is a model of D

|{id | M(id , r , t) = 1}|

Z = max
M is a model of D

|{id | M(id , r , t) 6= 0}|

Proposition

If [c,C ] is the expected value answer and [z ,Z ] is the extreme value
answer, then z ≤ c ≤ C ≤ Z.
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Ranking Semantics

Basic idea: Given a count query Count(r , t) and a SPOT database D with
n objects, return a set of pairs

〈0, [`0, u0]〉
〈1, [`1, u1]〉
〈2, [`2, u2]〉
〈3, [`3, u3]〉

...
〈n, [`n, un]〉

where [`i , ui ] is a probability interval for exactly i objects being in region r
at time t.
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Ranking Semantics
We assume independence of events involving the locations of different
objects.
Consider a count query Count(r , t) and a SPOT database D with n
objects.

Definition

Probmin(r , t, i) = min
M is a model of D

ProbM(r , t, i) for 0 ≤ i ≤ n

Probmax(r , t, i) = max
M is a model of D

ProbM(r , t, i) for 0 ≤ i ≤ n

where ProbM(r , t, i) is the probability of having exactly i objects in r at
time t w.r.t. model M, i.e.,

∑
S is a set of ids

and |S | = i

∏
id∈S

M(id , r , t) ·
∏

id∈{all ids}\S

(1−M(id , r , t))


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Ranking Semantics
Consider a count query Count(r , t) and a SPOT database D with n
objects.

Definition

The ranking answer is

〈0, [`0, u0]〉 where `0 = Probmin(r , t, 0) and u0 = Probmax(r , t, 0)
〈1, [`1, u1]〉 where `1 = Probmin(r , t, 1) and u1 = Probmax(r , t, 1)

...

〈n, [`n, un]〉 where `n = Probmin(r , t, n) and un = Probmax(r , t, n)

Proposition

For a simple SPOT database (i.e., with a single model)

The expected answer is [
∑n

i=0 i · `i ,
∑n

i=0 i · ui ]
The extreme answer is
[min{i | 0 ≤ i ≤ n ∧ `i = 1}, max{i | 0 ≤ i ≤ n ∧ `i 6= 0}]
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i=0 i · ui ]
The extreme answer is
[min{i | 0 ≤ i ≤ n ∧ `i = 1}, max{i | 0 ≤ i ≤ n ∧ `i 6= 0}]
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Algorithms

1 Algorithm to compute the expected value semantics
I It leverages a linear program derived from the SPOT database
I Polynomial time

2 Algorithm to compute the extreme values semantics
I It leverages a linear program derived from the SPOT database
I Polynomial time

3 Algorithm to compute the ranking semantics
I Exponential time algorithm
I Polynomial time algorithm for simple SPOT database (i.e., admitting a

single model)
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Algorithms

Definition

Given a SPOT database D, an object id , and a time point t, LC (D, id , t)
is the linear program consisting of the following linear constraints:

` ≤
∑
p∈r

vp ≤ u for each (id , r , t, [`, u]) ∈ D

vp ≥ 0 for each location p ∈ Space∑
p∈Space

vp = 1
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Computing expected value semantics

Consider a count query Count(r , t) and a SPOT database D with n
objects.

Theorem

The expected value answer [c ,C ] can be computed as

c =
n∑

id=1

(
minimize

∑
p∈r vp subject to LC (D, id , t)

)
C =

n∑
id=1

(
maximize

∑
p∈r vp subject to LC (D, id , t)

)

Corollary

The expected value answer can be computed in time O(n · (|Space| · |D|)3).
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Computing extreme value semantics

Consider a count query Count(r , t) and a SPOT database D with n
objects.

Theorem

The extreme value answer [z ,Z ] can be computed as

z = |{id appears in D and (minimize
∑
p∈r

vp subject to LC (D, id , t)) = 1}|

Z = |{id appears in D and (maximize
∑
p∈r

vp subject to LC (D, id , t)) 6= 0}|

Corollary

The extreme value answer can be computed in time O(n · (|Space| · |D|)3).
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Computing ranking semantics

Proposition

The ranking answer 〈0, [`0, u0]〉, . . . , 〈n, [`n, un]〉 can be computed as

`i = minimize ∑
S is a set of ids
and |S| = i

(∏
id∈S

∑
p∈r v

id
p ·

∏
id∈{all ids}\S

(1−
∑

p∈r v
id
p )

)

subject to

LC (D, id1, t) ∪ · · · ∪ LC (D, idn, t)

ui = maximize ∑
S is a set of ids
and |S| = i

(∏
id∈S

∑
p∈r v

id
p ·

∏
id∈{all ids}\S

(1−
∑

p∈r v
id
p )

)

subject to

LC (D, id1, t) ∪ · · · ∪ LC (D, idn, t)
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Computing ranking semantics

For simple SPOT databases (i.e., with one single model) we have a
polynomial-time dynamic programming algorithm.

Definition

ProbM(r , t, 0, j) =
∏j

k=1(1−M(idk , r , t)) 1 ≤ j ≤ n

ProbM(r , t, j , j) =
∏j

k=1 M(idk , r , t) 1 ≤ j ≤ n

ProbM(r , t, i , j) = M(idj , r , t) · ProbM(r , t, i − 1, j − 1)+
(1−M(idj , r , t)) · ProbM(r , t, i , j − 1) 2 ≤ j ≤ n, 1 ≤ i ≤ j − 1

Theorem

The ranking answer 〈0, [`0, u0]〉, . . . , 〈n, [`n, un]〉 can be computed as

`i = ui = ProbM(r , t, i , n)

for simple SPOT databases.
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Computing ranking semantics

Corollary

The ranking answer can be computed in time O(n · (|Space| · |D|)3).
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Conclusion

Count queries in the SPOT framework

Three alternative semantics

1 Expected value semantics

2 Extreme values semantics

3 Ranking semantics

Properties, Algorithms, Complexity

Future work

No independence assumption for the ranking semantics

Count queries over time intervals

Other kinds of count queries
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Thanks!

Questions?
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